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Abstract—In this paper a concept and SystemC 
implementation of a new method for module level verification is 
presented. Implemented as a SystemC library, the presented 
method also facilitates software driven verification. The concept 
implementation, with its advantages and limitations, is presented 
together with a comparison of current standard methodologies 
used in verification (Universal Verification Methodology – UVM 
and SystemC Verification Standard – SCV). For software driven 
verification, a few platforms were used to evaluate the 
performance of the new method. 
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I.  INTRODUCTION  
Especially in ESL design, any SystemC component needs a 

minimal functional verification at module level. Currently, 
most functional verification is performed using components 
described in either SystemVerilog or e language following the 
Universal Verification Methodology (UVM) or C++ following 
the SystemC Verification Standard (SCV). Other approaches, 
based on a simple usage of the SystemC library and no 
methodology can also be found. This happens because for 
minimal testing during development, standard verification 
methodologies tend to be too complex. In these cases the 
verification is done by the module’s developers and often, to 
save time and resources, this first verification is performed 
inside the SystemC environment itself. Developers create 
simple, dedicated testbenches for particular modules and there 
is no constraint to approach any methodology (i.e. modules can 
contain particular port bindings, classes and file-structures). 
There is no clear separation between testbench and tests and 
the whole environment lacks reusability and portability. As a 
direct consequence, when the SystemC module is later on 
included within an embedded system, the test configurations 
cannot be reused as software running on the host CPU.  

Most of the software running on embedded processors is 
written in C language and today, in the SoC development 
process, the software development is becoming more and more 
important. Creating software for module (SoC) verification, 
software-driven verification, has the great advantage that it can 
be reused during all of the different phases, from the earliest 
stages of design and development to physical chip validation. 
But, because the majority of verification environments 
following standard methodologies are written in other 
languages than C++, they do not offer the possibility to 
perform software-driven verification. Currently, software-

driven verification is done using platforms that include a 
processor model. The processor runs the software and different 
tools are used to execute and debug this software. Moreover, 
for verification of each module, a different tool instance is 
used, the high necessary license costs creating a big 
disadvantage. 

To overcome all of these problems, we propose a method 
that facilitates:  

 software-driven verification with embedded software 
running on the host computer; 

 reusable SystemC verification environment. 

The proposed method was created from the embedded 
software perspective, so that software-driven verification can 
be easily addressed. However, it is not limited only to this 
aspect. Verification environments using the power of the 
SystemC library/C++ can be created as well. The proposed 
method uses a testbench structure comprising a Device Under 
Test (DUT), pair ports (wrappers which convert a DUT 
particular port type to a base port type), General Central Unit 
(which groups pair ports) and tests (accesses the pair ports 
using the General Central Unit). The tests can either 
implement complex scenarios or can be simple data generators, 
monitors etc. The method offers a high degree of reusability, 
tests being completely decoupled from the DUT's port types.  

The paper starts with the test-bench’s description, followed 
by the detailed description of the concept and the implemented 
library (SystemC General Environment Verification – SGEV) 
of the proposed method. A comparison between the UVM and 
SGEV approaches is presented and, for software-driven 
verification, a performance evaluation is done, based on the 
total execution time obtained by simulation runs on three 
different platforms. 

II. SYSTEMC GENERAL VERIFICATION ENVIRONMENT 
CONCEPT 

Functional verification of SystemC modules is performed 
using a testbench structure comprising one or more 
DUT(s)(the SystemC module(s) to be verified) and tests. The 
tests implement the basic verification components (checkers, 
data generators, drivers or monitors) and can address simple 
or complex scenarios. 

Even when standard verification methodologies are used 
(e.g. UVM, SCV) and a high degree of verification 



environment reusability is ensured, in most environments there 
still is a dependency on DUT port interface. For instance, in 
UVM (or other SystemVerilog based verification 
environments), the sequencers are generating items carrying 
specific information to the DUT port interface. In most of the 
cases the drivers and monitors are  dependent  on  the  port  
interface (number and ports type). 

With the proposed approach we try to decrease the 
dependency on DUT port interface and increase the SystemC 
verification environment reusability. Even from the beginning 
two new aspects were introduced:  

 all the tests are decoupled from the DUT port interface 
(naming, type, data type, number,  etc.)  

 each  base  port  (that  is  connected  to  DUT  ports)  is  
identified by an address space and an interrupt address 

1) Decoupling tests from the DUT port interface 
The decoupling of tests is done by converting the 

communication  (with  each DUT port,  of  any type),  to  a  base  
type communication. Any type of communication is thus 
reduced to a series of read and write accesses and a series of 
events. 

SystemC[1] and TLM-2.0[2] libraries provide a large 
range of port and socket types (tlm_target_socket<>, 
tlm_initiator_socket, sc_in<>, sc_fifo_out<>, etc.) 
Using these types, different performance levels can be achived 
by increasing the model accuracy or by shortening the 
execution time. In this context, decoupling the tests from port 
types represents a major advantage. The communication with 
the DUT is reduced to read/write accesses and interrupt 
service routines, simplifying tests and allowing also 
inexperienced SystemC programmers to be involved in 
verification. 

2) Base ports identification 
Starting from the important observation that embedded 
software always interacts with the “outside world” (the 
communication with different modules) by means of registers 
and interrupts, the base ports identification idea comes to 
facilitate the software-driven verification. 

In the proposed method, similar to embedded software, the 
tests communicate with the module ports only through an 
address space and interrupts address list. In this way, all kind of 
ports accesses (whether they use an address or not) are actually 
transformed into an address based communication. This 
increases the portability and reusability, by creating a 
simplified and standardized way of communication. In the end, 
to  each  module  port  or  groups  of  ports  (no  matter  the  type)  
there will be an address space and an interrupt address 
associated. 

Based on these two restrictions, a modified testbench 
structure is proposed, comprising: Device Under Test (DUT),  
Pair ports, General Central Unit and Tests ( Figure 1). 

 
Figure 1 SystemC General Verification Environment overview 

  

A. Pair Ports 
Pair ports are wrappers adapting the communication from a 

specific port (e.g. sc_port<>, sc_in<>, sc_fifo_in<>, 
tlm_target_socket<>, tlm_initiator_socket, etc., or even 
a user defined port type) to a base port communication. The 
communication protocol with a specific port (or set of ports) is 
converted to a series of events and read/write accesses that 
carry data of type BASE_DATA_TYPE. 

The base port defines the communication interface using 
the following elements: 

 Address space: needed for base port identification; any 
read/write access to an address found inside this 
address space will access this port; a base port can be 
identified by multiple addresses; besides identifying 
the port, this information can represent the address 
space that the base port can access.  

 Interrupt address: the address where callback routines 
are registered   

 BASE_DATA_TYPE: the data type to which any data 
specific data must be converted 

 Read and Write functions: propagate data of 
BASE_DATA_TYPE 

 Events: will trigger the callback routines registered at 
interrupt_address; different callback routines can be 
attached to this base port, at interrupt address, on 
different events.  

In the end, a unified communication with any pair port will 
be obtained, by means of read/write functions and interrupt 
callback routines, through an address space and interrupts 
address. The pair ports will be bound to the DUTs ports on one 
side and added to a list of base ports to the General Central 
Unit on the other side. 

The pair port naming was preferred as these ports will be 
or will contain the mirror ports to which DUT-ports are bound. 
A pair port of an input port is an output port, and vice-versa. 

If the interaction with any pair port is the same, then they 
can easily be grouped in lists thus different operations, or 
decisions for groups of ports can be applied. 



B. General Central Unit (GCU) 
The General Central Unit (GCU) groups the pair ports that 

are bound to DUT-ports. Any number of ports can be 
registered, from any number of DUTs. All the DUT’s ports will 
be accessed with the help of the GCU, through pair ports. The 
GCU will implement the base port communication interface 
and, like the pair ports, it can propagate only data of 
BASE_DATA_TYPE.   The  Central  Unit  self-adapts  to  the  
containing environment. This way, no useless resources are 
consumed. 

The GCU provides the means for pair ports registering.  
Groups in a list all pair ports that are registered to it. The 

list holds the ports map information. GCU can access all the 
pair ports that have been registered to it. It implements the 
read/write functions used by the tests to access the DUT in the 
end and is routing the data to/from the corresponding port, 
based on the address. GCU can route only one type of data, 
BASE_DATA_TYPE. 

 
Figure 2 Example of how ports address space and interrupt ports address 
space are formed 

 

The pair ports map contains two address spaces: ports 
address space and interrupt ports address space. For each GCU, 
the pair port map will vary depending on the number of ports, 
the address where the pair ports are mapped etc., will adapt to 
the containing environment. 

The pair ports are accessed by performing read/write to an 
address that is found in ports address space. Callback routines 
can be registered to an address found in interrupt ports address 
space. 

C. Tests  
The tests access the DUT’s ports through the General 

Central Unit. Only the ports that are bound to the Central Unit 
can be accessed.  

Test perspective is reduced to: 

 the GCU’s ports address space and interrupt ports 
address space; 

 communication with the DUTs using read/write 
functions provided by the GCU that propagates data of 
BASE_DATA_TYPE; 

 registering callback routines to events signaled by the 
DUTs. 

Conversion of communication with a specific port to a base 
communication type provides a high degree of reusability. The 
current method’s advantages are: 

 tests are decoupled from the DUT’s port interface, 
becoming easily reusable; 

 test-portability is increased by using a Central Unit that 
provides the necessary interface and means for DUT-
communication; tests can be simply taken and run on a 
different GCU instance that groups different number of 
ports; 

 libraries with reusable components (pair ports, data 
generators, drivers, monitors, tests etc.) can be created 
and ported to different platforms; a reusable entity has 
an increased usability; e.g. a random data generator of 
BASE_DATA_TYPE can be used to stimulate a large 
number of DUT-ports, since all the communication 
with the ports is translated to a base communication; 
for example in a SystemC environment a random data 
generator of int type  can  stimulate  DUT  ports  of  the  
next types: sc_in<int/bool/char…>, 
sc_fifo_in<int/bool/char…>, 
tlm_simple_target port etc. 

III. SYSTEMC GENERAL ENVIRONMENT VERIFICATION 
LIBRARY 

A SystemC library, SystemC General Environment 
Verification (SGEV) that implements the presented concept 
was created.  

The SGEV library provides base classes, macros and fully 
reusable self-configurable classes for building up the 
verification environment. 

The SGEV library comprises: 

 Base port class <BASE_DATA_TYPE>: defines the 
read/write communication functions and data 
members.  Pair  ports  class  will  be  extended  from  this  
class. 

 Base pair port interface class: the pair ports are 
grouped in interfaces. The class that will contain the 
instances of pair ports will have to be extended from 
this class. 

 General Central Unit (GCU) class 
<BASE_DATA_TYPE>: the pair ports will be 
registered to this class instance.  

 Register object class <BASE_DATA_TYPE>: is used to 
handle register aliases from embedded software. 

 Base test class: all the test classes will be extended 
from this class. 



 Main test class: in this class the instances of tests or 
main tests that run on different or same general central 
units will be found. 

 Macros: ease the creation and running of tests. 

 Pair ports classes: pair port classes for base types of 
SystemC ports; currently only the communication with 
loosely timed models is implemented 

 Data Check Statistics functions 

 BASE_DATA_TYPE: can  be  of  any  type,  C++  
fundamental data types, structures or classes. 

 

 
Figure 3 General example of the presented SystemC verification library 
 

In Figure 3 is presented how the SystemC verification 
library can be used: the tests (running either in parallel or 
serial) communicate with all the DUTs bound to the General 
Central Unit through pair ports. 

A. Base Port class 
The Base port class contains the methods and fields used 

for the base communication interface. 

The base port interface: 

 first address and last address: delimitates the address 
space identifying this port; 

 interrupt address: the address where test will register 
the callback routine (interrupt service routines); 

 read/write functions: virtual communication functions; 
the base class has an empty implementation of this 
function; the pair port, if is needed, will overwrite this 
implementation of the functions; not all of the 
functions need to be overwritten; 

 array of events: will trigger the service routine call; for 
each event an interrupt callback routine at interrupt 
address can be registered; 

 BASE_DATA_TYPE: the type of data the base port can 
process/propagate. 

In the current version, two types of read/write functions are 
defined. The first type can be used to propagate single data 
while the second one can be used to propagate a data array. 
Using this interface, the GCU can communicate with the pair 
ports. The user can extend the base port class type and the 
GCU to add other functions for communication. 

B. Pair Ports classes 
The pair ports are found at the boundary of GCU and DUT 

ports. In the direction GCU-to-DUT port, the pair port must 
adapt the base communication to port specific communication. 
On the other direction, DUT port-to-GCU, it must translate the 
port specific communication to base communication. 

A pair port can communicate with one or more DUT ports. 
Each pair port must be extended from base port class. On one 
side the pair ports will be bound to the DUT’s ports and on the 
other  will  be  registered  to  a  GCU.  The pair port on  one  side  
will communicate with the DUT’s port specific protocol and on 
the other side the GCU will access the data throughout base 
read/write functions. A higher communication protocol layer 
can be established and the data exchange will be performed 
using read/write functions and a series of events to which 
callback routines can be attached. 

The data members and read/write functions are inherited 
from the base port class. The read and write functions are 
virtual functions, so the pair port must implement the needed 
logic to convert the specific port communication that it is 
bound to. 

In the next example, a pair port implementation that will be 
bound to a sc_out<PORT_DT> port is presented. 

template< class PORT_DT, class B_DT > 
class pport_sc_in: public SGEV_port_base<B_DT>, 
public sc_signal<PORT_DT>{ 
public: 
 pport_sc_in () 
 { 
    this->set_name(this->name()); 
    this->set_onchange_event((sc_event*)  
                (&this->value_changed_event())); 
 } 
 
 virtual bool read (unsigned long &addr, 
                           B_DT &data ){ 
    PORT_DT temp_data; 
    temp_data=   sc_signal<PORT_DT>::read(); 
    data = (B_DT)temp_data; 
    return true; 
 } 

 
 }; 
 

The pair  of  an  output  port  is  an  input  port.  To reduce  the  
effort at port binding, the SGEV_sc_in was extended from 
sc_signal<> class. This pair port being an input port, only the 
read function is implemented. A write to this port is not 
allowed. 



The user can implement its own pair ports to process the 
needed data type. The base port class provides means to create 
an array of events of any size. A pair port can also play the role 
of a complex Driver or Monitor. In these cases, the pair port 
will most probably have to drive more than one port. For this 
approach, based on a protocol, the data is ported to the DUT or 
extracted from the DUT and will be provided to base read and 
write functions. 

For the highest tests and testbench reusability degree, it is 
recommended for each DUT-port to have a corresponding pair 
port. In case of complex communication protocols, the drivers 
or monitors should communicate with the DUT ports 
throughout the GCU. Similar to tests, the pair ports can be 
found also on the right side of the GCU and can be registered 
to the GCU. More exactly, they can be extended from the base 
port class and can communicate with the DUT-ports 
throughout the GCU. In this case, the reusability of the 
testbench increases also, as both the driver and the monitor are 
decoupled from the DUT port interface type. The same driver 
or monitor can be re-used to communicate with different types 
of ports (e.g. in some cases tlm sockets in other cases 
sc_fifo<> ports type). In this case the test can provide data to 
the driver and can also take decisions in case one or more 
ports’ state has changed. 

The SGEV library implements pair ports for all basic 
SystemC ports: sc_fifo_out<BASE_DATA_TYPE>, 
sc_in<BASE_DATA_TYPE>, sc_out<BASE_DATA_TYPE>, 
sc_fifo_in<BASE_DATA_TYPE>. There are also pair ports 
implemented for tlm_target_socket and tlm_utils:: 
simple_initiator_socket[2]. 

Using BASE_DATA_TYPE as primitive data types (int, 
bool, etc.) increases the reusability degree, as a larger number 
of use cases are covered. 

C. Pair Port Interface class 
Each user pair port interface must be extended from the 

pair port interface base class. The pair port interface base class 
facilitates grouping and registration of pair ports that are bound 
to the DUT. By grouping the pair ports inside an interface 
class, the SGEV verification environment’s portability to 
another platform is increased. 

At port registration, both the address space and the interrupt 
address are set. Also, a flag is set establishing if the port will be 
accessed or not by an embedded software. For a certain 
interface it is recommended that the address spaces for all ports 
are set relatively to address zero. Later on, the pair port 
interface can be registered to the GCU at a different offset 
address. For example, if there are two UART entities inside the 
same platform, the pair port interface is instantiated twice and 
each interface is bound to one UART module; then the two 
interfaces are registered to the GCU at different offset 
addresses. 

An example of a pair port interface with two pair ports is 
presented below. Port reg_init_sockt is registered at [0, 
0xFD] address space and there is no address associated to the 
interrupt. This port will be accessed (IF_CPU) by embedded 

software, but the second port, in_serial, will not be 
(IF_NOT_CPU): 
//Uart module class – port interface. 

class uart: public sc_module 
{ 
public: 
   // TLM Socket (BUS Interface ) 
   tlm::tlm_target_socket<32>  p_reg_targ;       
   sc_fifo_out<unsigned char>  p_serial_out;  
 
   SC_HAS_PROCESS(uart); 
    uart(const sc_module_name & _n):  
       sc_module(_n)        
 , p_serial_out("p_serial_out")  
 ... 
     {  ... } 
      ... 
}; 

//Pair port interface for uart module. 

template<class B_DT> 
class if_uart_pair_ports: public 
SGEV_if_base<B_DT>{ 
 public: 
  
    SGEV_init_socket<32,B_DT>    reg_init_sockt; 
    SGEV_sc_fifo_in<unsigned char,B_DT> in_serial; 
 
    //constructor 
    if_uart_pair_ports(sc_module_name & n):  
 SGEV_if_base<B_DT>(n) 
      { 
   //register the initiator port 
   SGEV_REGISTER_PORT(reg_init_sockt,0,  
               0XFD, ADDR_NOT_USED,   
                           IF_CPU); 
   SGEV_REGISTER_PORT(in_serial , 
               1 , ADDR_NOT_USED,        
                            1, IF_NOT_CPU) 
 } 
 

}; 

It is recommended for pair ports to be grouped depending 
on the interface or communication interface they serve. For 
example, a DUT with one part of the ports communicating to a 
CPU (register access and interrupts) and one part 
communicating with an UART serial interface. 

D. The General Central Unit class 
The main role of the General Central Unit (GCU)  is  to  

facilitate the tests’ communication with the DUTs through pair 
ports registered to it. The test will have visibility to all the pair 
ports that are registered to the GCU.  

The General Central Unit’s main features are: 

 provide the functions for pair port interface or single 
port registration; the pair ports are added to an internal 
base port list; this list adapts then to the environment 
and increases with the number of added base ports; it 
represents the mapping address of the ports; 



 implements an interrupt vector list; this list changes 
dynamically based on the interrupt call routines that 
are registered inside tests; if during simulation no 
callback routine has been registered to any base port, 
the interrupt list remains empty;   

 implements read (BASE_DATA_TYPE) and writes 
(BASE_DATA_TYPE) functions, inside which the 
data is routed  to the corresponding port, based on the 
address; 

 implements the means (used by tests) to register 
interrupt callback routines on pair ports events; 

 provides synchronization mechanisms with the 
SystemC Scheduler. 

A major problem which had to be overcome was the 
synchronization with the SystemC scheduler. This 
synchronization is needed especially by embedded software. 
Register pooling mechanism (continuously interrogating a 
register) is often used inside a while-loop until its value is 
changed. In such cases, if synchronization with the SystemC 
scheduler is not performed, the software will most probably 
enter into an infinite loop. The SystemC library implements a 
non-preemptive scheduler that runs at most one thread at a 
time. If the thread does not give the control back to the 
scheduler, the simulation will block inside this thread[1]. 

The GCU port accesses (read, write or objects registering) 
perform the synchronization with the SystemC scheduler. 
Sequencing the register accesses is also ensured, each access 
being performed in a different delta cycle. 

It is recommended that DUT-ports binding (to pair ports) 
and pair ports registration (to GCU) be grouped inside a 
testbench environment class. 

A code example of the testbench environment: 

template<class B_DT> 
class tb_uart_env { 
public: 
    //GCU instance 
 SGEV_general_cu<UC_DATA_TYPE>  i_gcu;  
private:  
 uart                    i_uart; 
 if_uart_pair_ports<B_DT>  if_pair_ports; 
 
 tb_uart_env (const char* name): 
     i_if_pair_ports("if_pair_ports") 
 { 
  
     //Bind the UART tlm target socket  
     //to pair port intiaotor socket. 
     i_uart.p_reg_targ.bind 
                   (if_pair_ports.reg_init_sockt); 
   
     //Bind the Uart serial output to  
     //input pair port in_serial.     
           i_uart.p_serial_out 
                    (i_if_pair_ports.in_serial); 
 
 } 
 

 void end_of_elaboration(){   
  // Register the interface to GCU. 
  i_uc.register(if_pair_ports); 
 } 

}; 

E. User-Defined Tests 
Tests will access the pair ports throughout GCU read/write 

functions. Each test must be extended from the base test class 
provided by the SGEV library. The tests are split in two types: 
the first type is used only for embedded tests (IF_CPU tests) 
while the second type (IF_NOT_CPU) can be used for any 
desired implementation (including embedded tests). The 
embedded tests are allowed to access only the pair ports 
previously registered with IF_CPU flag. In case of an attempt 
to access a port having IF_NOT_CPU set, an error is 
generated. This measure is taken to avoid problems when 
embedded software is ported to a processor. At each test 
instantiation the reference of the GCU instance (used to access 
the pair ports) is transmitted. The tests will be able to access 
the pair ports registered to the transmitted GCU reference.  

There are macros in place to map the interaction with the 
GCU. User explicit function calls through general central 
instances are not needed.  

The following example shows a test for general behavior 
(not for embedded software):  

// Test handle serial out port from i_uart. 
// "main_io":function name, from where the test  
//            starts to run 
// test_out_uart: test class name. 
 
#define UART_SERIAL_OUT_INT_ADDR 0 
#define UART_SERIAL_OUT_ADDR  0 
 
SGEV_TEST_NOT_CPU(main_io, test_out_uart) 
  //Receive data from UART  
  //This function will be called when a 
 
  //char has been written to  
  //i_uart.p_serial_out port. 
  void rx_uart_int(){ 
     unsigned int data; 
     //Read data char from 
     //i_uart.p_serial_out port 
     rd_from_addr(UART_SERIAL_OUT_ADDR, data); 
     //Print to console the received char 
 cout<<(char)data; 
   
  } 
 
  // main function 
  void main_io(){ 
     // Register call back interrupt function 
     // for i_uart.p_SerialOut port 
     register_int_func (UART_SERIAL_OUT_INT_ADDR,  
           &TYPE_ENV rx_uart_int); 
  } 
}; 
 



F. Embedded software 
Embedded software can be written with the help of the 

SGEV library. Communication with DUT-ports is performed 
by means of read or write operations to a given address. This 
allows embedded software development. In the SGEV 
environment the embedded software runs on the host computer. 

Usually, inside embedded software a register is referenced 
using a name (e.g. UART_DR, I2CSTAT etc.). The SGEV 
environment allows referencing of ports using a given name. 
The SGEV library provides a register object class which can be 
used in case of register alias naming. 

When creating embedded software, the following 
restrictions must be considered: 

 Assembler code cannot be used because the assembler 
instructions are processor specific; the code will run on 
the host computer which most probably will have a 
different instruction set; 

 At interrupt service routine registration TYPE_ENV 
directive must be used before function name. E.g. : 
register_int_func (UART_SERIAL_IN_INT_ADDR, 
&TYPE_ENV rx_uart_int) 

 For register definitions a number of define directives 
must be used for both register type and register cast; 
the SGEV_REG_TYPE is used to define the register 
type while SGEV_REG_CAST_TYPE must be used 
when cast to register type is needed. 

E.g.:    
#ifdef IS_SGEV_ENV      
   #define SW_REG_TYPE         SGEV_REG_TYPE 
   #define SW_REG_TYPE_CAST    SGEV_REG_CAST_TYPE 
#else          
   #define SW_REG_TYPE    volatile unsigned int* 
   #define SW_REG_TYPE_CAST   (SW_REG_TYPE) 
#endif 
 

 In case of infinite loops or waiting for a variable to 
change inside of an interrupt service callback routine, 
synchronization points must be added. SGEV_NOP 
define directive must be used for achieving the 
synchronization with the SystemC scheduler.  

        E.g.: 
#ifdef IS_SGEV_ENV    
  #define DO_NOTHING     SGEV_NOP 
#else //  
  #define DO_NOTHING    
#endif 

 

Already written embedded software can be also adapted to 
run in the SGEV environment. The code must be modified to 
follow the above described restrictions. The effort to adapt the 
software depends on how well the code is organized, if lots of 
synchronization points are needed etc. 

The next code represents an embedded software test example: 

//file  uart_test_emb.h 
//Register type defines. If this file is found in 

//SGEV env SW_REG_TYPE is allready defined at this 
point 
//with SGEV_REG_TYPE  
#ifndef SW_REG_TYPE   
   #define SW_REG_TYPE     volatile unsigned int * 
   #define SW_REG_TYPE_CAST     (SW_REG_TYPE) 
#endif 
 
#ifndef DO_NOTHING   
   #define DO_NOTHING 
#endif 
 
#define Uart_BASE 0x100 
#define UART_DR  *SW_REG_TYPE_CAST (UART_BASE + 0x0) 
#define UART_FR  *SW_REG_TYPE_CAST (Uart_BASE + 0x18)  
  
void init_uart () {  
   SW_REG_TYPE UART_CR = SW_REG_TYPE_CAST  
                         (Uart_BASE + 0x14); 
   // Enable uart and disable rx and tx  
   //interrupts. 
   UART_CR  = 0x01;     
} 
     
void wr_to_uart (unsigned char value) { 
 while ((UART_FR & 0x20) == 0x20);      
   // write to UART  
   UART_DR = value; 
} 
void main_uart(){ 
   unsigned char i = 0; 
   //enable uart 
   init_uart(); 
   //write data to uart  
   for( i = 0; i<10; i++) 
      wr_to_uart(i);  
  
   while(1){ 
 //synchronize with SystemC scheduler 
     DO_NOTHING 
   }  
} 

//file  test_uart_sc_emb.h 
//Set defines used in SGEV environment 
#define SW_REG_TYPE       SGEV_REG_TYPE 
#define SW_REG_TYPE_CAST  SGEV_REG_CAST_TYPE 
#define DO_NOTHING        SGEV_NOP 
 
SGEV_TEST_CPU (main_uart, test_uart_sc_emb) 
     //include the embedded software file 
 #include "uart_test_emb.h" 
}; 

G. Main test 
Inside the main test the tests and testbenches containing the 

GCU are instantiated. The main test must be extended from the 
base main class. The base class provides mechanisms to run 
tests in parallel or serial and to stop the simulation when tests 
are finished. There can be any number of testbenches and test 
instances that have different types as BASE_DATA_TYPE. 

A test can be launched to run sequentially or in parallel 
with the following macros:  



 SGEV_RUN_TEST_S (&<test_instance_name>); 

 SGEV_RUN_TEST_P (&<test_instance_name>); 

The main test can be used as environment for running 
regressions. 
template<class B_DT> 
class test_uart_sc_main : public 
SGEV_test_main_base{ 
public: 
   uart_tb_env<B_DT> i_uart_tb_env; 
   test_uart_sc_emb<B_DT> *i_uart_test_emb; 
   test_out_uart<B_DT> *i_uart_out_test; 
   SC_HAS_PROCESS(test_uart_sc_main); 
   test_uart_sc_main(sc_module_name & n): 
       SGEV_test_main_base(n) 
 ,i_uart_tb_env("i_uart_tb_env") 
   { 
 //Instantiate the tests  
     i_uart_test_emb = new  test_uart_sc_emb<B_DT> 
            ("i_uart_test", &i_uart_tb_env.i_gcu); 
     i_uart_out_test = new test_out_uart<B_DT> 
  ("i_uart_out_test",&i_uart_tb_env.i_gcu); 
   } 
   void main(){ 
     //Launch test that receives data from uart  
     //p_serial_out and prints to cout      
     SGEV_RUN_TEST_PARALLEL(i_uart_out_test) 
 
     //Launch the sc test main that includes  
     //the embedded software 
     SGEV_RUN_TEST_PARALLEL(i_uart_test_emb) 
   } 
}; 

IV. SGEV IN COMPARISON WITH UVM  
A comparison can be done, from the user’s point of view, 

between SystemVerilog based UVM and SGEV library. The 
analysis is done for each component that a user must create for 
a functional verification environment.  
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Figure 4 Example of SystemVerilog UVM verification environment  

 

The main components of a verification environment 
according the UVM methodology, as they are defined in [4]: 

 Data Item (Transaction): data transferred to the DUT, 
e.g. packets, bus transactions, instructions; 

 Driver (BFM): active component which provides 
stimulus (data items) by driving the DUT signals; 

 Sequencer: generates sequences of transactions and 
send them to the Driver to be applied to the DUT; 

 Monitor: passive component which samples and 
checks DUT signals as well as collects functional 
coverage information; 

 Agent: higher level entity which contains a driver, a 
sequencer and a monitor; 

 Environment: the highest level verification entity, 
contains agents, additional bus monitors, 
configurations or other environments; 

 Sequences: streams of transactions or operations for 
DUT; 

 Top module: inside the top module, the virtual 
interfaces are bound to DUT-instances and the start 
simulation is triggered. 

 Test: defines the test scenario.  
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Figure 5 Example of SGEV verification environment 

 

The main components needed to create a verification 
environment using SGEV (as in Figure 3): 

 Pair Port Interface: contains the pair ports to be 
bound to DUT; the pair ports are provided by the 
SGEV library; 

 TB Environment: contains the pair port interfaces, 
DUT(s), GCU(s) instances and the corresponding 
connection between elements; the GCU is provided by 
the SGEV library; 



 Tests: contain the logic used for stimulating and 
checking the DUT(s); 

 Main test: contains the testbench environments and 
tests instances.  

A major difference between UVM and SGEV approach is 
the decoupling of verification environment components from 
DUT.   In  SGEV,  starting  from  DUT  port  interface,  the  
environment components dependency on data types is 
decreasing to a single data type (base data type – BASE_DT as 
presented in Figure 5 ).  Because there is only one type of data 
to be propagated to DUT, different reusable components can be 
created (e.g. GCU, PAIR PORTs, Test as random data 
generators etc. ). These components can then be used without 
additional effort. 

On the contrary, in the UVM approach (Figure 4) the 
dependency remains at higher levels. Most of UVM 
components are dependent on data item type (DT_item_1, … 
DT_item_n) and/or interface type (IF_PORT_1, IF_PORT_2,  
… ,IF_PORT_n), hence a reduced portability and reusability 
than  in  SGEV.  For  instance,  importing  a  single  sequence  to  
generate data items of different type, implies modification of 
test bench modules (at least virtual sequence and driver).  
Table 1 UVM System Verilog and SGEV library user perspective 

Using UVM System Verilog 
library 

Using SGEV 
library 

DUT virtual interface Pair Port Interface 
Agent Driver  

- Monitor Checks 
Coverage 

Sequencer 
Environment TB environment 

Sequences Tests 
 Test 

Top Main Test 
 

As shown in the Table 1, for a simple verification environment, 
the user has only to create a reduced number of components in 
SGEV in comparison to UVM. 

For a full verification environment (including functional 
coverage) the UVM methodology approach is a better choice. 
But using this methodology for a minimal functional 
verification of a SystemC module is time consuming and 
involves many resources. 

Usually, for a SystemC loosely timed model, complex bus 
communications are modeled as TLM (Transaction Level 
Modeling) communication. In these cases there is need for 
neither complex driver nor monitor implementations. Binding a 
pair  TLM  socket  to  this  type  of  port  is  enough  to  establish  a  
communication.  

One of the SGEV’s advantages is exactly the reduced time 
needed to get familiar with the environment. As opposite, 
understanding a complex UVM environment (the mechanism 
behind, the virtual sequences, etc.) can be a time consuming 
activity, especially for inexperienced users.  

Another  major  advantage  in  comparison  to  UVM  is  the  
possibility offered by the SGEV-approach to create embedded 

software which can then be used during all SoC development 
process phases. 

V. SGEV PERFORMANCE ANALYSIS 
In order to evaluate the new method’s performance, a use 

case running in three different environments was analyzed. For 
each environment a different SystemC platform was necessary. 
Eclipse[5] and Synopsys’ Virtual Prototype Analyzer (VPA)[6] 
tools were used for simulating the environments. 

The presented use case contains embedded software that 
configures and implements the communication protocol for 
receiving and sending Ethernet frames to an Ethernet Media 
Access Controller (Ethernet MAC controller). The embedded 
software must configure an UART module to which debug 
messages are sent. The data received by UART is printed to a 
terminal. 

To ease further descriptions, the three used platforms are 
named as follows:  VPA_ETH_MAC, SGEV_ETH_MAC and 
SGEV_VPA_ETH_MAC. 

A. VPA_ETH_MAC platform  
This platform contains a SytemC cortex m3 processor. The 

embedded software was first written for this platform. 

The VPA_ETH_MAC platform runs in VPA tool and the 
software is compiled for cortex m3 (the obtained image is 
used). It comprises the following SystemC modules: 

 cortex_m3: CORTEX M3 processor model; 

 d_ram: data code  memory; 

 i_ram: instruction code memory; 

 s_ram: SDRAM memory (used to intermediate  the 
communication between the processor and the Ethernet 
controller); 

 eth_mac: Ethernet MAC controller; 

 uart: UART  module used for printing debug 
messages; 

 t_display:  used  for  displaying  on  the  terminal  data  
received from UART; 

 i_intconect_bus: interconnect bus module (used to 
interconnect all the platform modules).  

s_ram

cortex_m3

uart

eth_mac

t_display

i_ram

d_ ram

 
Figure 6 VPA_ETH_MAC platform 



The cortex m3 is connected to i_intconect_bus  using three 
ports: p_system_port, p_i_code and p_d_code. The 
communication with eth_mac, s_ram and uart is performed 
through p_system_port. 

B. SGEV_ETH_MAC platform  
The embedded software was first written for 

VPA_ETH_MAC platform. To use it in the SGEV 
environment the embedded software had to be adapted. 
Because in SGEV there is no processor module present and the 
software runs on host computer, the data ram and instruction 
ram modules are not needed. 

The SGEV_ETH_MAC platform runs in Eclipse tool and 
uses the C files implementing the software (which runs on host 
computer). It comprises the following SystemC modules: 

 pair_port_if: contains three pair ports used  by  the  
GCU to communicate with s_ram, eth_mac and uart 
modules; each pair port is registered with 
corresponding address space (used by the embedded 
software to access these modules) 

 i_GCU: the General Central Unit to which the the pair 
port interface is registered; the GCU will also be used 
as interconnect module; 

 emb_test: embedded test that contains the embedded 
software C files; receives the reference of  i_GCU; 

 s_ram: SDRAM memory used to intermediate  the 
communication between emb_test and the Ethernet 
controller (eth_mac); 

 eth_mac: Ethernet MAC controller; 

 uart: UART  module used for printing debug 
messages; 

 t_display:  used  for  displaying  on  the  terminal  data  
received from the UART  

  i_sram_intercont: interconnect bus module (used to 
interconnect emb_test, eth_mac and s_ram). 

 
Figure 7 SGEV_ETH_MAC platform 

 

C. SGEV_VPA_ETH_MAC platform 
This platform was created by removing the cortex_m3 

processor module from the VPA_ETH_MAC platform and 

replaced with pair port interface, GCU and embedded test from 
the SGEV_ETH_MAC platform. 

The pair port interface has suffered modifications: the 
address space initially associated separately (for s_ram, 
eth_mac, uart pair ports) is here associated to only one pair port 
(the cortex m3 system bus port). This modification was 
necessary as cortex m3 uses only one port to communicate with 
SRAM and peripherals. 

The SGEV_VPA_ETH_MAC platform runs in VPA tool 
and the C files implementing the software (running on host 
computer) are used. The platform comprises the following 
SystemC modules:  

 pair_port_if: contains one pair port;  in  this  case  the  
GCU uses  a  single  port  to  communicate  with   s_ram, 
eth_mac and uart; each pair port bound to s_ram is 
registered with its corresponding address map (used by 
the embedded software to access these modules); 

 i_GCU: the General Central Unit to which the pair port 
interface is registered; the GCU will also be used as 
interconnect module; 

 emb_test: embedded test that contains the embedded 
software C files; receives the reference of  i_GCU; 

 d_ ram: data code  memory will not be used 

 s_ram: SDRAM memory used to intermediate the 
communication between emb_test  and the Ethernet 
controller (eth_mac) 

 i_ram: instruction code memory will not be used; 

 eth_mac: Ethernet MAC controller; 

 uart: UART  module used for printing debug 
messages; 

 t_display:  used  for  displaying  on  the  terminal  data  
received from the UART 

 i_sram_intercont: interconnect bus module (used to 
interconnect emb_test , eth_mac and s_ram). 

 
Figure 8 SGEV_VPA_ETH_MAC platform 

 

The cortex m3 has three bus interfaces: system bus, 
instruction data bus and data bus. The communication with 



SRAM and the other peripherals is performed only throughout 
the  system  bus.  So,  in  this  case,  there  is  only  one  pair port 
registered with all the address space. This address space is used 
by the embedded software to access s_ram, eth_mac as well as 
uart modules. This is an example showing the big advantage of 
decoupling the test from  the  ports  interface.  In  one  platform  
(SGEV_ETH_MAC) the test communicates with the design 
using 3 ports and in the other one (SGEV_VPA_ETH_MAC) 
using only one port. 

In the next table the time execution results are presented for 
all the three platforms, for different simulation time: 
Table 2 ETH_MAC Platforms execution results 

Simulation 
time 

Execution time 
SGEV_ETH_

MAC 
SGEV_VPA_
ETH_MAC 

VPA_ETH
_MAC 

5 s 14.05 s 15.48 s 46.64 s 
7 s 16.81 s 17.97 s 97.56 s 

10 s 18.07 s 19.36 s 171.19 s 
20 s 24.55 s 26.17 s 429.73 s 
30 s 29.05 s 31.2   s 641.8  s 

 

VI. CONCLUSIONS 
As previously shown, a SystemC library was implemented 

(only the communication with loosely timed models 
implemented at the moment), and promising results were 
obtained. The most notable benefits offered by the newly 
implemented library are as follows: 

 faster ramping-up of the verification environment; 

 reusable and portable verification environment (unified 
structure, easily ported tests between hierarchical 
levels or modules); 

 embedded software for the host computer (with a few 
restrictions) can be written for testing purposes; 

 already written embedded software can be adapted and 
run in this environment; 

 SystemC/C++ tests can be used together with 
embedded tests; 

 tests can be reused as embedded software for SystemC 
processor model; 

 tests and the General Central Unit can temporarily 
replace a basic SystemC processor model or a SystemC 
module; 

 an environment for regression tests can be created with 
reduced effort; 

 the environment is OSCI compliant as well as vendor 
independent. 

Also, converting any type of communication to a simple set 
of access functions and interrupt callback routine functions can 
be easily done without advanced SystemC/C++/OOP 
knowledge. 

Several limitations are predicted though. One such 
limitation  could  be  the  64  bits  of  address.  To  overcome  this  
limitation, for pair ports that are of IF_NOT_CPU type, a code 
can be associated instead of an address.  

A downside of this approach, compared to tools, is 
embedded software debugging. Most of the tools provide the 
possibility of software debugging at assembler code level. 

Future work for the SGEV library: 

 to  simplify  end-user  work,  the  address  map  of  the  
IF_NOT_CPU ports type will be generated 
automatically (in the background). This will not be 
possible for IF_CPU as these ports are accessed by 
embedded software running on system having a 
particular memory map. 

 get the SGEV library and SCV[5] library working 
together. Include random data generators that use SCV 
library for randomization, constraints and weights for 
randomization. 

 implement pair ports for approximately and exactly 
timed ports. 
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