
© Accellera Systems Initiative

EDA industry provides Formal techniques to simplify exhaustive checking of control and

status registers, significantly reducing run time. An example is Questa Register Check

which uses the register specification (in CSV or IP-XACT) and RTL as input. Although

formal based Register verification provides a significant solution when compared to

UVM_REG simulation-based verification, engineers still face following limitations —

1. Nowadays every IP or block in our products has a large number of registers for

controlling, configuring, processing, and monitoring tasks such as reading from the IP's

processor using the software. As the number of registers increases, writing the input

files (register specifications, interface specifications, and run commands) manually

becomes complex and error prone.

2. With a rise in Peripheral IP’s complexity, engineers encounter scattered and

aliased type of registers where, running the register verification sequentially results in

a lot of time consumption.

3. In such scenarios, the output is not consolidated, which makes it hard to analyze

the results.

Problem Statement/Introduction

Implementation Details

Proposed Methodology/Advantages

Implementation Details

The below diagram shows the overview of the fully automated, push-button Formal

verification flow of the Register check with the “Gen_formal” tool we created. In the

setup phase, the RTL design, register config memory map file and IP/SOC flat files are

provided by the IP engineers; and the interface spec, register spec and run commands

file are auto-generated by the Gen_formal tool.

The outputs of the setup phase are fed into our in-house auto-regression flow (VMS**),

which provides a standard scripting environment and acts as an interface to our

verification tools. Specifically, this flow collects the input files and user options,

compiles the design, and then launches the formal-based register verification app on

the compute farm.

Pallavi Atha

Effortless, Methodical and Exhaustive Register

Verification using what you already have.

**1] David Crutchfield, Thom Ellis, “Bringing Regression Systems into the 21st ”, DVCon,2014.

[2] Lee Burns, David Crutchfield, Bob Metzler, Hithesh Velkooru,” Using Formal Applications to Create Pristine IPs”, DVCon, 2017

Results Table Conclusion

The Gen_formal + VMS automation is 1.2 x 10^3 times faster, thus saving considerable

amount of time and reducing manual efforts. Using this flow, engineers can just focus

on catching the register related bugs early on by leveraging: • Exhaustive checks

access of control and status registers.

• Register address correctness checks.

• The default value on resets checks.

• Stability of register data checks.

• Verification of expected behavior and absence of illegal behavior.

We intend to use this automation for all formal based register verification of suitable

designs in the future.

A complex IP with 64 registers had 16 MMIO registers (16 scattered registers) + 48

COMP STRUCT registers (1 scattered register) summing up to 17 scattered registers.

NOTE: The calculation for the amount of time saved in creating the input files for

formal register check using Gen_formal automation flow, where:

N = the number of scattered registers

T = the time it would have taken you to manually create the input files

ROI = total amount of time saved automating the input generation for register

verification (N x T)

REFERENCES

To bring a solution, we have developed an automated flow to generate a set of

register input configuration files, register specifications, and run commands file using

a decision tree algorithm for parsing the IP/SOC flat files; and then automatically run

formal register verification on these input files containing the register information.

This substantially reduces the required manual effort from a few man-weeks to a few

minutes.

The flow then takes advantage of register memory map data, CSV creation, assertion

generation, verification plan mapping, and reporting of the property summary that

respects the register configurations. Consequently, users no longer have to write the

inputs required for the register verification manually which saves a lot of work, time,

and cost. Results show significant ROI in terms of quality and productivity.

David Crutchfield

Aishwarya Sridhar

Formal-based verification flow can be run in-parallel across multiple CPUs without

any special set-up by the user. VMS** leverages this and it spawns off the register

check jobs in parallel across the compute farm, which reduces the users’ “wait time”

exponentially. Once the verification run is completed, we get one consolidated log

with all the needed information.

Criteria Without the automation With Gen_formal+VMS automation

Input file creation Created Manually. Being generous and not

considering any human errors or error debug

time, it would have taken minimum 4 hours

on average to create all the input file for

one register, then

ROI = 17 X 4 hr

ROI = 68 hr

ROI = ~ 8.5-man days of effort saved

Created automatically in 5 seconds.

Register check run

time

Register check ran sequentially which took

18 minutes

Register check ran parallelly which took

5 minutes

Output 17 output files. One consolidated output file that has all

the 17 registers’ property summaries.

Overall Time taken 8.5days + 18minutes 5minutes + 5seconds

