
Environment for efficient and reusable SystemC
module level verification

Flavia Gon ia
Siemens SRL

flavia.gontia@siemens.com

Abstract—In this paper a concept and SystemC
implementation of a new method for module level verification is
presented. Implemented as a SystemC library, the presented
method also facilitates software driven verification. The concept
implementation, with its advantages and limitations, is presented
together with a comparison of current standard methodologies
used in verification (Universal Verification Methodology – UVM
and SystemC Verification Standard – SCV). For software driven
verification, a few platforms were used to evaluate the
performance of the new method.

Keywords—ESL; SystemC modeling; SystemC Verification

I. INTRODUCTION
Especially in ESL design, any SystemC component needs a

minimal functional verification at module level. Currently,
most functional verification is performed using components
described in either SystemVerilog or e language following the
Universal Verification Methodology (UVM) or C++ following
the SystemC Verification Standard (SCV). Other approaches,
based on a simple usage of the SystemC library and no
methodology can also be found. This happens because for
minimal testing during development, standard verification
methodologies tend to be too complex. In these cases the
verification is done by the module’s developers and often, to
save time and resources, this first verification is performed
inside the SystemC environment itself. Developers create
simple, dedicated testbenches for particular modules and there
is no constraint to approach any methodology (i.e. modules can
contain particular port bindings, classes and file-structures).
There is no clear separation between testbench and tests and
the whole environment lacks reusability and portability. As a
direct consequence, when the SystemC module is later on
included within an embedded system, the test configurations
cannot be reused as software running on the host CPU.

Most of the software running on embedded processors is
written in C language and today, in the SoC development
process, the software development is becoming more and more
important. Creating software for module (SoC) verification,
software-driven verification, has the great advantage that it can
be reused during all of the different phases, from the earliest
stages of design and development to physical chip validation.
But, because the majority of verification environments
following standard methodologies are written in other
languages than C++, they do not offer the possibility to
perform software-driven verification. Currently, software-

driven verification is done using platforms that include a
processor model. The processor runs the software and different
tools are used to execute and debug this software. Moreover,
for verification of each module, a different tool instance is
used, the high necessary license costs creating a big
disadvantage.

To overcome all of these problems, we propose a method
that facilitates:

 software-driven verification with embedded software
running on the host computer;

 reusable SystemC verification environment.

The proposed method was created from the embedded
software perspective, so that software-driven verification can
be easily addressed. However, it is not limited only to this
aspect. Verification environments using the power of the
SystemC library/C++ can be created as well. The proposed
method uses a testbench structure comprising a Device Under
Test (DUT), pair ports (wrappers which convert a DUT
particular port type to a base port type), General Central Unit
(which groups pair ports) and tests (accesses the pair ports
using the General Central Unit). The tests can either
implement complex scenarios or can be simple data generators,
monitors etc. The method offers a high degree of reusability,
tests being completely decoupled from the DUT's port types.

The paper starts with the test-bench’s description, followed
by the detailed description of the concept and the implemented
library (SystemC General Environment Verification – SGEV)
of the proposed method. A comparison between the UVM and
SGEV approaches is presented and, for software-driven
verification, a performance evaluation is done, based on the
total execution time obtained by simulation runs on three
different platforms.

II. SYSTEMC GENERAL VERIFICATION ENVIRONMENT
CONCEPT

Functional verification of SystemC modules is performed
using a testbench structure comprising one or more
DUT(s)(the SystemC module(s) to be verified) and tests. The
tests implement the basic verification components (checkers,
data generators, drivers or monitors) and can address simple
or complex scenarios.

Even when standard verification methodologies are used
(e.g. UVM, SCV) and a high degree of verification

environment reusability is ensured, in most environments there
still is a dependency on DUT port interface. For instance, in
UVM (or other SystemVerilog based verification
environments), the sequencers are generating items carrying
specific information to the DUT port interface. In most of the
cases the drivers and monitors are dependent on the port
interface (number and ports type).

With the proposed approach we try to decrease the
dependency on DUT port interface and increase the SystemC
verification environment reusability. Even from the beginning
two new aspects were introduced:

 all the tests are decoupled from the DUT port interface
(naming, type, data type, number, etc.)

 each base port (that is connected to DUT ports) is
identified by an address space and an interrupt address

1) Decoupling tests from the DUT port interface
The decoupling of tests is done by converting the

communication (with each DUT port, of any type), to a base
type communication. Any type of communication is thus
reduced to a series of read and write accesses and a series of
events.

SystemC[1] and TLM-2.0[2] libraries provide a large
range of port and socket types (tlm_target_socket<>,
tlm_initiator_socket, sc_in<>, sc_fifo_out<>, etc.)
Using these types, different performance levels can be achived
by increasing the model accuracy or by shortening the
execution time. In this context, decoupling the tests from port
types represents a major advantage. The communication with
the DUT is reduced to read/write accesses and interrupt
service routines, simplifying tests and allowing also
inexperienced SystemC programmers to be involved in
verification.

2) Base ports identification
Starting from the important observation that embedded
software always interacts with the “outside world” (the
communication with different modules) by means of registers
and interrupts, the base ports identification idea comes to
facilitate the software-driven verification.

In the proposed method, similar to embedded software, the
tests communicate with the module ports only through an
address space and interrupts address list. In this way, all kind of
ports accesses (whether they use an address or not) are actually
transformed into an address based communication. This
increases the portability and reusability, by creating a
simplified and standardized way of communication. In the end,
to each module port or groups of ports (no matter the type)
there will be an address space and an interrupt address
associated.

Based on these two restrictions, a modified testbench
structure is proposed, comprising: Device Under Test (DUT),
Pair ports, General Central Unit and Tests (Figure 1).

Figure 1 SystemC General Verification Environment overview

A. Pair Ports
Pair ports are wrappers adapting the communication from a

specific port (e.g. sc_port<>, sc_in<>, sc_fifo_in<>,
tlm_target_socket<>, tlm_initiator_socket, etc., or even
a user defined port type) to a base port communication. The
communication protocol with a specific port (or set of ports) is
converted to a series of events and read/write accesses that
carry data of type BASE_DATA_TYPE.

The base port defines the communication interface using
the following elements:

 Address space: needed for base port identification; any
read/write access to an address found inside this
address space will access this port; a base port can be
identified by multiple addresses; besides identifying
the port, this information can represent the address
space that the base port can access.

 Interrupt address: the address where callback routines
are registered

 BASE_DATA_TYPE: the data type to which any data
specific data must be converted

 Read and Write functions: propagate data of
BASE_DATA_TYPE

 Events: will trigger the callback routines registered at
interrupt_address; different callback routines can be
attached to this base port, at interrupt address, on
different events.

In the end, a unified communication with any pair port will
be obtained, by means of read/write functions and interrupt
callback routines, through an address space and interrupts
address. The pair ports will be bound to the DUTs ports on one
side and added to a list of base ports to the General Central
Unit on the other side.

The pair port naming was preferred as these ports will be
or will contain the mirror ports to which DUT-ports are bound.
A pair port of an input port is an output port, and vice-versa.

If the interaction with any pair port is the same, then they
can easily be grouped in lists thus different operations, or
decisions for groups of ports can be applied.

B. General Central Unit (GCU)
The General Central Unit (GCU) groups the pair ports that

are bound to DUT-ports. Any number of ports can be
registered, from any number of DUTs. All the DUT’s ports will
be accessed with the help of the GCU, through pair ports. The
GCU will implement the base port communication interface
and, like the pair ports, it can propagate only data of
BASE_DATA_TYPE. The Central Unit self-adapts to the
containing environment. This way, no useless resources are
consumed.

The GCU provides the means for pair ports registering.
Groups in a list all pair ports that are registered to it. The

list holds the ports map information. GCU can access all the
pair ports that have been registered to it. It implements the
read/write functions used by the tests to access the DUT in the
end and is routing the data to/from the corresponding port,
based on the address. GCU can route only one type of data,
BASE_DATA_TYPE.

Figure 2 Example of how ports address space and interrupt ports address
space are formed

The pair ports map contains two address spaces: ports
address space and interrupt ports address space. For each GCU,
the pair port map will vary depending on the number of ports,
the address where the pair ports are mapped etc., will adapt to
the containing environment.

The pair ports are accessed by performing read/write to an
address that is found in ports address space. Callback routines
can be registered to an address found in interrupt ports address
space.

C. Tests
The tests access the DUT’s ports through the General

Central Unit. Only the ports that are bound to the Central Unit
can be accessed.

Test perspective is reduced to:

 the GCU’s ports address space and interrupt ports
address space;

 communication with the DUTs using read/write
functions provided by the GCU that propagates data of
BASE_DATA_TYPE;

 registering callback routines to events signaled by the
DUTs.

Conversion of communication with a specific port to a base
communication type provides a high degree of reusability. The
current method’s advantages are:

 tests are decoupled from the DUT’s port interface,
becoming easily reusable;

 test-portability is increased by using a Central Unit that
provides the necessary interface and means for DUT-
communication; tests can be simply taken and run on a
different GCU instance that groups different number of
ports;

 libraries with reusable components (pair ports, data
generators, drivers, monitors, tests etc.) can be created
and ported to different platforms; a reusable entity has
an increased usability; e.g. a random data generator of
BASE_DATA_TYPE can be used to stimulate a large
number of DUT-ports, since all the communication
with the ports is translated to a base communication;
for example in a SystemC environment a random data
generator of int type can stimulate DUT ports of the
next types: sc_in<int/bool/char…>,
sc_fifo_in<int/bool/char…>,
tlm_simple_target port etc.

III. SYSTEMC GENERAL ENVIRONMENT VERIFICATION
LIBRARY

A SystemC library, SystemC General Environment
Verification (SGEV) that implements the presented concept
was created.

The SGEV library provides base classes, macros and fully
reusable self-configurable classes for building up the
verification environment.

The SGEV library comprises:

 Base port class <BASE_DATA_TYPE>: defines the
read/write communication functions and data
members. Pair ports class will be extended from this
class.

 Base pair port interface class: the pair ports are
grouped in interfaces. The class that will contain the
instances of pair ports will have to be extended from
this class.

 General Central Unit (GCU) class
<BASE_DATA_TYPE>: the pair ports will be
registered to this class instance.

 Register object class <BASE_DATA_TYPE>: is used to
handle register aliases from embedded software.

 Base test class: all the test classes will be extended
from this class.

 Main test class: in this class the instances of tests or
main tests that run on different or same general central
units will be found.

 Macros: ease the creation and running of tests.

 Pair ports classes: pair port classes for base types of
SystemC ports; currently only the communication with
loosely timed models is implemented

 Data Check Statistics functions

 BASE_DATA_TYPE: can be of any type, C++
fundamental data types, structures or classes.

Figure 3 General example of the presented SystemC verification library

In Figure 3 is presented how the SystemC verification
library can be used: the tests (running either in parallel or
serial) communicate with all the DUTs bound to the General
Central Unit through pair ports.

A. Base Port class
The Base port class contains the methods and fields used

for the base communication interface.

The base port interface:

 first address and last address: delimitates the address
space identifying this port;

 interrupt address: the address where test will register
the callback routine (interrupt service routines);

 read/write functions: virtual communication functions;
the base class has an empty implementation of this
function; the pair port, if is needed, will overwrite this
implementation of the functions; not all of the
functions need to be overwritten;

 array of events: will trigger the service routine call; for
each event an interrupt callback routine at interrupt
address can be registered;

 BASE_DATA_TYPE: the type of data the base port can
process/propagate.

In the current version, two types of read/write functions are
defined. The first type can be used to propagate single data
while the second one can be used to propagate a data array.
Using this interface, the GCU can communicate with the pair
ports. The user can extend the base port class type and the
GCU to add other functions for communication.

B. Pair Ports classes
The pair ports are found at the boundary of GCU and DUT

ports. In the direction GCU-to-DUT port, the pair port must
adapt the base communication to port specific communication.
On the other direction, DUT port-to-GCU, it must translate the
port specific communication to base communication.

A pair port can communicate with one or more DUT ports.
Each pair port must be extended from base port class. On one
side the pair ports will be bound to the DUT’s ports and on the
other will be registered to a GCU. The pair port on one side
will communicate with the DUT’s port specific protocol and on
the other side the GCU will access the data throughout base
read/write functions. A higher communication protocol layer
can be established and the data exchange will be performed
using read/write functions and a series of events to which
callback routines can be attached.

The data members and read/write functions are inherited
from the base port class. The read and write functions are
virtual functions, so the pair port must implement the needed
logic to convert the specific port communication that it is
bound to.

In the next example, a pair port implementation that will be
bound to a sc_out<PORT_DT> port is presented.

template< class PORT_DT, class B_DT >
class pport_sc_in: public SGEV_port_base<B_DT>,
public sc_signal<PORT_DT>{
public:
 pport_sc_in ()
 {
 this->set_name(this->name());
 this->set_onchange_event((sc_event*)
 (&this->value_changed_event()));
 }

 virtual bool read (unsigned long &addr,
 B_DT &data){
 PORT_DT temp_data;
 temp_data= sc_signal<PORT_DT>::read();
 data = (B_DT)temp_data;
 return true;
 }

 };

The pair of an output port is an input port. To reduce the
effort at port binding, the SGEV_sc_in was extended from
sc_signal<> class. This pair port being an input port, only the
read function is implemented. A write to this port is not
allowed.

The user can implement its own pair ports to process the
needed data type. The base port class provides means to create
an array of events of any size. A pair port can also play the role
of a complex Driver or Monitor. In these cases, the pair port
will most probably have to drive more than one port. For this
approach, based on a protocol, the data is ported to the DUT or
extracted from the DUT and will be provided to base read and
write functions.

For the highest tests and testbench reusability degree, it is
recommended for each DUT-port to have a corresponding pair
port. In case of complex communication protocols, the drivers
or monitors should communicate with the DUT ports
throughout the GCU. Similar to tests, the pair ports can be
found also on the right side of the GCU and can be registered
to the GCU. More exactly, they can be extended from the base
port class and can communicate with the DUT-ports
throughout the GCU. In this case, the reusability of the
testbench increases also, as both the driver and the monitor are
decoupled from the DUT port interface type. The same driver
or monitor can be re-used to communicate with different types
of ports (e.g. in some cases tlm sockets in other cases
sc_fifo<> ports type). In this case the test can provide data to
the driver and can also take decisions in case one or more
ports’ state has changed.

The SGEV library implements pair ports for all basic
SystemC ports: sc_fifo_out<BASE_DATA_TYPE>,
sc_in<BASE_DATA_TYPE>, sc_out<BASE_DATA_TYPE>,
sc_fifo_in<BASE_DATA_TYPE>. There are also pair ports
implemented for tlm_target_socket and tlm_utils::
simple_initiator_socket[2].

Using BASE_DATA_TYPE as primitive data types (int,
bool, etc.) increases the reusability degree, as a larger number
of use cases are covered.

C. Pair Port Interface class
Each user pair port interface must be extended from the

pair port interface base class. The pair port interface base class
facilitates grouping and registration of pair ports that are bound
to the DUT. By grouping the pair ports inside an interface
class, the SGEV verification environment’s portability to
another platform is increased.

At port registration, both the address space and the interrupt
address are set. Also, a flag is set establishing if the port will be
accessed or not by an embedded software. For a certain
interface it is recommended that the address spaces for all ports
are set relatively to address zero. Later on, the pair port
interface can be registered to the GCU at a different offset
address. For example, if there are two UART entities inside the
same platform, the pair port interface is instantiated twice and
each interface is bound to one UART module; then the two
interfaces are registered to the GCU at different offset
addresses.

An example of a pair port interface with two pair ports is
presented below. Port reg_init_sockt is registered at [0,
0xFD] address space and there is no address associated to the
interrupt. This port will be accessed (IF_CPU) by embedded

software, but the second port, in_serial, will not be
(IF_NOT_CPU):
//Uart module class – port interface.

class uart: public sc_module
{
public:
 // TLM Socket (BUS Interface)
 tlm::tlm_target_socket<32> p_reg_targ;
 sc_fifo_out<unsigned char> p_serial_out;

 SC_HAS_PROCESS(uart);
 uart(const sc_module_name & _n):
 sc_module(_n)
 , p_serial_out("p_serial_out")
 ...
 { ... }
 ...
};

//Pair port interface for uart module.

template<class B_DT>
class if_uart_pair_ports: public
SGEV_if_base<B_DT>{
 public:

 SGEV_init_socket<32,B_DT> reg_init_sockt;
 SGEV_sc_fifo_in<unsigned char,B_DT> in_serial;

 //constructor
 if_uart_pair_ports(sc_module_name & n):
 SGEV_if_base<B_DT>(n)
 {
 //register the initiator port
 SGEV_REGISTER_PORT(reg_init_sockt,0,
 0XFD, ADDR_NOT_USED,
 IF_CPU);
 SGEV_REGISTER_PORT(in_serial ,
 1 , ADDR_NOT_USED,
 1, IF_NOT_CPU)
 }

};

It is recommended for pair ports to be grouped depending
on the interface or communication interface they serve. For
example, a DUT with one part of the ports communicating to a
CPU (register access and interrupts) and one part
communicating with an UART serial interface.

D. The General Central Unit class
The main role of the General Central Unit (GCU) is to

facilitate the tests’ communication with the DUTs through pair
ports registered to it. The test will have visibility to all the pair
ports that are registered to the GCU.

The General Central Unit’s main features are:

 provide the functions for pair port interface or single
port registration; the pair ports are added to an internal
base port list; this list adapts then to the environment
and increases with the number of added base ports; it
represents the mapping address of the ports;

 implements an interrupt vector list; this list changes
dynamically based on the interrupt call routines that
are registered inside tests; if during simulation no
callback routine has been registered to any base port,
the interrupt list remains empty;

 implements read (BASE_DATA_TYPE) and writes
(BASE_DATA_TYPE) functions, inside which the
data is routed to the corresponding port, based on the
address;

 implements the means (used by tests) to register
interrupt callback routines on pair ports events;

 provides synchronization mechanisms with the
SystemC Scheduler.

A major problem which had to be overcome was the
synchronization with the SystemC scheduler. This
synchronization is needed especially by embedded software.
Register pooling mechanism (continuously interrogating a
register) is often used inside a while-loop until its value is
changed. In such cases, if synchronization with the SystemC
scheduler is not performed, the software will most probably
enter into an infinite loop. The SystemC library implements a
non-preemptive scheduler that runs at most one thread at a
time. If the thread does not give the control back to the
scheduler, the simulation will block inside this thread[1].

The GCU port accesses (read, write or objects registering)
perform the synchronization with the SystemC scheduler.
Sequencing the register accesses is also ensured, each access
being performed in a different delta cycle.

It is recommended that DUT-ports binding (to pair ports)
and pair ports registration (to GCU) be grouped inside a
testbench environment class.

A code example of the testbench environment:

template<class B_DT>
class tb_uart_env {
public:
 //GCU instance
 SGEV_general_cu<UC_DATA_TYPE> i_gcu;
private:
 uart i_uart;
 if_uart_pair_ports<B_DT> if_pair_ports;

 tb_uart_env (const char* name):
 i_if_pair_ports("if_pair_ports")
 {

 //Bind the UART tlm target socket
 //to pair port intiaotor socket.
 i_uart.p_reg_targ.bind
 (if_pair_ports.reg_init_sockt);

 //Bind the Uart serial output to
 //input pair port in_serial.
 i_uart.p_serial_out
 (i_if_pair_ports.in_serial);

 }

 void end_of_elaboration(){
 // Register the interface to GCU.
 i_uc.register(if_pair_ports);
 }

};

E. User-Defined Tests
Tests will access the pair ports throughout GCU read/write

functions. Each test must be extended from the base test class
provided by the SGEV library. The tests are split in two types:
the first type is used only for embedded tests (IF_CPU tests)
while the second type (IF_NOT_CPU) can be used for any
desired implementation (including embedded tests). The
embedded tests are allowed to access only the pair ports
previously registered with IF_CPU flag. In case of an attempt
to access a port having IF_NOT_CPU set, an error is
generated. This measure is taken to avoid problems when
embedded software is ported to a processor. At each test
instantiation the reference of the GCU instance (used to access
the pair ports) is transmitted. The tests will be able to access
the pair ports registered to the transmitted GCU reference.

There are macros in place to map the interaction with the
GCU. User explicit function calls through general central
instances are not needed.

The following example shows a test for general behavior
(not for embedded software):

// Test handle serial out port from i_uart.
// "main_io":function name, from where the test
// starts to run
// test_out_uart: test class name.

#define UART_SERIAL_OUT_INT_ADDR 0
#define UART_SERIAL_OUT_ADDR 0

SGEV_TEST_NOT_CPU(main_io, test_out_uart)
 //Receive data from UART
 //This function will be called when a

 //char has been written to
 //i_uart.p_serial_out port.
 void rx_uart_int(){
 unsigned int data;
 //Read data char from
 //i_uart.p_serial_out port
 rd_from_addr(UART_SERIAL_OUT_ADDR, data);
 //Print to console the received char
 cout<<(char)data;

 }

 // main function
 void main_io(){
 // Register call back interrupt function
 // for i_uart.p_SerialOut port
 register_int_func (UART_SERIAL_OUT_INT_ADDR,
 &TYPE_ENV rx_uart_int);
 }
};

F. Embedded software
Embedded software can be written with the help of the

SGEV library. Communication with DUT-ports is performed
by means of read or write operations to a given address. This
allows embedded software development. In the SGEV
environment the embedded software runs on the host computer.

Usually, inside embedded software a register is referenced
using a name (e.g. UART_DR, I2CSTAT etc.). The SGEV
environment allows referencing of ports using a given name.
The SGEV library provides a register object class which can be
used in case of register alias naming.

When creating embedded software, the following
restrictions must be considered:

 Assembler code cannot be used because the assembler
instructions are processor specific; the code will run on
the host computer which most probably will have a
different instruction set;

 At interrupt service routine registration TYPE_ENV
directive must be used before function name. E.g. :
register_int_func (UART_SERIAL_IN_INT_ADDR,
&TYPE_ENV rx_uart_int)

 For register definitions a number of define directives
must be used for both register type and register cast;
the SGEV_REG_TYPE is used to define the register
type while SGEV_REG_CAST_TYPE must be used
when cast to register type is needed.

E.g.:
#ifdef IS_SGEV_ENV
 #define SW_REG_TYPE SGEV_REG_TYPE
 #define SW_REG_TYPE_CAST SGEV_REG_CAST_TYPE
#else
 #define SW_REG_TYPE volatile unsigned int*
 #define SW_REG_TYPE_CAST (SW_REG_TYPE)
#endif

 In case of infinite loops or waiting for a variable to
change inside of an interrupt service callback routine,
synchronization points must be added. SGEV_NOP
define directive must be used for achieving the
synchronization with the SystemC scheduler.

 E.g.:
#ifdef IS_SGEV_ENV
 #define DO_NOTHING SGEV_NOP
#else //
 #define DO_NOTHING
#endif

Already written embedded software can be also adapted to
run in the SGEV environment. The code must be modified to
follow the above described restrictions. The effort to adapt the
software depends on how well the code is organized, if lots of
synchronization points are needed etc.

The next code represents an embedded software test example:

//file uart_test_emb.h
//Register type defines. If this file is found in

//SGEV env SW_REG_TYPE is allready defined at this
point
//with SGEV_REG_TYPE
#ifndef SW_REG_TYPE
 #define SW_REG_TYPE volatile unsigned int *
 #define SW_REG_TYPE_CAST (SW_REG_TYPE)
#endif

#ifndef DO_NOTHING
 #define DO_NOTHING
#endif

#define Uart_BASE 0x100
#define UART_DR *SW_REG_TYPE_CAST (UART_BASE + 0x0)
#define UART_FR *SW_REG_TYPE_CAST (Uart_BASE + 0x18)

void init_uart () {
 SW_REG_TYPE UART_CR = SW_REG_TYPE_CAST
 (Uart_BASE + 0x14);
 // Enable uart and disable rx and tx
 //interrupts.
 UART_CR = 0x01;
}

void wr_to_uart (unsigned char value) {
 while ((UART_FR & 0x20) == 0x20);
 // write to UART
 UART_DR = value;
}
void main_uart(){
 unsigned char i = 0;
 //enable uart
 init_uart();
 //write data to uart
 for(i = 0; i<10; i++)
 wr_to_uart(i);

 while(1){
 //synchronize with SystemC scheduler
 DO_NOTHING
 }
}

//file test_uart_sc_emb.h
//Set defines used in SGEV environment
#define SW_REG_TYPE SGEV_REG_TYPE
#define SW_REG_TYPE_CAST SGEV_REG_CAST_TYPE
#define DO_NOTHING SGEV_NOP

SGEV_TEST_CPU (main_uart, test_uart_sc_emb)
 //include the embedded software file
 #include "uart_test_emb.h"
};

G. Main test
Inside the main test the tests and testbenches containing the

GCU are instantiated. The main test must be extended from the
base main class. The base class provides mechanisms to run
tests in parallel or serial and to stop the simulation when tests
are finished. There can be any number of testbenches and test
instances that have different types as BASE_DATA_TYPE.

A test can be launched to run sequentially or in parallel
with the following macros:

 SGEV_RUN_TEST_S (&<test_instance_name>);

 SGEV_RUN_TEST_P (&<test_instance_name>);

The main test can be used as environment for running
regressions.
template<class B_DT>
class test_uart_sc_main : public
SGEV_test_main_base{
public:
 uart_tb_env<B_DT> i_uart_tb_env;
 test_uart_sc_emb<B_DT> *i_uart_test_emb;
 test_out_uart<B_DT> *i_uart_out_test;
 SC_HAS_PROCESS(test_uart_sc_main);
 test_uart_sc_main(sc_module_name & n):
 SGEV_test_main_base(n)
 ,i_uart_tb_env("i_uart_tb_env")
 {
 //Instantiate the tests
 i_uart_test_emb = new test_uart_sc_emb<B_DT>
 ("i_uart_test", &i_uart_tb_env.i_gcu);
 i_uart_out_test = new test_out_uart<B_DT>
 ("i_uart_out_test",&i_uart_tb_env.i_gcu);
 }
 void main(){
 //Launch test that receives data from uart
 //p_serial_out and prints to cout
 SGEV_RUN_TEST_PARALLEL(i_uart_out_test)

 //Launch the sc test main that includes
 //the embedded software
 SGEV_RUN_TEST_PARALLEL(i_uart_test_emb)
 }
};

IV. SGEV IN COMPARISON WITH UVM
A comparison can be done, from the user’s point of view,

between SystemVerilog based UVM and SGEV library. The
analysis is done for each component that a user must create for
a functional verification environment.

Top Module (UVM)
Test

ENV

if
ports

0

DUT_0

P_DT_1
P_DT_2

P_DT_p

If
ports

n

DUT_n

P_DT_p+1

P_DT_p+k

P_DT_1

P_DT_p+K

P_DT_2

IF_PORT_0

Agent 0
driver 0sequencer 0

monitor 0
coverage

Virtual
sequencer

Agent n
driver

n
sequencer n

monitor n
coverage

Virtual
sequence

Seq_1
DT_item_1

Seq_2
DT_item_2

Seq_n
DT_item_n

DT_item_1

DT_item_n

DT_item_1

DT_item_n

DT_item_1

DT_item_n

IF_PORT_n
Figure 4 Example of SystemVerilog UVM verification environment

The main components of a verification environment
according the UVM methodology, as they are defined in [4]:

 Data Item (Transaction): data transferred to the DUT,
e.g. packets, bus transactions, instructions;

 Driver (BFM): active component which provides
stimulus (data items) by driving the DUT signals;

 Sequencer: generates sequences of transactions and
send them to the Driver to be applied to the DUT;

 Monitor: passive component which samples and
checks DUT signals as well as collects functional
coverage information;

 Agent: higher level entity which contains a driver, a
sequencer and a monitor;

 Environment: the highest level verification entity,
contains agents, additional bus monitors,
configurations or other environments;

 Sequences: streams of transactions or operations for
DUT;

 Top module: inside the top module, the virtual
interfaces are bound to DUT-instances and the start
simulation is triggered.

 Test: defines the test scenario.
Test Main (SGEV)

Test 0

Test n

ENV

General
Central

Unit
<BASE_DT>

Test 1

If_pair
ports 0

DUT_0

P_DT_1
P_DT_2

P_DT_p

If_pair
ports n

DUT_n

P_DT_p+1

P_DT_p+k

P_DT_1

P_DT_p+K

P_DT_2BASE_PAIR_PORT_IF
BASE_DT BASE_DT

Figure 5 Example of SGEV verification environment

The main components needed to create a verification
environment using SGEV (as in Figure 3):

 Pair Port Interface: contains the pair ports to be
bound to DUT; the pair ports are provided by the
SGEV library;

 TB Environment: contains the pair port interfaces,
DUT(s), GCU(s) instances and the corresponding
connection between elements; the GCU is provided by
the SGEV library;

 Tests: contain the logic used for stimulating and
checking the DUT(s);

 Main test: contains the testbench environments and
tests instances.

A major difference between UVM and SGEV approach is
the decoupling of verification environment components from
DUT. In SGEV, starting from DUT port interface, the
environment components dependency on data types is
decreasing to a single data type (base data type – BASE_DT as
presented in Figure 5). Because there is only one type of data
to be propagated to DUT, different reusable components can be
created (e.g. GCU, PAIR PORTs, Test as random data
generators etc.). These components can then be used without
additional effort.

On the contrary, in the UVM approach (Figure 4) the
dependency remains at higher levels. Most of UVM
components are dependent on data item type (DT_item_1, …
DT_item_n) and/or interface type (IF_PORT_1, IF_PORT_2,
… ,IF_PORT_n), hence a reduced portability and reusability
than in SGEV. For instance, importing a single sequence to
generate data items of different type, implies modification of
test bench modules (at least virtual sequence and driver).
Table 1 UVM System Verilog and SGEV library user perspective

Using UVM System Verilog
library

Using SGEV
library

DUT virtual interface Pair Port Interface
Agent Driver

- Monitor Checks
Coverage

Sequencer
Environment TB environment

Sequences Tests
 Test

Top Main Test

As shown in the Table 1, for a simple verification environment,
the user has only to create a reduced number of components in
SGEV in comparison to UVM.

For a full verification environment (including functional
coverage) the UVM methodology approach is a better choice.
But using this methodology for a minimal functional
verification of a SystemC module is time consuming and
involves many resources.

Usually, for a SystemC loosely timed model, complex bus
communications are modeled as TLM (Transaction Level
Modeling) communication. In these cases there is need for
neither complex driver nor monitor implementations. Binding a
pair TLM socket to this type of port is enough to establish a
communication.

One of the SGEV’s advantages is exactly the reduced time
needed to get familiar with the environment. As opposite,
understanding a complex UVM environment (the mechanism
behind, the virtual sequences, etc.) can be a time consuming
activity, especially for inexperienced users.

Another major advantage in comparison to UVM is the
possibility offered by the SGEV-approach to create embedded

software which can then be used during all SoC development
process phases.

V. SGEV PERFORMANCE ANALYSIS
In order to evaluate the new method’s performance, a use

case running in three different environments was analyzed. For
each environment a different SystemC platform was necessary.
Eclipse[5] and Synopsys’ Virtual Prototype Analyzer (VPA)[6]
tools were used for simulating the environments.

The presented use case contains embedded software that
configures and implements the communication protocol for
receiving and sending Ethernet frames to an Ethernet Media
Access Controller (Ethernet MAC controller). The embedded
software must configure an UART module to which debug
messages are sent. The data received by UART is printed to a
terminal.

To ease further descriptions, the three used platforms are
named as follows: VPA_ETH_MAC, SGEV_ETH_MAC and
SGEV_VPA_ETH_MAC.

A. VPA_ETH_MAC platform
This platform contains a SytemC cortex m3 processor. The

embedded software was first written for this platform.

The VPA_ETH_MAC platform runs in VPA tool and the
software is compiled for cortex m3 (the obtained image is
used). It comprises the following SystemC modules:

 cortex_m3: CORTEX M3 processor model;

 d_ram: data code memory;

 i_ram: instruction code memory;

 s_ram: SDRAM memory (used to intermediate the
communication between the processor and the Ethernet
controller);

 eth_mac: Ethernet MAC controller;

 uart: UART module used for printing debug
messages;

 t_display: used for displaying on the terminal data
received from UART;

 i_intconect_bus: interconnect bus module (used to
interconnect all the platform modules).

s_ram

cortex_m3

uart

eth_mac

t_display

i_ram

d_ ram

Figure 6 VPA_ETH_MAC platform

The cortex m3 is connected to i_intconect_bus using three
ports: p_system_port, p_i_code and p_d_code. The
communication with eth_mac, s_ram and uart is performed
through p_system_port.

B. SGEV_ETH_MAC platform
The embedded software was first written for

VPA_ETH_MAC platform. To use it in the SGEV
environment the embedded software had to be adapted.
Because in SGEV there is no processor module present and the
software runs on host computer, the data ram and instruction
ram modules are not needed.

The SGEV_ETH_MAC platform runs in Eclipse tool and
uses the C files implementing the software (which runs on host
computer). It comprises the following SystemC modules:

 pair_port_if: contains three pair ports used by the
GCU to communicate with s_ram, eth_mac and uart
modules; each pair port is registered with
corresponding address space (used by the embedded
software to access these modules)

 i_GCU: the General Central Unit to which the the pair
port interface is registered; the GCU will also be used
as interconnect module;

 emb_test: embedded test that contains the embedded
software C files; receives the reference of i_GCU;

 s_ram: SDRAM memory used to intermediate the
communication between emb_test and the Ethernet
controller (eth_mac);

 eth_mac: Ethernet MAC controller;

 uart: UART module used for printing debug
messages;

 t_display: used for displaying on the terminal data
received from the UART

 i_sram_intercont: interconnect bus module (used to
interconnect emb_test, eth_mac and s_ram).

Figure 7 SGEV_ETH_MAC platform

C. SGEV_VPA_ETH_MAC platform
This platform was created by removing the cortex_m3

processor module from the VPA_ETH_MAC platform and

replaced with pair port interface, GCU and embedded test from
the SGEV_ETH_MAC platform.

The pair port interface has suffered modifications: the
address space initially associated separately (for s_ram,
eth_mac, uart pair ports) is here associated to only one pair port
(the cortex m3 system bus port). This modification was
necessary as cortex m3 uses only one port to communicate with
SRAM and peripherals.

The SGEV_VPA_ETH_MAC platform runs in VPA tool
and the C files implementing the software (running on host
computer) are used. The platform comprises the following
SystemC modules:

 pair_port_if: contains one pair port; in this case the
GCU uses a single port to communicate with s_ram,
eth_mac and uart; each pair port bound to s_ram is
registered with its corresponding address map (used by
the embedded software to access these modules);

 i_GCU: the General Central Unit to which the pair port
interface is registered; the GCU will also be used as
interconnect module;

 emb_test: embedded test that contains the embedded
software C files; receives the reference of i_GCU;

 d_ ram: data code memory will not be used

 s_ram: SDRAM memory used to intermediate the
communication between emb_test and the Ethernet
controller (eth_mac)

 i_ram: instruction code memory will not be used;

 eth_mac: Ethernet MAC controller;

 uart: UART module used for printing debug
messages;

 t_display: used for displaying on the terminal data
received from the UART

 i_sram_intercont: interconnect bus module (used to
interconnect emb_test , eth_mac and s_ram).

Figure 8 SGEV_VPA_ETH_MAC platform

The cortex m3 has three bus interfaces: system bus,
instruction data bus and data bus. The communication with

SRAM and the other peripherals is performed only throughout
the system bus. So, in this case, there is only one pair port
registered with all the address space. This address space is used
by the embedded software to access s_ram, eth_mac as well as
uart modules. This is an example showing the big advantage of
decoupling the test from the ports interface. In one platform
(SGEV_ETH_MAC) the test communicates with the design
using 3 ports and in the other one (SGEV_VPA_ETH_MAC)
using only one port.

In the next table the time execution results are presented for
all the three platforms, for different simulation time:
Table 2 ETH_MAC Platforms execution results

Simulation
time

Execution time
SGEV_ETH_

MAC
SGEV_VPA_
ETH_MAC

VPA_ETH
_MAC

5 s 14.05 s 15.48 s 46.64 s
7 s 16.81 s 17.97 s 97.56 s

10 s 18.07 s 19.36 s 171.19 s
20 s 24.55 s 26.17 s 429.73 s
30 s 29.05 s 31.2 s 641.8 s

VI. CONCLUSIONS
As previously shown, a SystemC library was implemented

(only the communication with loosely timed models
implemented at the moment), and promising results were
obtained. The most notable benefits offered by the newly
implemented library are as follows:

 faster ramping-up of the verification environment;

 reusable and portable verification environment (unified
structure, easily ported tests between hierarchical
levels or modules);

 embedded software for the host computer (with a few
restrictions) can be written for testing purposes;

 already written embedded software can be adapted and
run in this environment;

 SystemC/C++ tests can be used together with
embedded tests;

 tests can be reused as embedded software for SystemC
processor model;

 tests and the General Central Unit can temporarily
replace a basic SystemC processor model or a SystemC
module;

 an environment for regression tests can be created with
reduced effort;

 the environment is OSCI compliant as well as vendor
independent.

Also, converting any type of communication to a simple set
of access functions and interrupt callback routine functions can
be easily done without advanced SystemC/C++/OOP
knowledge.

Several limitations are predicted though. One such
limitation could be the 64 bits of address. To overcome this
limitation, for pair ports that are of IF_NOT_CPU type, a code
can be associated instead of an address.

A downside of this approach, compared to tools, is
embedded software debugging. Most of the tools provide the
possibility of software debugging at assembler code level.

Future work for the SGEV library:

 to simplify end-user work, the address map of the
IF_NOT_CPU ports type will be generated
automatically (in the background). This will not be
possible for IF_CPU as these ports are accessed by
embedded software running on system having a
particular memory map.

 get the SGEV library and SCV[5] library working
together. Include random data generators that use SCV
library for randomization, constraints and weights for
randomization.

 implement pair ports for approximately and exactly
timed ports.

REFERENCES
[1] IEEE Standard SystemC® Language Reference Manual IEEE 3 Park

Avenue New York, NY 10016-5997, USA 31 March 2006 IEEE
Computer Society Sponsored by the Design Automation Standards
Committee

[2] OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL
[3] SystemC Verification Standard Specification Version 1.0e Submission

to SystemC Steering Group May 16, 2003 Written by the Members of
the SystemC Verification Working Group

[4] Universal Verification Methodology (UVM) 1.1 User’s Guide May 18,
2011

[5] http://www.eclipse.org
[6] http://www.synopsys.com/SYSTEMS/VIRTUALPROTOTYPING

	I. Introduction
	II. SystemC General Verification Environment Concept
	1) Decoupling tests from the DUT port interface
	2) Base ports identification

	A. Pair Ports
	B. General Central Unit (GCU)
	C. Tests

	III. SystemC General Environment Verification Library
	A. Base Port class
	B. Pair Ports classes
	C. Pair Port Interface class
	D. The General Central Unit class
	E. User-Defined Tests
	A. Embedded software
	G. Main test

	IV. SGEV In Comparison With UVM
	V. SGEV Performance Analysis
	A. VPA_ETH_MAC platform
	B. SGEV_ETH_MAC platform
	C. SGEV_VPA_ETH_MAC platform

	VI. Conclusions
	References

