
Evolution of Triage:

Real-time Improvements in

Debug Productivity

Gordon Allan
Mentor Graphics Corporation, Fremont, California

gordon_allan@mentor.com

Abstract-The often overlooked topic of triage is explored in depth. Triage is that part of the design/verification process

where failing test results from a regression run are prepared for analysis, categorized, dispatched to available resources

where the real debug takes place. This activity can be a productivity drain, poorly executed, leading to iteration and
waste. We describe triage techniques and an advanced flow which minimizes triage time, and maximizes productivity of
subsequent debug.

Triage is the process of analysis of a discrete set of reported issues of common derivation, including a determination of

priority and methodology for further exploration, analysis and ultimately resolution, of each issue, with the ultimate goal

of making the most effective utilization of resources to achieve maximum benefit.

A recent job advertisement for a Triage Engineer role contained the following: “your success will be defined by the

successful triage of incoming failed units, your triage throughput, the relationships you build, and the improvements you

bring to the process.” This paper aims to provide techniques to equip you for that success.

I. INTRODUCTION

We explore the Role of Triage - looking at techniques used in other industries and how they might be applied;

then the Triage Role, considering triage is something that can only be done well by people, and not by tools. Finally

we look at different kinds of Triage activity. Triage is a multi-faceted activity which depends on cumulative

experience as much as it does on quick analysis and decision making. However, triage of design regression failures

has one important difference to triage of medical issues in an emergency or disaster scenario. Those scenarios

involve random occurrences of issues in random people, there is usually no concept of repetition, or grouping, that

can inform the triage process – each case is treated quickly in isolation to categorize the issues into a set of bins.

We define the attributes of triage in our own domain, and we go on to characterize in depth triage productivity and

identify opportunities for improvement. In our domain, certain patterns of triage emerge:

1) Triage of a single failing test to disposition corrective action

At the simplest level, triage is where experience is applied to the assessment of a single failing test case and the

decision on how to disposition the problem for further action (deeper analysis / debug or fix / workaround or

process improvements.

2) Triage of a failing test or failure mode in historical context, to disposition longer term corrective action

3) Triage of multiple failing tests to determine resource focus and priority.

This is the most common application of triage in a chip design/verification project once it gets into the regression

stage where enough of the chip and its testbench exist and enough runnable test cases exist, to make a viable

regression suite drive the day to day / week to week activities of the team.

4) Triage to identify systemic failures

A particular application of triage, or in some cases a useful side effect of lower level triage, is the identification of

common failures or kinds of failure, leading to the deduction of common root causes which introduce weakness or

instability into the design under test. This can be a result based on good historical data capture with subsequent

follow-up correlating root cause data with symptom data.

Techniques have been observed, developed and used over a number of project cycles, for adding intelligence and

automation to the above triage areas, borrowing capabilities from existing tools and flows which are used manually

during triage and also considering novel automation opportunities.

Each of these techniques can lead to debug productivity improvements and contribute to a best in class triage

flow.

II. THE ROLE OF TRIAGE

Firstly some definitions are required. Traditionally, triage was a technique in the medical situation, often

specifically battlefield medicine. Some common definitions (Fig.1) include:

Triage:noun tri•age \trē-ˈäzh, ˈtrē-ˌ\ [1]

 medical : the process of deciding which patients should be treated first based on how sick or seriously

injured they are

 the sorting of and allocation of treatment to patients and especially battle and disaster victims according to

a system of priorities designed to maximize the number of survivors

 the sorting of patients (as in an emergency room) according to the urgency of their need for care

 the assigning of priority order to projects on the basis of where funds and other resources can be best used,

are most needed, or are most likely to achieve success

Figure 1. Triage in the medical field

We apply the essence of those definitions to the chip design/verification function known as triage:

Triage:

 microelectronic design/verification : the process of analysis of a discrete set of reported issues of common

derivation, including a determination of priority and methodology for further exploration, analysis and

ultimately resolution, of each issue, with the ultimate goal of making the most effective utilization of

resources to achieve maximum benefit.

The medical and ‘emergency response’ analogies can be taken quite far into our domain. Depending on origin,

they have different emphasis. In emergency response to a fire, triage looks at one instance of an emergency, and

uncovers aspects of it that will be important to how it is handled. In ‘Introduction To Fire Protection’ by Robert

Klinoff [2], "TRIAGE: take time to evaluate water needs versus availability, recon safety zones and escape routes.

Is the structure defendable based on construction type, topography, and anticipated fire behavior? Are flammable

vegetation and debris cleared within reasonable distance? Give a fair evaluation of the values at stake versus

resources available and do not waste time on the losers. Evaluate the safety risk to the crew and the equipment."

 Triage is no superficial activity, it can require a deeper analysis of likely root causes informing an analysis of

severity, consequences, related topics, and ultimately an assessment of which resources need to do what, to resolve

the issue. Good triage is valuable, especially when we have 1000 failures to debug.

A different emphasis is noted in a medical emergency with many casualties. The focus is on looking across

multiple instances, and making decisions about the bigger picture. Typically, multiple patients come in and triage

has to determine which are most serious, which are lost causes, which ones need which specialist or which scarce

resource e.g. MRI, x-ray, and which ones can be treated preliminary quickly then left for later. All of these

outcomes can apply in engineering issue analysis, and effective triage often requires a brutal analysis of the big

picture to determine what is to be worked on and what is not.

Other medical analogies exist – when an individual patient with an unknown condition is assessed for symptoms,

patient history, indicators and contra-indicators. When many patients come in during a time period, some have

common symptoms, so there may be a possible common diagnosis - epidemic or coincidence? The specialist needs

to decide whether to treat the many with one solution, or treat individuals, and as with the fire emergency and

battlefield scenario, it may come down to how to use scarce resources and expertise for maximal impact.

III. THE TRIAGE ROLE

Having talked about what triage is, we turn to the activity itself. Triage is something that is done by humans. This

fact is fundamental to the concepts discussed in this paper – in particular, the observation that triage is something

that can only be done by people, and not by tools.

There is an evolution in process, illustrated in Fig. 2. Back in the day, design teams verified and debugged their

own designs. Then they improved objectivity of verification by verifying each other’s designs. Then they moved

further to independence creating separate roles for design and for verification, with specialisms on both sides. Then

those roles eventually grew into organizations, career choices, and technologies that are increasingly separated.

During verification, time is spent on testbench environment design and creation, test case writing, running tests, and

debugging failing tests. As designs get bigger, there is evolution in the debug space, ultimately creating job

functions and specialized activity in the triage and debug space.

Figure 2. Evolution of design -> verification -> debug & triage

The industry is starting to recognize the value of specialism in this role, as part of a larger design/verification

team, for larger design projects. A single regression run for verification or validation may produce many failing

result cases, each of which may have a different disposition, or some commonality. As these regression sets (and

hence failing test sets) get larger and larger, it becomes more important to protect the highest value, scarce resources

needed to debug deep within the design, or testbench, or firmware, and one way to achieve that is to use triage to

funnel groups of failure analysis tasks to those resources wisely, to achieve the most overall productivity.

A recent job advert for a triage role with a certain fruit themed tech company in California cites the following

desired attributes for this job role, and although it refers perhaps more to system-level testing triage than regression-

level, it is a sign of this further evolution in design/verification/debug resourcing:

• In your job as triage engineer, your goal is to quickly and effectively process incoming units that failed some

software test where the failure is believed to be in hardware…

• You will use diagnostic software tools from content experts. You will enhance and maintain the triage

methodology flowchart and associated automation scripts. You will have opportunities to work with experts

from many teams to understand SoC and system behavior…

• Your success will be defined by the successful triage of incoming failed units, your triage throughput, the

relationships you build, and the improvements you bring to the process.

An engineer performing the triage role will typically have several interactions as shown in Fig. 3: incoming work,

informative collateral, process and environment knowledge, infrastructure knowledge.

Figure 3. Interactions in the triage process

The incoming work is usually in the form of an automated regression system (the infrastructure) making reports of

items to be debugged. The collateral will include requirements specifications or user manuals of the design under

test, and the source code and design intent of the testbench and of the design it is testing. Process and environment

knowledge comes partly from project managers, partly from CAD departments. The triage engineer may interact

with specialists in all these areas regularly.

IV. KINDS OF TRIAGE

As we saw from the classic fields of endeavor where triage originated (medical, military, firefighting), triage is a

multi-faceted activity which depends on cumulative experience as much as it does on quick analysis and decision

making.

However triage of regression failures in microelectronic design verification has one important difference to triage

of medical issues in an emergency or disaster scenario. Those scenarios involve random one-off occurrences of

issues in random people, there is (usually) no concept of repetition, or grouping, than can inform the triage process –

each case is treated – quickly – in isolation to rapidly categorize the issues into a set of bins: deceased / immediate

care / delayed care / minimal care. In our world, grouping and history is important. We can identify several

different kinds of triage that occur in design debug, verification and validation flows:

A. Triage of a single failing test to disposition corrective action

At the simplest level, triage is where experience is applied to the assessment of a single failing test case and the

decision on how to disposition the problem for further action (deeper analysis / debug or fix / workaround or process

improvements. In the SoC context, this may be a simple split between a probable RTL/GLS design bug, or a test

environment bug (i.e. a false negative), or a firmware/software related bug, if there is any in the design, or a

specification error or ambiguity.

B. Triage of a failing test or failure mode in historical context, to disposition longer term corrective action

A deeper look at the failing test case or firing assertion, looking back across history to answer questions such as

‘when did this last fail’ or ‘why does it continue to fail from time to time’ may uncover areas of the design that are

susceptible to errors being introduced over time, or areas of the test environment that are overly brittle or fragile in

their approach to checking correct behavior. Triage may both disposition this bug fix plus a longer term

recommendation, and often only the triage engineer will be in a position to spot that situation

C. Triage of multiple failing tests to determine resource focus and priority

This is the most common application of triage as opposed to fail by fail debug, in a chip design/verification

project once it gets into the regression stage where enough of the chip and its testbench exist and enough runnable

test cases exist, to make a viable regression suite drive the day to day / week to week activities of the team. A good

test environment will add value to the failure analysis process and specifically to the triage / root cause prediction

process, by recording meaningful observations and data in a way that the triage engineer can observe commonality

of symptom, and possible commonality of root cause. Ultimately the desired resolution of a regression fail is not to

treat the symptoms, but to treat the root cause. Triage can provide a head start on that debug activity when there are

many failing tests, and we discuss some techniques here.

D. Triage identifying systemic failures

A useful side effect of having a good triage flow at the lower level, is the identification of common failures or

kinds of failure, leading to the deduction of common root causes which introduce weakness or instability into the

design under test. This can be a result based on good historical data capture with subsequent follow-up correlating

root cause data with symptom data. This kind of triage is related to the previous category, but the goal here is not to

resolve multiple failing tests at once, it is to look at the bigger picture and capture data which may enable process

improvements, or verification environment architectural advances, project after project.

VI. TRIAGE TOOLS

Data gathered from the industry suggests that engineering teams spend 40% of verification time doing debug. The

initial part of each debug exercise is triage. It may be performed by the same person as the verification, deeper

debug, or even design engineering activities, or by a specialist, depending on team size, so it is difficult to quantify

the time spent on triage as a separate activity. This author estimates it comprises the first 20-50% of every debug

effort, and is worthy of exploration with a view to making productivity improvements in the debug area as a whole.

When this situation arises in the microelectronic design industry, an EDA solution normally can be found, as it is

worthwhile to spend money to improve productivity and hence time to tapeout, time to correct silicon, time to

market. What would it take to provide a tool that performs the triage activity for us, though?

Looking at the kinds of triage, we can see limited opportunities for automation:

Type A: triage of a single failing test – this could be analyzed and dispositioned if the failure symptom was a clear

indicator, such as an assertion firing at the point of failure. However many fails are symptoms which appear much

later or in an unrelated area of the design. Some initial manual tracing or correlation among multiple data sources is

required.

Type B, looking at the history of a testcase, can be assisted by some automation, but what deductions could be

made by a tool alone, without knowledge of context and intent? At least automation can provide the reporting or

exploration mechanism, but not the conclusion.

Type C, looking across multiple fails for common symptoms, is an activity that can be partially automated, and

there are various Results Analysis tools and techniques available in the industry which assist in this area, but the

majority of the triage activity is taking that information and analyzing further.

Type D, identifying systemic failures over time, can be assisted, and tool automation in this space can come into

its own when larger amounts of data are involved – so called “big data” solutions which are good at spotting

anomalies, outliers, trends and patterns. However, debug of a regression run is really a “here and now” kind of

problem, so while creative automation is possible, it is not a complete solution.

We conclude that tools that implement automation for the four kinds of triage activity listed above do not yet

exist. There are tools which can assist the process, and we will describe some algorithms and flows here, but at the

current time, triage is a manual activity: the tools can’t do it for us.

Reassuringly, this is the case in the medical and emergency services professions also – while processes and flow

charts can be developed which help to guide the triage process, it ultimately takes human instincts and professional

experience to develop the ability to consistently and fairly triage incoming situations.

V. TRIAGE TECHNIQUES

Triage as a discipline can be learned, benefitting from industry expertise. The following techniques and

recommendations were gathered over a number of SoC design and verification projects with teams of various

profiles, sizes and compositions. Some common triage techniques were observed and used:

A. Categorize an individual failure

Several techniques can be used here to look at a fail in isolation and make observations about it which will help

with other collective failure analysis activity:

1) When analyzing a regression fail, categorize it by its failure mode. Was it a build-time error or a run-time

error? Did it fail due to a testbench-caught fail condition, or a testbench timeout, or a testbench lack-of-

success condition, or a golden-reference comparison mismatch?

2) Further categorize all the testbench-caught fail conditions: find the first failing error message in the log file.

Find warnings that were uncharacteristic of the testcase that may be early indicators of impending failure.

Ideally the earliest assertion that fired should be known, as it is most likely to point the way to the root cause.

3) Identify the nature of the check that caused the fail: is it a designer inserted assertion, or a verification

environment assertion, or a scoreboard check, or a protocol check? What is the purpose of the check and

how precise is its diagnosis. In some cases there is nothing more to do, in others there is ambiguity and triage

needs to dig deeper or look at related symptoms to build a picture of where to debug next.

4) Further categorize any golden-reference comparison mismatch failures: analyze them by time, and by which

signal or element mismatched, and record precisely the details as they may be useful for comparison in other

parts of the triage exercise.

Figure 4. Categorizing a regression failure

The main benefit of this initial preparation in triage is to know which resource or expertise is required and who

should dig deeper on this particular fail.

B. Analyze a list of N fails, looking for commonality across multiple fails

The above techniques alone though can lead to wasted effort. If there are multiple fails, then triage the collection

of fails as well as each individual fails, to spot trends and groups. Build or buy a tool or scripting environment that

can provide analysis of multiple runs and execute database-query-like analysis on the data:

1) Explore whether the same error message appears across multiple failing test cases or configurations. The

error message in question would be the first one that is logged – subsequent errors are by definition further

removed from the root cause, so normally only the first error is used. It is desirable that error messages are

well structured in order to make programmatic analysis possible. Methodologies such as UVM can assist

with providing the required structure [3].

For example, you may not be comparing exactly the same error message verbatim, but tolerating a degree of

delta especially if the message refers to random data elements which are incidental to the facts of the failure

mode. In this case, some filtering is require and the technical requirements for the comparison algorithm can

become quite complex. A good Results Analysis solution will accommodate flexible filtered comparison.

2) If the fail comes from an HDL assertion firing, categorize assertion behavior across multiple tests. In the

simplest form this is the same as (1) above if the assertion causes a well-structured error message to be

issued. Your simulator may record the assertion in a particular way that provides access to additional data

than the user-written error message. Note that well-written assertions will notify of a problem close to the

root cause. This is one advantage of assertions over procedural scoreboard code when performing protocol

checks, both the signal location and the time region of the errant behavior are precisely located. Did the

same assertion fire in multiple runs? Under what variety of circumstances did it fire?

3) Sometimes there is less precision but the failure mode may narrow down the incorrect behavior to a general

area of design functionality or a group of problematic signals. Look for anything in common across multiple

failing tests, so that they can be binned together and inform the next steps in the debug process.

Figure 5. Analysis of N related failure symptoms

Once this kind of grouping is done, an instance from each bin can be triaged using techniques (A) above to further

prepare for debug.

C. Analyze a list of NN fails looking even deeper for common potential root causes across multiple fails

Simply analyzing regression log files or assertions fired certainly helps group failing test cases with like

symptoms for further debug, but as we have seen, the symptoms of a failing test may be far removed in time or

scope from the root cause of that failure. And we may see many failing tests in a regression each with a differing

failure symptom, when constrained random stimulus is involved.

We speculate that further grouping can be done once a common root cause is identified, to narrow down the

debug work still further. After all, the new failures were normally caused by one of a small number of design or

testbench changes since the prior passing regression run. The ultimate triage productivity benefit is isolating the

single biggest root cause, affecting many regression test runs as a consequence.

1) One possible technique is to use formal technology to analyze the design around the point of failure. Tools

are available which can automatically apply formal property checking to an identified region of a design to

identify possible or impossible paths and spot common design rule violations.

The exercise would then be to gather the reports of the formal tool and analyze multiple instances for a

common theme. In this way a single design flaw that manifested itself in differing ways depending on test case

can be identified.

2) The root cause analysis features of your debug tool may also be useful here. It is possible to run a causality

check in the debug tool given just two pieces of information: a signal name, and a simulation time, on which

that signal has a transition that triggered the failing assertion or check (an ‘X’ check, for example). The

causality check analyzes the logic fan-in cone to that signal, looking back through both combinational and

sequential logic, back in time using the captured signal values, and deduces a root cause signal and value.

The purpose of doing this is to repeat the analysis of ‘common symptom signature’ that we performed as in

‘B’ above, but with ‘common root cause signature’ as a better goal. In a regression run, several different

symptoms could arise from one root cause.

Figure 6. Deeper analysis of N related failure root causes

Identifying these groupings is low hanging fruit for productive debug as it could take care of a large number of

failing test cases in one go – even if they happened to have diverse symptoms.

D. Analyze a single test instance across N regression runs of run history

Another way to look at regression data is to look back in time given a common reference point – normally a

directed or directed-random test case run with a particular seed and configuration.

In this case the purpose is to derive a temporal grouping of test status – determine the ‘normal’ status for a test

and indicate maturity, or brittleness, of both the test and the design.

This adds tremendous value to the triage process because it can answer several useful questions:

1) Has a failure mode occurred before? In fact this question need not be confined to one test case or

stimulus/configuration combination. It is useful to gather information on when this observation was last

made and what was deduced about the problem on that occasion. For this testcase, is this a new regression

in behavior, or is the testcase hitting a limit of testbench fragility and now needs to be relaxed to

accommodate design behavior that is within specification.

2) Does this test fail continuously/regularly or sporadically – is it a Noisy Test? This is useful to know partly in

case of an overly brittle testbench and partly to learn why designers or testbench writers might frequently

violate this particular check, in order to offer advice on avoiding this failure mode in the future.

3) When it last failed, what did the debug session look like, and do we already know the likely root cause?

Keeping records of debug sessions to inform future triage is prudent. The initial steps of debug that proved to

be valuable last time in finding the root cause, can be reapplied this time when it looks like a reoccurrence.

4) Who has investigated this kind of failure before, can we find them and ask / allocate this fail to them? There

is no substitute for engineer experience with debug of a particular kind of issue. If it is the outcome of triage

that debug actions on failing testcases are allocated among the engineering team, then historical data will

help find the right person first time.

Figure 7. Analysis of regression history for one failure node or many

This is the end goal of the triage phase of debug – to allocate a failing testcase to an expert for further debug and

corrective action. Several factors will come into the decision on what to allocate, and who to allocate it to, all based

on the information gained by the triage engineer: an evaluation of type of issue (i.e. what expertise will be required

next), and historical factors (requiring experience in debug), and severity to the project (identifying the value of the

subsequent debug exercise). The goal is to maximize the value of debug, by careful choice of which testcase debug

will achieve maximum impact steering the design back on course until the next regression run.

VIII. CONCLUSIONS

Triage is a specialized form of debug activity which can consume significant time and resources, and there is

opportunity for optimization of this role and the processes and techniques used to increase overall productivity and

avoid the wasted effort of blind debug alleys.

Tools cannot perform the triage role for us per se, but they can help with data gathering, reporting and initial

analysis, with the remainder of the analysis being manual based on our experience. Part of the effort is having good

data at our fingertips during regression analysis and results analysis phases, including a historical context. Next is to

develop a precision in the way decision and factors of interest are communicated to the next person in line to

continue with deeper debug. Several techniques are described here which may help these activities.

We leave you with some of the text of the aforementioned Triage Specialist job description:

• Do you love debugging issues that may lie in system software, chips, or boards? Are you disciplined,

methodical and reliable? Do you have skills that span CPU and SoC architecture, boards, OS and firmware

interactions? Do you have experience with silicon bring-up, validation and debug? Come talk to us.

• We are looking for star performers...

It is hoped that the approach described here helps equip you for enhanced productivity, accuracy and success in

your triage and debug flow.

REFERENCES

[1] Merriam-Webster, English Dictionary, http://www.merriam-webster.com/dictionary, August 2015.

[2] Robert Klinoff, Introduction to Fire Protection, New York, Cengage Learning, 2007.
[3] Tom Fitzpatrick, Advanced UVM Debugging, Mentor Graphics, 2013

