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ABSTRACT

Wouldn 't it be nice if we could guarantee that only well-formatted, completely predictable data would arrive at the
inputs to our designs? In a simulated world, that would be possible. Unfortunately, the real world in which we live
has no such guarantees. Fabrication processes are not perfect, environmental conditions are frequently hostile, and
the specter of human error always lurks. In addition to normal functionality, gracefully handling error conditions is
an indicator of robustness, which in turn is a key factor in improving total product quality.

We will focus on two aspects of error injection — where is the best place to perform the injection, and how the
injection should be specified and implemented. We will examine placing error injection inside the transaction, in a
UVM sequence, and in the driver component. After determining the best place to perform the injection, we will eval-
uate a common technique for specifying and implementing deliberate errors, and propose a more reusable approach.

I.  INTRODUCTION

Normally, a portion of verification stimulus is devoted to deliberately presenting erroneous stimulus input and eval-
uating the device’s response. The common term for this is called “error injection.” Since failures can happen at any
point internal or external to the design, it is challenging to devise a uniform error injection scheme that can model the
almost unlimited ways errors can occur.

UVM has no preferred methodology for how and where to perform error injection. We will examine some patterns
that we have encountered through our consulting and training work, evaluate their benefits and limitations, and high-
light an approach to error injection that epitomizes the core values of UVM - flexibility, scalability, and reusability.

II. ERROR INJECTION DEFINITION AND PLACEMENT

Error injection can be performed at any point along the path of stimulus generation — in the transaction code itself,
in the sequence that creates transactions, or in the driver that processes transactions.

A.  Transaction modification.

Error injection in the transaction can be done through class extension (Figure 1), commonly involving randomiza-
tion constraints in the extended class or through direct injection. For example, a transaction class has a CRC field and
has a function that calculates a correct CRC based on the payload. An error-injecting class that extends from the
transaction class could override the CRC function to produce a faulty value. A test could then set a factory override
to create instances of the error-injecting transaction wherever the normal transaction is used. This approach is good
for scalability and reusability because as new errors are defined, no existing code needs to be modified. A significant
limitation of this placement of error injection is that you can only inject errors using information available in the



transaction itself. There is no visibility into other transactions in a stream or control over errors that require protocol
knowledge residing in the driver/interface.

class txn extends uvm_sequence_item; class error_txn extends txn;

function void calc_crc();
super.calc_crc();
crc=crc + 1;

endfunction

virtual function void calc_crc();
crc = ...
endfunction

%I Test can use factory override to
| replace normal txn in a sequence

Errors are limited in scope to
transaction data

Figure 1. Error injection through transaction class extension.

B. Sequence modification.

Error injection can also be done by writing an error-injecting sequence class. Sequences are the source of transaction
selection, so they are naturally the best place to specify which error to inject. In the sequence, transactions are created
normally but then modified/corrupted in the sequence code. For example, an error-injecting sequence would create a
normal transaction with a correct CRC. Before sending the transaction to the sequencer, the sequence would reach in
and modify the CRC field (Figure 2). This approach has better flexibility as it can generate correlated errors across

class seq extends uvm_sequence #(txn); class error_seq extends uvm_sequence #(txn);
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Figure 2. Error injection in a sequence.



transactions. A limitation is that the approach lacks the ability to perform errors related to the signal-level protocol.
Also, it suffers because as error injection complexity increases, there is little opportunity for reuse of the sequences as
the sequences also get more complicated.

C. Driver error injection.

The advantage of placing error injection code in the driver is that it is the only place to inject protocol or timing-
related errors. Another advantage is that by the time the transaction gets to the driver, all the transaction information
and all the protocol is together in one place. Error injection placed here has access to all aspects of input to the device.
In our experience, the most common approach for driver-based error injection is to write the driver with the ability to
generate a predefined set of error patterns. The driver will inject the patterns based on an enumeration field in the
request transaction (Figure 3). The driver looks at the enumerated field and performs the error injection based on a
chained if-else or case statement. A benefit of this strategy is the separation of concerns. The driver performs the error
injection but the choice of error injection is done in the sequence. The transaction is just a carrier of the injection
instruction. A limitation of this strategy is that it is more difficult to scale and maintain if more kinds of error injection
are introduced after the initial code is written. For every new error injection that is introduced, code must be changed
both in the definition of an enumeration and in the if/case statement of the driver.

class driver extends uvm_driver #(txn);

G

task run_phase(uvm_phase phase);
seq_item_port.get(txn);
case (txn.errlnj)
ERR_NONE: drive_normal();
ERR_CRC: txn.crc +=1;

endfunction

%“ Most flexibility with error injection

Not easily scalable - new error
types require code changes in

multiple places

Figure 3. Error injection in driver.

There is one more thing to take into consideration regarding driver-based error injection. If you use the common
agent strategy of placing your protocol and timing code in a BFM interface, error injection in the driver would need
to be carefully designed to operate in concert with the interface. Since Systemverilog interfaces are not object-oriented
or replaceable by the factory, you would have to write your interface code in a parametric way so that invalid param-
eters can be passed in, or you would have to write alternate error-injecting API tasks in the interface for the driver to
call.

Each of the strategies listed above are, by themselves, insufficient to accomplish a general-purpose, reusable
scheme. The transaction error-injecting technique has the most reusability but has the least scope. The driver technique
has the best scope but has the least reusability. None of the approaches are scalable. We want to design a better
approach that is scalable and reusable. We want to add new error injections with little or no change to existing code.
We need the error injections to be flexible enough to handle the wide spectrum of potential errors from simple trans-
action data errors to protocol and timing errors.



III. HIGHLIGHTED APPROACH

The approach that we will highlight promotes reusability by encapsulating error injection details inside “error in-
jector” objects. The base error injector class defines a single virtual function, inject (). The inject function takes
two inputs. One input provides a data stream in a form that is as close as possible to the format that will be passed to
the device. The stream could be a single transaction, a queue of transactions, or a transformed stream of data blocks
that have been prepared by the driver. The second input is a handle to the driver so that the error injector has access
to any utility or API functions that the driver provides. Derived error injector classes provide an override for the
inject () function that encapsulates all the details of a particular error behavior. These objects are created in a
sequence and attached to transactions as they are sent to the driver.

The driver processes the transaction normally. Before sending the data to the device, it will check to see if the
transaction has an attached error injector object. If so, it will call the inject () function. The error injector will then
corrupt the data stream or change BFM parameters just before the data is transmitted to the device (Figure 4). This
technique has the benefit that the driver does not need to know about error injection types or enumerations, so new
error injections can be defined without changing the driver code. The driver processes transactions normally and only
needs to know about the error injector base class. It makes the call to the inject () function polymorphically.

class driver extends uvm_driver #(txn);
class error_seq extends uvm_sequence #(txn); - (txn);
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%| Most flexibility in error types
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Figure 4. Error injection with error objects.

Through its two inputs, the inject () function has access to the full set of data being driven, and access to all the
driver functionality and parameters via the driver handle. The driver handle allows the error object to access driver
utility functions, and allows the error object to change/corrupt timing parameters that the driver or BFM interface uses.

IV. EXAMPLE OF HIGHLIGHTED APPROACH

We will now apply this technique to a test environment that generates a data stream used in high speed networking
equipment. IEEE spec 802.3ba defines a 40 Gb/s intra-chip interface called XLGMII (XLG = 40G, MII = Media-
Independent Interface). An XLGMII interface is made of two streams of octets (8-bit values). One stream (TXC) is
one octet wide and holds a control value that describes the content of the data (TXD) stream, which is eight octets (64
bits) wide. Each set of 8 octets in the TXD stream is called a “record.”

In this example, the overall block of data is divided into a packet structure (Figure 5), where the first “preamble”
record (SOP) contains a particular set of octet values. Following the SOP, there are up to 128 data records containing
the main payload, broken into 8-octet chunks. After the data records, there is a special record signifying the end of



the packet (EOP). The EOP contains a 4-octet checksum (FCS) of all the data records, a special termination octet
value and 3 “gap” octets. After the EOP there are one or two more “gap” records before another packet starts.

The XLGMII spec provides 4 parallel 8-bit control and 64-bit data busses (TXCO0-3 and TXDO0-3), onto which the
BFM will apply the record stream, 4 records at a time per clock cycle.

SOP Data EOP IFG “gap”
Record Record Record Record
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Figure 5. Octet stream format.

Strategy

The overall stimulus generation strategy will be to abstract the stimulus into record descriptors generated by se-
quences which will be processed by the driver to create actual record octets. The descriptors can have one or more
error objects attached to them in an error object queue. The rest of this section will walk through the stimulus
generation flow. You can refer to the following (Figure 6) as a “map” while you read the example code.
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Figure 6. Overview of object-based error injection strategy.



Record Descriptor

The XLGMII record descriptor (Snippet 1) is a UVM sequence item that specifies a high-level description of the
record type and the parameters necessary for the driver to create a record octet stream. Additionally, it contains a
queue of error injection objects, and acts as a “carrier” for those objects to the driver.

class xlgmii txn extends uvm sequence item;
‘uvm_object utils(xlgmii txn)

xlgmii txn t txn type; // e.g. SOP, Data, EOP, Gap
distribution table distribution; // Controls random weights for data

rand xlgmii txn ipg t ipg style;
error_injector base error_injectors[$]; // Queue of error injectors

// Other data and methods not shown

function new(string name = "xlgmii txn");
super.new (name) ;
endfunction
endclass

Snippet 1. Record descriptor class

Error Injector Base Class

The error injector base class (Snippet 2) defines the virtual function inject(). This function takes two inputs. The
first is a block stream, which is a queue of XLGMII records containing the actual values of the TXC and TXD octets
filled in by the driver. The second input is a handle to the driver.

class error injector base extends uvm object;

function new(string name = "error injector base");
super.new (name) ;
endfunction
virtual function void inject(ref blockStream blocks,
x1lgmii_driver driver);
endfunction
endclass

Snippet 2. Error injector base class

Error Injector Implementation Class

Each kind of error injection is implemented in a class that extends the error injector base class (Snippet 3) and
provides a concrete implementation of the inject() function. Note that the error injecting function has access to the
entire record stream of the packet, as well as a handle to the driver, which can provide API utility functions and access
to timing parameters.



class ei FCS extends error_injector base;
‘uvm_object utils(ei FCS)

function new(string name = "ei FCS");
super.new (name) ;
endfunction
function void inject(ref blockStream blocks,

x1lgmii driver driver);
bit[31:0] crcval;
sif eop_txn fcsBlock;

foreach (blocks[i]) begin // Find the EOP record by its TXC value

if (blocks[i].control == 8'hF0) begin
Scast (fcsBlock, blocks[i]):;
break;
end
end

// Corrupt the FCS
fcsBlock.fcs[7:0] = ~fcsBlock.fcs[7:0];

endfunction

endclass

Snippet 3. Error injection implementation class.

Error Injecting Sequence

The error injection sequence (Snippet 4) creates record descriptor objects (transactions) that the driver will use to
generate the record octet stream. In this example, the sequence calls a task called send sop() which is a task in the
base class that creates and sends a SOP descriptor. It has an optional argument that is a queue of error injection objects
which it will assign to the descriptor, then send the descriptor to the driver.

class xlgmii err fcs seq extends xlgmii seq base;
‘uvm_object utils(xlgmii err fcs seq)

function new(string name = "xlgmii err fcs seqg");
super.new (name) ;
endfunction

task body();
record counter key t ckey gen;

x1lgmii pkg::ei FCS einj;

‘uvm_info (get name (), "Starting Sequence", UVM MEDIUM)

Snippet 4. Error injecting sequence




// Send 50 packets
repeat (50) begin

// 30% chance of packet having CRC error

randcase
7: send sop(); // Normal descriptor. No error injectors
3: begin

einj = xlgmii pkg::ei FCS::type id::create("ei_ FCS");
send_sop(.error_injectors( '{einj} )); // Create queue of 1 item
end
endcase
void' (randomize (ckey gen));
send record block(.ckey gen(ckey gen) );
send_eop () ;

end // repeat

‘uvm_info (get name (), "Finished sequence", UVM MEDIUM)
endtask

endclass

Snippet 4 (continued). Error injecting sequence

Driver

The driver (Snippet 5) receives the record descriptors, and uses the values in the fields to generate a stream (queue)
of record transaction objects. These record objects each represent an 8-octet group of data. There are four kinds of
record objects: sop_txn, record txn, eop_txn, and idle txn. A normal packet would be made up of a sequence of 130
of these objects ((preamble + 128 data + fcs), followed by one or two idle (gap) transactions. The driver fills in the
data fields for these transactions based on the instructions in the record descriptors.

Once the record stream is created, it is passed to an error injection manager, and the error manager has a chance to
inject errors into the stream of transactions, if any error injection objects exist. After the error manager has processed
the queue of transactions, they are converted into their respective group of 8 bytes. They are then appended to a byte
queue which is sent out to the BFM interface. The BFM then arranges them onto the four TXD and TXC bus streams.

class xlgmii driver extends uvm driver #(xlgmii txn);
‘uvm_component utils(xlgmii driver)

ErrorInjectionManager ErrManager;

virtual xlgmii driver bfm v_bfm;
xlgmii configuration m config;

Snippet 5. Driver



function new(string name, uvm component parent);
super.new (name, parent);
endfunction

function void build phase (uvm_phase phase);
super.build phase (phase);
v_bfm = m config.v driver bfm;
ErrManager = ErrorInjectionManager::type id::create ("ErrManager") ;
endfunction

task run phase (uvm phase phase);
xlgmii txn txn;
int numGaps;
bytestream pkt;
blockStream blkStream;
int thandle;

forever begin
seq item port.get next item(txn); // get descriptor
case (txn.txn type)
SOP: begin
ErrManager.reset(); // Start a new packet in a fresh state
if (txn.error_injectors.size() > 0) begin
// Install the error injectors, if any
ErrManager.add_error_injectors(txn.error_ injectors);
end
blkStream = {};
blkStream {blkStream, generatePreamble() };
end
REC:
blkStream
IDLE: begin
‘uvm warning (get name (), "IDLE not supported")
end

{blkStream, generateRecords (txn) };

EOP: begin
blkStream {blkStream, generateFCS() };
blkStream = {blkStream, generateIPG(txn) };

ErrManager.blocks = blkStream;
ErrManager.perform injections(this);
// Send the data out the bus
pkt = streamBytesFromBlockStream(ErrManager.blocks) ;
v_bfm.send packet (pkt);
end
endcase
seq_item port.item done();
end

endtask
// Other utility tasks not shown

endclass

Snippet 5 (continued). Driver




Error Manager

Error injection is done by modifying the stream of record transactions generated by the driver. The error manager
(Snippet 6), which is part of the driver, takes the generated transaction queue and applies error injectors to it by calling
inject() on each injector in the queue. If there are no injectors installed, then no injection occurs. The inject() function
takes the record queue as input by reference so that it can modify the queue and/or its contents as it sees fit. Error
injectors also have access to the driver through a handle so that they can call upon driver API functions as needed (e.g.
CRC calculation).

class ErrorInjectionManager extends uvm object;
‘uvm_object utils(ErrorInjectionManager)

blockStream blocks;
error_injector_base injectors[$];

function new(string name = "ErrorInjectionManager");
super.new (name) ;
endfunction

function void reset();
blocks = '{};
injectors = '{};

endfunction

function void add error injectors(error injector base injectors[S$]);
injectors = {injectors, _injectors};
endfunction

function void perform injections(xlgmii driver driver);
foreach (injectors[i]) begin
injectors[i] .inject (blocks, driver);
end
endfunction

endclass

Snippet 6. Error Manager

V. SCOREBOARDING WITH ERROR INJECTION

When the driver injects errors, it will normally induce the device into an error response. Typical error responses
include any combination of flags in status register fields, error code registers, interrupts, or sometimes silent dropping
of input and maintaining a count register of dropped values. This response is usually different from normal operating
behavior, so any checkers, monitors, and scoreboards need to be made aware of this fact and expect the error response
behavior. This means that there needs to be some kind of sideband communication between the driver and the analysis
components, which can be handled nicely with UVM analysis ports, exports and fifos. This kind of communication is
common, even in normal operating conditions.

The error analysis behavior can implement reusability by factory overrides set in the error injecting test class but
you can also use the same reusable approach that we have shown in the driver. The error injection base class object
could define one or more additional virtual functions that take the analysis component state and the component handle



as input (Snippet 7). The derived error injection object would then provide a concrete implementation that uses the
handle and state values to tell the component about the expected error behavior. The analysis component would then
flag an error if the expected behavior is not witnessed (Snippet 8). The analysis component would call the base class
function, and polymorphically be updated to expect the error condition (Snippet 9).

One significant benefit of this strategy compared to component factory overrides is that all the error behavior, from
stimulus generation to expected changes in normal response, is encapsulated together in one place — the error object.

class error injector base extends uvm object;

function new(string name = "error injector base");
super.new (name) ;
endfunction

virtual function void inject (ref blockStream blocks,
xlgmii driver driver);
endfunction

virtual function void prepare for completion_error(
completion_ checker complChecker) ;

endfunction

endclass

Snippet 7. Error injector base class with analysis function.

class ei FCS extends error injector base;
// Same as above. ..

function void prepare_for completion_ error(
completion_ checker complChecker) ;
complChecker.expected error_ state = 1; // This injection will
// cause STATUSREG.ERR = 1
complChecker.expected error code = 8'h05; // FCS Error code
endfunction

endclass

Snippet 8. Error injector implementation with analysis function

class completion checker extends checker base;
‘uvm_component utils (completion checker)

uvm_analysys export #(xlgmii txn) expected;
uvm_analysys_ export # (completion txn) observed;

// The above exports will be connected to these fifos:
uvm analysis fifo #(xlgmii txn) expected fifo;
uvm_analysis fifo #(completion txn) completion fifo;

bit expected error state;
bit[7:0] expected error code;

Snippet 9. Completion-checking analysis component



function new(string name = "compl checker", uvm component parent);
super.new (name, parent);
endfunction

task run phase (uvm phase phase);
xlgmii txn expTtxn;
completion txn complTxn;
error_injector_base errInj;
bit ok;

forever begin
expected fifo.get (expTxn);
completion fifo.get (complTxn); // Indicates completion of a
// packet
expect no_error();
if (expTxn.error_injectors.size() > 0) begin
foreach (expTxn.error injectors[i]) begin
errInj = expTxn.error_ injectors[i];
errInj.prepare_ for completion_ error (this);
end
end // if error injector present
ok = check error status();
end
endtask

function void expect no _error();

expected error state = 0;
expected error code = 0;
endfunction

function bit check error status();
uvm_status e status;
uvm_reg data t rdval, errcode;

// Update register model
regModel .STATUSREG.read (status, rdval, UVM BACKDOOR) ;
regModel .ERRCODE.read(status, errcode, UVM BACKDOOR) ;
// Check the ERR field of STATUSREG
if (regModel.STATUSREG.ERR.get () != expected error state) begin
‘ovm_error (get name(),
"STATUSREG ERR field does not match expected value")

return O;
end
// Check the ERROCODE value
if (errcode[7:0] != expected error code) begin
‘ovm_error (get name(),
Ssformatf (
"ERRCODE value %x does not match expected value %$x",
errcode, expected error code))
return O;
end
return 1;
endfunction
endclass

Snippet 9 (continued). Completion-checking analysis component




VI. SUMMARY

Errors can occur in an infinite variety, and injecting error stimulus and expected response is a required part of test
development for robust devices that have specified behavior to error conditions. By choosing a methodology that
integrates error injection by encapsulating the details of the error outside of the test environment, and polymorphically
executing those details, error scenarios can be quickly added and evaluated. This approach remains true to the UVM
tenets of flexibility, reusability, and scalability.



