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Abstract: IP Verification traditionally includes some form of constrained random verification methodologies 

like UVM, and may also include formal verification for a portion of the design. However, there is a typical lead 

time to putting all verification infrastructure together before the first random tests are run, and coverage 

closure is also time consuming. Formally verifying a portion of the design helps to reduce the coverage space 

for the UVM testbench, but still requires a full UVM testbench infrastructure, and also requires additional 

resources for the formal verification. In this paper we present end to end (E2E) formal methodology as a viable 

option for verifying an IP using only formal tools. We use two IPs, crossbar (XBar) and interrupt controller 

(INTC), to present empirical evidence on the validity of our methodology, and contrast that with other IPs 

verified using standard UVM.  We also present some of the challenges encountered in deploying E2E formal 

on these two blocks, and discuss our strategies to overcome the issues.  We also provide some recommendations 

for deploying E2E formal methodologies and conclude that our E2E Formal methodology is able to provide at 

least the same verification quality as compared to UVM simulation based approach, while having a significant 

shorter verification cycle.  

  

Introduction  
  

In our approach for E2E formal verification, IPs are described fully using formal properties based off the IP 

specification. Registers are checked with automatically generated assertions, from an IPXACT XML file. Standard 

interfaces are checked with formal property proof kits, instead of VIP. The verification environment and the IP are 

refined in parallel as the DVE writes new assertions, and counterexamples to assertions are debugged. The quality and 

completeness of these assertions is checked by frequent reviews against the IP specification with the design team. 

Once all formal properties are signed off by design, and all assertions and proof kits have been proven, the IP is then 

considered fully verified.  

  

We selected this approach primarily because we predicted that it could achieve the same quality of verification or 

better as UVM, for less effort. E2E formal verification does not carry the overhead that comes with writing UVM test 

benches, such as the authoring of custom agents, sequence libraries, and scoreboards. Also IP specification is available 

before RTL is delivered, allowing DVEs to get a head start on developing the verification environment. Our experience 

with E2E formal verification revealed several other advantages over simulation based test benches, which will be 

discussed in depth later in this document.  

  

Careful appraisal of compatibility with the methodology is critical when selecting an IP for formal verification. 

Generally, IPs need to be small and relatively simple. We chose to verify an Interrupt Controller (INTC) and a 

Crossbar (XBar) using our methodology.   

  



Interrupt Controller   
  

  
Figure 1 Interrupt Controller Architecture  

  

The interrupt controller is responsible for routing device and SW interrupts to a dynamic location. It accepts level 

interrupt inputs, and routes them to the interrupt flag register and bit specified in the routing configuration registers, 

where that bit of the interrupt flag register is then set. Each interrupt flag register is mapped to a unique output interrupt, 

producing an interrupt any time the interrupt flag register is set to a nonzero value. Both input and output interrupts 

can be individually masked in the configuration registers. The configuration registers and interrupt flag registers can 

be manipulated at any time, allowing for SW controlled interrupts, dynamic routing, and interrupt masking.   

  

  

Crossbar  
  
  

  
Figure 2 Crossbar Architecture  

  

  

The crossbar is an arbiter that controls access to shared memory space to three different requesters. It supports round 

robin, fixed priority, and LFSR priority schemes. It allows a single requestor to lock exclusive access to a bank. Each 

bank module is responsible for the arbitration logic and contains most of the crossbar’s complexity.  

 

  

  

  

 



Challenges   
  

Since formal-only verification in general is difficult to accept as a replacement for constrained random verification 

flows, we encountered several challenges in deploying E2E formal methodology, from both technical and reporting 

perspectives. Some of these are described below:  

  

1. Quality: For E2E formal methodology, we had to be sure that we have covered all features/aspects of the 

design through all the assertions that were written. At the time, the EDA tools did not have good coverage 

reporting (discussed below) and we had to spend additional time reviewing the assertions, compared to 

traditional simulation test benches. However, this was not a significant portion of the effort.  

  

2. Verification IP: We had planned to write assertions for all the standard interfaces (e.g. APB, OCP etc) and 

configuration registers (i.e. CSRs). These would have added significant amount of effort to the assertion 

development. Luckily, most of the tool vendors have some ‘Proof-kits’ that we could leverage. These Proof-

kits are analogous to VIP in simulation test benches. However, not all tool vendors have the same capability 

of formal proofkits. In some cases, there is additional glue logic needed to integrate the proofkit and/or 

additional configuration options.  

  

3. Convergence: For the INTC, we chose to template the generation of the assertions due to the symmetry of 

the micro architecture. This resulted in 420K generated assertions for E2E formal and we quickly ran into 

several tool issues. These were not limited to any specific EDA vendors. There were two main underlying 

issues:  

a. Compile Time: It took an unreasonably large amount to time to compile the assertions even before 

the proof was started. Splitting the 420K assertions to smaller chunks of 10K-40K took close to 

several hours of compile time. We had to work closely with the AEs to debug the issues which 

ultimately resulted in tool R&D updates/patches that reduced the compile time to a reasonable 

amount.  

b. Proof Time: After resolving the compile time problems, we quickly ran into non linear run time 

growth vs number of assertions. Given the constraints of limited licenses & compute, there was only 

so far we could parallelize jobs for the INTC proof. To address the proof times even further, we had 

to deploy strategies as discussed below.  

  

4. Reporting: At the time of its development, the formal tools available did not provide coverage metrics that 

could be easily compared to simulation coverage metrics (e.g. code coverage). This warranted extra effort to 

develop scripts to reformat what metrics we had, into a more traditional format that would be easier for 

engineers, program & senior management to understand. Without a format that allowed apples-to-apples 

comparison with simulation reports, we were continuously challenged on verification quality and progress 

and had to frequently deep dive into the details of E2E formal results. In many cases, we had to work closely 

with the tool vendors to devise ways to post process the formal reports.  

  

Strategies  
  

Divide and Conquer  
  

Certain IPs, such as the Interrupt Controller, were particularly susceptible to problems with nonlinear runtime growth 

with respect to assertion count. We mitigated this excessive runtime by putting a cap on the number of assertions per 

execution, effectively splitting the total set of assertions into smaller groups. Even when the set of capped assertion 

bodies were executed sequentially, total runtimes exhibited a growth pattern that was close to a linear pattern, in 

contrast to the nonlinear growth seen in uncapped proofs. For the Interrupt Controller, this difference amounted to a 

25% reduction in runtime, with an increasing gap with higher assertion counts.  

  



 
  

Figure 3 Runtime for Split Assertions vs Full Assertions  

  

 

Hierarchical Strategy   
  

It is common for IPs to contain multiple instantiations of the same submodule with the same parameters. When this is 

the case, it is efficient to verify the submodule once and verify the integration of the multiple instantiations at the top 

level. This reduces the number of assertions necessary to verify the IP, significantly reducing runtime, but keeps the 

same level of verification quality.  

  

For example, each memory bank in the crossbar contained its own instantiation of a particular submodule that was 

responsible for priority logic and selection criteria. Checking this functionality is critical for the verification of the 

XBar, however it is unnecessary to perform the same checks across identical instantiations of the priority logic. 

Integration testing for these sets of submodules were done with connectivity checks at the top level.   
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Figure 4 Illustration of Hierarchical Strategy in XBar Testbench  

  

This approach reduces assertion complexity as well as accelerating debug time, by allowing the DVE develop, 

diagnose, and debug the test bench at the submodule level. It also has an advantage over UVM, in that submodule 

level verification requires less effort to implement using an E2E formal approach versus a simulation based approach. 

In UVM, it is difficult to perform submodule level verification without developing a separate test bench for the 

submodule. In E2E formal however, similar checks are performed by simply writing assertions for the submodule, 

which can be trivially imported at the top level of the test bench.   

  

Abstractification  
  

Abstractification is the process of identifying patterns in the IP or test bench, and describing the pattern in simpler 

terms via a higher level of abstraction. This shift from fine granularity to a broader granularity can result in fewer 

assertions, which yields performance benefits.  

  

Abstractification had proven itself to be very useful for reducing proof time in the Interrupt Controller. This IP accepts 

interrupt lines which are activated by a rising edge. A naïve approach to verifying this edge detection functionality 

would be to write one assertion for every interrupt line. However, because system functions such as $rose() operate 

on single bits, this is only possible at a bit-level granularity without applying abstractification. It would be much 

simpler to instead test the same function across all interrupt lines, in one assertion where all interrupt lines are treated 

as a bit vector. This was achieved by introducing edge detector logic into the glue logic and then leveraging these 

structures when rewriting the assertion edge detection checks, so that they test at a word level of granularity. This shift 

in granularity realized a 32x reduction in assertion count for edge interrupt checks for the Interrupt Controller. 

  

The advantage that this method gives is that it significantly reduces the assertion count without having to lose any 

functional verification. Even more reduction can be achieved if there are functions which do not need to be verified, 

such as the various possible values of the data bits fed into a mux. However, as is the case with the hierarchical strategy 

and blackboxing, significant caution must be practiced to ensure that no unverified functionality is being excluded.  

  

Conventional Methods  
  

We also leveraged some traditional formal verification strategies in our methodology. Despite the importance of 

exhaustive testing in E2E formal, with careful consideration, components may be safely excluded or constrained if 

they do not change the functionality of the IP. For example, it is unnecessary to test all possible data or address values 

of a bus, where only bus connectivity is being tested. These signals can be constrained to not randomize to reduce 

runtime. Other traditional approaches, such as utilizing parallelism and performing tool specific optimizations were 

also used to reduce runtime.  



  

Results   
  

We compared various metrics between traditional simulation (UVM) based environments vs E2E formal verification 

to analyze the quality and ROI on E2E formal verification methodology. In order to normalize the complexity of 

various IPs verified by different methods, we consider gate count as a good first order approximation for comparative 

analysis. We then consider the efforts required to verify each gate based on resources, schedule, testbench lines-of-

code (LOC) and bugs that escaped these IP testbenches to gauge the relative efficiency & quality of each testbench. 

Finally, we compare the efficiency between simulation and E2E formal testbenches.  

  

The table below highlights some key metrics for various testbenches. All data is from a recent project that has taped 

out.  

• Multiple IPs were selected that included image processing, signal processing and general control intensive 

blocks  

• The gate counts do not include any memory but represent the total combinatorial+sequential logic in the IP   

•  The duration is work days only (i.e. Mon-Fri)  

• Lines-of-Code DV does not include blank or commented code in the testbench, but includes all UVM 

components, sequences, assertions, testcases, coverage constructs etc. This does not include 3rd party VIP 

code.  

• Bug Escape is the number of RTL bugs that escaped IP verification and were caught at a higher level testbench 

after the IP RTL was frozen  

• Bug Density is Total number of RTL bugs found per 1K LOC-DV  

• It is assumed that licenses & compute are available and is not a factor for comparison.  

• The UVM DV resources had a good mix of experience ranging from 1-10 yrs of exposure to constrained 

random verification and 1-7 years of exposure to UVM/OVM methodologies. The E2E formal DV resources 

had SVA and formal verification experience of about 1 yr.  

  

Table 1 Testbench Metrics  

TestBench  Gatecount  
DV   
Resources  

Duration 
(Work 
days)  

LOC-DV  
Total   
Person-Days  

Gates  verified 
per LOC-DV per 
person day  Bug  

Escape  

Bug 
 Den
sity per 1K 
LOC  

IP1 (UVM)  3170202  2  178  9795  356  0.91  1  4.39  

IP2 (UVM)  381608  2  182  24725  364  0.04  0  4.45  

IP3 (UVM)  1255701  3  215  33311  645  0.06  2  4.23  

IP4 (UVM)  75593  1  156  12564  156  0.04  0  3.10  

IP5 (UVM)  108912  1  142  6630  142  0.12  0  3.62  

IP6 (UVM)  541479  1  172  25729  172  0.12  0  1.98  

IP7 (UVM)  299693  1  146  12488  146  0.16  0  0.48  

IP8 (UVM)  129607  1  151  8914  151  0.10  0  1.68  

IP9 (UVM)  89230  1  109  7786  109  0.11  7  3.98  

IP10 (UVM)  41387  1  127  5873  127  0.06  0  0.85  

IP11 (UVM)  486092  1.25  147  35376  183.75  0.07  0  0.40  

INTC  304174  1  87  1300  87  2.69  0  8.46  

XBAR  61118  1  82  5000  82  0.15  1  3.40  

  

  



 
Figure 5 DV efficiency  

  

 
Figure 6 DV Quality  

  

Additional comments on the data:  

1. The average gates verified per LOC per work day is about 0.09, not considering IP1 which is an anomaly due 

to the IP micro-architecture that is heavy on usage of register files. If IP1 is considered, then the average is 

0.16  

2. For INTC, the total LOC-DV also includes the code/scripts needed for assertion generation using templates.  

3. The higher number of bug escapes for IP9 is attributed to ownership churn where the block was owned by 

several different designers through the life of the IP development.  

  

We selected three metrics for comparing quality & ROI between UVM and formal E2E methodologies:  

1. Gates verified per LOC-DV per day (i.e DV Efficiency)  

2. Bug density per 1K LOC-DV (i.e. DV Quality)  

3. Bug escapes from IP testbench  

  

Based on the above criteria, we draw the following inferences:  

1. We can achieve the same, if not better, efficiency using formal E2E compared to simulation/UVM TB.   

2. In terms of bug density, formal E2E can find more bugs per LOC-DV than UVM testbenches, primarily due 

to the fact that we only need assertions and minimal glue logic (if any) for the formal testbench. We also 

don’t need to develop any UVM/VIP components.  



3. E2E formal testbenches can achieve the same quality of IP verification as UVM testbenches in terms of bug 

escapes  

4. Even though we spent additional time reviewing the assertions in E2E formal methodology, the savings are 

realized through:   

a. Testbench coding: Less code required compared to UVM testbench and the testbench is ready on 

day 1 of RTL deliveries. First RTL bugs can be discovered as soon as the first RTL release.  

b. Coverage closure: Proofs are exhaustive and thus there is no coverage closure step  

c. Regressions: Random testing & nightly regressions are not required due to exhaustive proof  

d. Bug Reproduction: This is trivial and debug can start immediately without waiting to rerun a failing 

test as in simulation  

5. We found that repeated patterns, symmetries, and reused sub-blocks allowed us to simplify the test bench 

using the strategies described earlier, saving runtime without having to compromise the quality of the 

verification  

  

Overall, we find that E2E formal verification provides a compelling cost benefit against UVM while achieving at least 

the same, if not better, quality of verification vs simulation/UVM testbenches.  

  

Future Work  
  

Our experience with E2E formal verification revealed several areas that we believe have room for improvement. They 

are as follows:  

• Coverage Reporting: The coverage reporting solutions available at the time of the INTC and XBar’s DV 

cycle, were limited in functionality, and did not compare well against simulation based coverage reporting. 

Having coverage reporting that is easily compared against simulation based coverage reporting will make 

E2E formal verification more accessible from a management perspective.  

  

• Tool Assisted IP Appraisal: The selection process of candidates for E2E formal verification can be enhanced 

with a tool that can report information about an IP, relevant to E2E formal verification fitness. Access to key 

data points such as maximum depth of cone of logic, duplicate submodule counts, and gate count allow the 

DVE to have a better understanding of the complexity of the block, and can help steer them towards sound 

judgment of the fitness of the IP for E2E formal verification.  

  

• Integrated Runtime Reductions: Some of the aforementioned strategies can be automated, either in part or in 

full. Next generation of formal tools can add support for grouping assertions a la the Divide and Conquer 

approach, and can identify when a block is well-suited for the Hierarchical strategy. Having these features 

pre-integrated in existing formal tools will reduce the work load of DVEs using our methodology, 

accelerating time to sign-off.   

  

• Proof Kits: Proof kits accelerate time to sign-off by offloading the work to verify standard interfaces, much 

like VIP in simulation based verification. As more proof kits become available, E2E formal verification will 

become accessible to more IPs.   

   

Recommendations for Deploying E2E Formal Verification  
   

• IP Selection: Not all IPs are well suited for E2E formal verification. When considering this methodology, it 

is critical to carefully select IPs that are compatible with the methodology. As a general rule, we recommend 

that any IP which can be fully specified in SVA is a good candidate for E2E formal verification. More 

specifically, ideal candidates for this methodology should have a shallow cone of logic, low gate count, and 

low complexity.  

  

• Enforcing Assertion Quality: At the time of our research, existing formal tools did not offer a solution for 

coverage tracking similar to that of simulation based metrics. Without a coverage solution, extensive 

reviewing between DEs and DVEs must be done to enforce test bench quality. Reviews should check that all 

features have explicit checks, that checks should fail in the event of unspecified behavior, that checks should 



fail if any defined behavior is not preceded by explicitly defined triggers, and that all constraints do not 

exclude any legal and meaningful interactions with the IP. However when formal verification coverage 

solutions are available, we strongly recommend pairing coverage tracking with test bench reviews.  

  

• Aforementioned Strategies: We also recommend employing the aforementioned strategies when deploying 

E2E formal verification, on IPs where those strategies apply. Use of these strategies reduces assertion counts 

and runtimes, without compromising the quality of the verification.  

  

Conclusion  
  

We find that End-To-End Formal Verification is well suited for certain types of highly symmetric and control path 

intensive designs. Compared to a traditional UVM based approach, our methodology is worth the savings realized in 

verification effort and resources, and is able to achieve at least the same quality of verification as with traditional 

UVM testbenches.   

  


