

1

Enriching UVM in SystemC with AMS extensions

for randomization and functional coverage*

Thilo Vörtler, Thomas Klotz, Karsten Einwich, Fraunhofer IIS - Design Automation Division - EAS,

Dresden, Germany (thilo.voertler@eas.iis.fraunhofer.de)

Yao Li, Zhi Wang, Marie-Minerve Louërat, Jean-Paul Chaput, François Pêcheux, Ramy Iskander,

LIP6, UMR 7606 SU-UPMC/CNRS, Paris, France (marie-minerve.louerat@lip6.fr)

Martin Barnasconi, NXP Semiconductors, Eindhoven, The Netherlands,

(martin.barnasconi@nxp.com)

Abstract—The Universal Verification Methodology (UVM) is a coverage driven verification approach, which has

become the standard for the verification of digital systems. The framework provided by UVM makes it possible to

create structured test environments, which facilitates the reuse of verification components and scenarios. However,

the UVM library is only available for SystemVerilog, limiting the verification of designs at the register transfer level.

Recently, UVM has been made available in SystemC/C++, shifting the focus to system-level verification including

analog/mixed-signal functions by using SystemC-AMS. However, UVM itself fully relies on features built directly into

the SystemVerilog language necessary for constrained randomization and functional coverage. In this paper we

propose an API similar to SystemVerilog that enables randomization and coverage in UVM for SystemC. A special

focus is the introduction of continuous distribution functions for the randomization of real-value data types and

means to capture these real values for functional coverage. These extensions will allow the creation of coverage-based

test environments in SystemC and SystemC-AMS, enabling verification of heterogeneous analog/mixed-signal

systems.

Keywords— Electronic System Level (ESL), SystemC, SystemC-AMS, SystemC Verification (SCV), Transaction Level

Modeling (TLM), Universal Verification Methodology (UVM), Constrained Random Stimulus, Functional Coverage

I. INTRODUCTION

Today’s embedded systems interact more and more tightly with the analog physical environment. Digital

hardware/software (HW/SW) subsystems become functionally interwoven with analog/mixed-signal (AMS)

blocks such as RF interfaces, power electronics, or sensors and actuators to form truly heterogeneous systems.

Examples are software-defined radios, sensor networks, automotive applications or systems for image sensing.

This requires new means to model and simulate the interaction between AMS subsystems and HW/SW

subsystems at functional and architecture level. Especially for this purpose, the SystemC [1] language standard

has been extended with powerful AMS [2] modeling capabilities to tackle the challenges in heterogeneous

electronic system-level architecture-exploration and design phases.

 Yet, as great effort was made to mature system-level design and modeling technologies, less was made to

improve the system-level verification approaches in SystemC. Coverage-driven verification of complex digital IP

has become more mature since the introduction of the UVM standard, implemented in SystemVerilog [3]. The

UVM principle is to build a test bench using reusable verification components, and introducing a structured way

for constraint randomization and functional coverage. When applying UVM, the test bench is designed in a

hierarchical and modular way, using similar abstraction concepts as applied in the device under test (DUT). This

includes techniques such as transaction level modeling (TLM) for the test sequences, combined with cycle

accurate, signal-level interfaces to the DUT. To support system-level verification of SystemC-centric HW/SW

systems, UVM has been made available in SystemC [4].

In this paper we propose new APIs dedicated to verification for coverage and randomization, as extension for

the UVM-SystemC library. Our API supports the random generation of real values, following continuous

distribution functions, which are subject to constraints. Furthermore, a functional coverage API is introduced,

based on covergroups, coverpoints, and coverbins, enabling coverage collection using SystemC. This API also

supports coverage of real values.

* This work was funded by the project Verification for Heterogeneous Reliable Design and Integration (VERDI) [13] , which is

supported by the European Commission within the 7th Framework Programme for Research and Technological Development
(FP7/ICT 287562).

2

In the following section we describe how randomization and coverage are applied in UVM for SystemC and

SystemC-AMS. The API for randomization is described in Section III. As a backend for randomization of

integer- and SystemC-based data types, we use the CRAVE library. For constrained randomization of real

values, the randomization features and distribution functions of C++11 are used. The proposed functional

coverage API is described afterwards in Section IV.

II. UVM FOR SYSTEMC AND SYSTEMC-AMS

A. UVM-SystemC randomization and coverage concepts

UVM is a verification framework that allows the creation of test benches based on a constrained random

stimulus principle. Instead of testing the DUT with directed test sequences, random stimulus is applied, which is

shaped by constraints so that the randomly generated values are valid stimulus. As the input stimulus is randomly

generated, it is very important to observe which data has been sent to the DUT, to make sure that all design

corners have been tested during a verification regression run. Therefore, functional coverage can be used which

allows to define own coverage goals.

The UVM standard and associated class library implementation in SystemVerilog does not define the

constructs for randomization and functional coverage, because these concepts are intrinsically part of the

SystemVerilog standard, defined in IEEE Std. 1800 [5] . In a similar way, UVM in SystemC will not introduce

such constructs for randomization and coverage, but will make use of dedicated libraries for this purpose. Several

good attempts have been made to support constrained randomization for SystemC, such as the SystemC

Verification library (SCV) [6] and the Constrained Random Verification Environment for SystemC (CRAVE)

[7]. Also different libraries that add functional coverage to SystemC have been proposed in [8][9][10].

Furthermore, various commercial, proprietary or vendor-specific solutions are available.

C++

SystemC-AMS

TLM

SCV

UVM-SystemC

SystemC

CDF

Coverage APIRandomization API

Coverage Driven Verification Methodology

CRAVE

AMS

Figure 1: Overview on languages and libraries used for UVM-SystemC

In Figure 1 it is shown how UVM-SystemC defines the upper methodology layer which unifies various

powerful SystemC extension libraries such as TLM, SCV, CRAVE and SystemC-AMS. Unfortunately, there has

been no attempt so far to standardize the randomization and coverage API for SystemC. Due to the growing

interest in UVM, we propose an API for randomization and coverage, indicated in red, which is clearly

recognized by the UVM community, as it offers a look & feel similar to the SystemVerilog language. The

randomization API is proposed as compatibility layer that can either use CRAVE or SCV as a backend solver. In

addition, continuous distribution functions (CDF) are introduced to generate random real values, which are

essential in an AMS verification environment.

B. Application of randomization and coverage in UVM-SystemC

Figure 2 shows a typical verification environment implemented in UVM-SystemC and SystemC-AMS. It

contains a top level environment with two separate Verification IPs (VIPs), a scoreboard and a virtual sequencer.

All components can be configured using the UVM configuration database. A virtual sequence running on a

virtual sequencer coordinates the execution of the lower level sequences running on sequencers which are part

of the agents. These sequences generate a stream of sequence items (transactions) that are translated into pin level

3

signals, which are sent to the DUT via a interface
1
 via a driver . Throughout the generation of sequences, from

virtual sequences down to sequence items sent to a driver, randomization can be applied (shown in red). For

example, sequences can be randomly selected to be run or data fields can be randomized.

Figure 2: UVM-SystemC test environment and use of randomization and coverage

Functional coverage in UVM can be collected by adding coverage models at different levels of abstractions

(shown in green). Coverage that needs explicit access to signals is collected in a monitor . More abstract

coverage information is collected based on transactions, which a monitor provides through an analysis port.

Reusable coverage that is related to an interface, which an VIP implements can be collected in an optional

analysis component . If the functional coverage is related to the overall checking of the verification goals it is

collected as part of the overall correctness checks in a scoreboard .

III. RANDOMIZATION FOR UVM-SYSTEMC

A. UVM-SystemC compatibility layer definition

The UVM-SystemC compatibility layer defines constructs for randomization and constraints which can be

mapped onto the SCV or CRAVE library implementation. Table I lists the basic language constructs which are

introduced, and their equivalence with the SystemVerilog API. Especially in the context of UVM-SystemC, it is

preferred to use similar language constructs and functionalities, to ease the introduction of UVM in different

languages.

Table I: Basic language constructs as part of the UVM-SystemC compatibility layer for randomization (scvx)

Functionality SystemVerilog UVM-SystemC (scvx)

Random variable declaration rand T scvx_rand<T>

Enable or disable random variable rand_mode(…) rand_mode(…)

Constraint block declaration constraint scvx_constraint

1 As the SystemC language doesn’t rquires virtual interfaces as in SystemVerilog, an interface is a pointer to a class, which is retrieved

via the UVM configuration database similar to UVM for SystemVerilog.

virtual
sequencer

virtual
sequence

Subscr 2
ref

model
Subscr 1

scoreboard

SystemC-AMS
DUT

env. (VIP1)

agent

AMS driver AMS monitor

ifif

analysis
sequencer

item

item

sequence

env. (VIP2)

agent

AMS driver AMS monitor

ifif

analysis
sequencer

item

item

sequence

environment

UVM test

config

config

config config

config

SystemC main

if if configconfig

4

Functionality SystemVerilog UVM-SystemC (scvx)

Enable or disable constraint constraint_mode(…) constraint_mode(…)

Randomization container object - scvx_rand_object

Randomize method randomize() randomize()

Randomize method with inline constraint randomize() with … randomize_with(…)

These language constructs are proposed as an extension to the SCV API, and therefore use the initial prefix

and namespace scvx. If accepted, these constructs might become integral part of the SCV library and its scv

namespace.

Random variables are declared using the template class scvx_rand<T>, in which T represents a C, C++ or

SystemC data type. The member function rand_mode, which is part of this class, accepts the arguments true or

false to respectively activate or inactivate the randomization of the variable. The constraint declaration uses the

class scvx_constraint. Also constraints can be made active and inactive, by means of the member function

constraint_mode.

In contrast to SystemVerilog, where any class can contain random variables and constraints, a dedicated

randomization container base class called scvx_rand_object is introduced. For the UVM-SystemC class library

implementation, it is proposed to derive class uvm_object from class scvx_rand_object. In this case, all UVM

objects derived from uvm_object can be used to encapsulate randomized variables and constraints. As the UVM

class uvm_sequence_item is also derived from class uvm_object, there is no need for the user to explicitly use

the base class scvx_rand_object to create randomized objects.

So any object derived, or indirectly derived from base class scvx_rand_object may contain multiple random

variables and constraints, which then belong together, meaning that the declared variables in this class can be

used in the constraint definitions and randomization process. The member function randomize, which is part of

the base class, assigns the random value to the declared variables in the derived class, taking into account the

constraints, if any. Alternatively, the member function randomize_with can be used, which facilitates the

declaration of additional in-line constraints, these are only valid for that particular randomization call. The

member functions randomize and randomize_with return true if randomization was successful, otherwise they

will return false.

B. UVM-SystemC compatibility layer implementation on top of CRAVE

Listing 1 demonstrates the use of the randomization API using the CRAVE library. This library has been

selected due to its improved capabilities compared to the SCV library, for example the inline and incremental

constraint definition and the more powerful parallel constraint solving. For simplicity, the example does not show

the use of UVM-SystemC, but solely the randomization capabilities of the compatibility layer. Line 1 defines the

class simplesum, which is derived from class scvx_rand_object. The variables to be randomized are declared in

line 4. The constraints are defined on line 5. As part of the constructor initialization, line 8 and 9, all variables and

constraints get a name. If initialization is omitted by the user, default names will be assigned to these elements.

The constraint definitions are part of the constructor implementation, at line 11 to 13. In this example, constraint

c1 defines the equation ‘z = x + y’. A helper function at line 16 is defined to print the result.

A special class scvx_name is introduced, as argument in the constructor (line 7), which acts as a container to

store the string name of the current instance and provides the mechanism for building the hierarchical names

between parent and child objects.

The implementation of the main program is given from line 23 and onwards. The instantiation of the

randomization object simplesum is done in line 25. The actual randomization of the variables, taking into account

the constraints, is executed on line 27. If randomization was successful, the result is printed (line 29). Otherwise

the message is printed that there was no solution found. At line 32, constraint c2 of randomization object s is

disabled. Line 34 shows the use of the member function randomize_with, which starts randomization using an

additional in-line constraint, being ‘x == 10’. Note that the randomization object instance name should be

5

explicitly added to the constraint definitions, because these variables reside in the object itself. Line 39 shows

how variables can be excluded from randomization. In this case, the actual value of variable y after the second

randomization request is kept the same.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

class simplesum : public scvx::scvx_rand_object

{

 public :

 scvx::scvx_rand< int > x, y, z ;

 scvx::scvx_constraint c1, c2, c3 ;

 simplesum(scvx::scvx_name name)

 : x("x"), y("y"), z("z"),

 c1("c1"), c2("c2"), c3("c3")

 {

 c1(z() == x() + y());

 c2(x() == 5);

 c3(y() > 0 && y() < 10);

 }

 void print_result() const

 {

 cout << name() << " : " << z << " == "

 << x << " + " << y << endl ;

 }

}; // class simplesum

 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

int sc_main(int, char*[])

{

 simplesum s("simplesum");

 bool result = s.randomize();

 if (result) s.print_result();

 else cout << "No solution found." << endl;

 s.c2.constraint_mode(false);

 result = s.randomize_with(s.x() == 10);

 if (result) s.print_result();

 else cout << "No solution found." << endl;

 s.y.rand_mode(false);

 result = s.randomize();

 if (result) s.print_result();

 else cout << "No solution found." << endl;

 return 0;

}

Listing 1: Example of UVM-SystemC compatibility layer for constrained randomization

The generated output is shown in Listing 2.

$./simplesum.exe

constraint c1 registered.
constraint c2 registered.
constraint c3 registered.
simplesum: 13 == 5 + 8
constraint c2 disabled.
in-line constraint ci_0 applied (disabled after use)
simplesum: 13 == 10 + 3
random variable 'y' made inactive (value remains 3).
simplesum: 33556493 == 33556490 + 3

Listing 2: Output of constrained randomization example

C. Randomization for Analog/Mixed-Signal systems

In addition to the discretized weighted values, a set of continuous distribution functions for supporting real

values have been introduced. The randomization features and distribution functions of C++11 [11] are used to

build this API. The continuous distribution functions made available are listed in Table II.

 Table II: Continuous Distribution Functions available for real values in UVM-SystemC (scvx)

Distribution function UVM-SystemC (scvx)

Normal distribution scvx_normal_distribution

Uniform distribution scvx_uniform_real_distribution

Bernoulli distribution scvx_bernoulli_distribution

Piece-wise linear probability distribution function scvx_piecewise_linear_probability_distribution

Discretized probability distribution function scvx_discrete_probability_distribution

6

The distribution function is set as a parameter of the random variable, as shown in Listing 3.

scvx::scvx_rand<real> a

a.set_distribution(dist_type(dist_params));

Listing 3: Setting a distribution function for a random variable

The member function set_distribution defines the distribution dist_type, requiring the parameters

dist_params, for random variable a. The seed used to generate the random variables may be set globally or per

scvx_rand_object. Therefore the execution of some test scenario can be reproduced identically several times. As

an example, Figure 3 presents the random samples, sorted by value generated for a uniform distribution, showing

the real values, compared with integer values that would be generated by CRAVE.

Figure 3: Uniform distribution example using scvx_uniform_real_distribution (cross points)

compared to discretized uniform distribution provided by CRAVE (red ladder).

Constraints can be set on randomized variables, using the same operators as supported in SystemVerilog.

Table III presents these operators.

Table III: Operator supported by randomized real values in UVM-SystemC (scvx)

Operator Function Operator Function

= = Equality % Modulo

!= Inequality && Logical AND

> Greater-than || Logical OR

< Less-than ! Logical negation

>= Greater-than-or-equal-to & Bitwise AND

<= Less-than-or-equal-to | Bitwise OR

+ Addition ^ Bitwise XOR

- Subtraction << Shift-left

* Multiplication >> Shift-right

/ Division ~ Bitwise negation

This API has been used to update the simplesum use case (resulting in realsimplesum) with real randomized

values a and b. The distribution function is set uniform. The following three constraints are set on the variables:

a + b < 36, a > 18 and b < 16. The generated output is shown in Listing 4.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80

V
a

lu
s

tries

crave
scvx

7

Sequence starts here...
-------randomization with constraints--------
* Definition of random variables and constraints :
* a: uniform real distribution from 15.3 to 40.2
* b: uniform real distribution from 2.5 to 20.5
* the additional constraint on variable a is: a > 18
* the additional constraint on variable b is: b < 16
* the constraint on variable a and b is: a + b < 36

--- 1st sequence is randomized here ---
 1| v[0,"a"]:39.2135
 1| v[1,"b"]:19.7869
scvx_constraint <b_less_16> has not been met.
scvx_constraint <a_plus_b_less_36> has not been met.
 2| v[0,"a"]:29.8232
 2| v[1,"b"]:12.9987
scvx_constraint <a_plus_b_less_36> has not been met.
 3| v[0,"a"]:18.628
 3| v[1,"b"]:4.90581
Sequence finished.
0 s: test.tb.uvc0.agent.monitor changed DUT inputs op_a = 18.628 op_b = 4.90581
0 s: test.tb.monitor0 received result 23.5338
0 s: test.tb.scoreboard0 Successfully compared adder output 23.5338

Listing 4: Output of constrained randomization example realsimplesum with real values

IV. FUNCTIONAL COVERAGE EXTENSIONS FOR UVM-SYSTEMC

This section describes the proposed functional coverage API for UVM-SystemC. Table IV defines the

language constructs which are proposed as extension to the SystemC Verification library, and therefore use the

initial prefix and namespace scvx.

Table IV: Basic language constructs for functional coverage in UVM-SystemC (scvx)

Functionality SystemVerilog UVM-SystemC (scvx)

Coverage model covergroup scvx_covergroup

Coverage points coverpoint scvx_coverpoint

Coverage state bins bins bins()

Illegal bins illegal_bins illegal_bins()

Ignore bins ignore_bins ignore_bins()

Triggers sampling of the covergroup sample() sample()

Option to specify the maximum of
automatically created bins

option.auto_bin_max option.auto_bin_max

Coverage option to specify an additional
comment

option.comment option.comment

Option to specify the weight of the

covergroup instance
option.weight option.weight

Option to specify the name of the

covergroup instance
option.name option.name

In Listing 5 the use of the functional coverage API is demonstrated.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

class cg: public scvx::scvx_covergroup

{

 public:

 scvx::scvx_coverpoint cp_m;

 scvx::scvx_coverpoint cp_n;

 cg(scvx::scvx_name name, int& m, int& n)

 : cp_m("cp_m", m),

 cp_n("cp_n", n)

 {

 option.auto_bin_max = 16;

 cp_m.bins("bin_a") =

 scvx::list_of(4, 0, 1, 2, 3);

 cp_m.bins("bin_b", scvx::SINGLE_BIN) =

 scvx::list_of(4, 4, 5, 6, 7);

 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

int sc_main(int, char*[])

{

 int m; // variable to be covered

 int n; // variable to be covered

 int stimuli_m[] =

 { 3, 5, 6, 5, 3, 6, 5, 5, 3, 3 };

 int stimuli_n[] =

 { 13, 1, 6, 3, 16, 12, 8, 3, 13, 3 };

 cg cg_inst("cg_inst", m, n);

 for (int i = 0; i < 10; i++)

 {

 m = stimuli_m[i];

 n = stimuli_n[i];

8

18

19

20

21

22

 cp_m.ignore_bins("ignore_bins") = 6;

 cp_n.ignore_bins("ignore_bins") = 13;

 }

};

40

41

42

43

44

 cg_inst.sample();

 }

 cg_inst.report();

 return 0;

}

Listing 5: Example of functional coverage API for UVM-SystemC

The coverage model defined in class cg makes use of the base class scvx_covergroup, see line 1. The

coverpoints of type scvx_coverpoint are children in this covergroup object (line 4 and 5). As part of the

constructor initialization list, the names for the coverpoints are specified, and also they are bound to their

associated data members (line 8 and 9). In the implementation of the constructor, coverage bins can be defined.

For this purpose, the member function bins of class scvx_coverpoint is introduced. The name of the coverage bin

is specified as first argument of this member function. If the second argument is not given, or explicitly defined as

SINGLE_BIN, then it will create a bin which can hold a single value. Alternatively, the argument MULTI_BIN

can be used to assign multiple values per bin.

The number of individual single bins and the value it can collect is specified as a standard vector of values, by

means of the helper function list_of, which is also part of the SCV extension library. In this example, the

following bins are created: bin_a[0], bin_a[1], bin_a[2], bin_a[3], bin_a[4], bin_b[4], bin_b[5], and bin_b[7]. In

addition to the list_of helper function, a function range_of is supported that defines bins which can capture real

values between an upper and lower real-value bound.

The type and number of coverage bin(s) can be decided per coverpoint. In the example in Listing 5, only bins

are explicitly specified for coverpoint cp_m only. If there are no bins specified by the user, like for coverpoint

cp_n, a default set of bins is automatically created (so called ‘autobins’). The number of default coverage bins is

determined by the size of the data type which is covered. When using integers as data type, the number of default

bins would explode; therefore the coverage option auto_bin_max (line 16) can be specified to limit the number

of coverage bins. By default, auto_bin_max is set to 64.

The member function ignore_bins is introduced, which specifies one or more values to be explicitly excluded

from coverage. In this example, the value 6 is ignored for coverpoint cp_m, and thus excluded in the coverage

calculation (line 19). For coverpoint cp_n, where default bins are created, the value 13 is ignored, see line 21. In a

similar fashion, the member function illegal_bins could be used. When a value is stored in an illegal bin, a run-

time error is generated.

The bin is said to be covered (100%) as soon as at least one of the specified values is stored in the coverage

bin. In case multiple hits per bin occur, the property ‘hitrate’ will increase. In this coverage model, there is no

tracking of the individual values for multi-value bins.

$./test.exe

Covergroup: cg_inst
--
VARIABLE Expected Covered Percent
--
cp_m 7 2 28.57
cp_n 15 5 33.33
--
TOTAL: 22 7 31.82
--

coverpoint: cp_m

Name Percent Hitrate

bin_a[0] 0 0
bin_a[1] 0 0
bin_a[2] 0 0
bin_a[3] 100 4
bin_b[4] 0 0
bin_b[5] 100 4
bin_b[7] 0 0

coverpoint: cp_n

Name Percent Hitrate

auto[0] 100 0
auto[1] 100 1
auto[2] 0 0
auto[3] 100 3
auto[4] 0 0
auto[5] 0 0
auto[6] 100 1
auto[7] 0 0
auto[8] 100 1
auto[9] 0 0
auto[10] 0 0
auto[11] 0 0
auto[12] 100 1
auto[14] 0 0
auto[15] 0 0

Listing 6: Output of functional coverage example

9

The member function sample of the coverage group cg_inst is called to perform the actual coverage analysis

(line 40). The member function report of the coverage group cg_inst has been created to print the coverage

results to the console (stdout). In the future, it is expected that the coverage results are written to a coverage

database following the Accellera Unified Coverage Interoperability Standard (UCIS) [12].

The generated functional coverage output is shown in Listing 6. Note the missing bins bin_b[6] and auto[13],

which are defined as ignore_bins.

V. CONCLUSIONS

In this paper we have presented constrained randomization and functional coverage extensions for UVM in

SystemC. New features dedicated to AMS verification have been introduced, namely the random generation of

real values, which can be subjected to constraints, supported by the use of continuous distribution functions.

These randomization extensions use a syntax similar to the SystemVerilog language standard and are

implemented in a compatibility layer on top of existing constrained randomomization libraries such as SCV or

CRAVE. Furthermore, a functional coverage API is presented for UVM-SystemC, introducing covergroups and

coverpoints, enabling coverage collection of the results also in SystemC.

These concepts are being contributed for further standardization to the Accellera Systems Initiative, as an

extension to the SystemC Verification (SCV) library.

REFERENCES

[1] IEEE Computer Society, IEEE Std. 1666-2005, IEEE Standard SystemC Language Reference Manual,

http://standards.ieee.org/findstds/standard/1666-2011.html

[2] Accellera Systems Initiative, SystemC AMS 2.0 Standard, http://www.accellera.org/downloads/standards/systemc

[3] Accellera Systems Initiative, Standard Universal Verification Methodology (UVM),

http://www.accellera.org/downloads/standards/uvm/

[4] M. Barnasconi, F. Pêcheux, T. Vörtler, K. Einwich, Advancing System-Level Verification Using UVM in SystemC, DVCON 2014,

March 2014, San Jose, California, USA

[5] IEEE Computer Society, IEEE Std. 1800, IEEE SystemVerilog Unified Hardware Design, Specification, and Verification Language,

http://standards.ieee.org/findstds/standard/1800-2012.html

[6] Accellera Systems Initiative, SystemC Verification Library, http://www.accellera.org/downloads/standards/systemc

[7] F. Haedicke, H. M. Le, D. Große, R. Drechsler, CRAVE: An Advanced Constrained Random Verification Environment for SystemC,

International Symposium on System on Chip (SoC), October 2012, Tampere, Finland

[8] R. Siegmund, U. Hensel, A. Herrholz, and I. Volt. A functional coverage prototype for SystemC-based verification of chipset designs,

9th European SystemC User Group Meeting, Design Automation and Test in Europe (DATE) conference, February 2004, Paris,

France.

[9] K. Schwartz, A technique for adding functional coverage to SystemC, DVCON 2007, February 2007, San Jose, California, USA.

[10] M. F. S. Oliveira, C. Kuznik, W. Mueller, W. Ecker, V. Esen, A SystemC Library for Advanced TLM Verification, DVCON 2012,

March 2012, San Jose, California, USA.

[11] The C++ Standards Committee, 2011 C++11, http://www.open-std.org/jtc1/sc22/wg21/

[12] Accellera Systems Initiative, Unified Coverage Interoperability Standard (UCIS), http://www.accellera.org/downloads/standards/ucis

[13] The VERDI project, part of Seventh Framework Programme (FP7), http://verdi-fp7.eu

http://standards.ieee.org/findstds/standard/1666-2011.html
http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/uvm/
http://standards.ieee.org/findstds/standard/1800-2012.html
http://www.accellera.org/downloads/standards/systemc
http://www.open-std.org/jtc1/sc22/wg21/
http://www.accellera.org/downloads/standards/ucis
http://verdi-fp7.eu/

