IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Efficient Standard Co-
Emulation Modeling Interface
(SCE-MI) Usage to Accelerate

TBA Performance

Ponnambalam Lakshmanan
Analog Devices, Bengaluru, India

ANALOG
DEVICES

IIIIIIIIIIIIIIIIIIIIIII

* Acceleration Concept

* Introduction to SCE-MI and SCE-MI Pipes

* Testbench Architecture and Existing Challenges

* Optimizing SCE-MI pipe usage

* SCE-MI Direct Memory and Function Based Interface
* Optimized Architecture

* Results and Conclusion

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 2

2017

DESIGN AND VERIFICATION™

DvCOnN Agenda

* Acceleration Concept

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 3

IIIIIIIIIIIIIIIIIIIIIII

DV Acceleration Concept

e Hardware assisted acceleration offers better
performance over software simulation.

* Hardware assisted acceleration techniques:
— Signal Based Acceleration (SBA)
— Transaction Based Acceleration (TBA)
— Embedded testbench
— Vector Based Acceleration (VBA)
— In-circuit Emulation (ICE)

e
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 4

2017

DESIGN AND VERIFICATION™

DVCOIN Transaction Based Acceleration

* Traditional testbench is split into two domains

— Non-Synthesizable domain
* Runs on simulator

Interface Signals

Workstation Emulator

— Synthesizable domain
* Runs on emulator

Workstation

Emulator

- Synthesizable
I:I Non - Synthesizable

3/1/2022 Ponnambalam Lakshmanan, Analog Devices

IIIIIIIIIIIIIIIIIIIIIII

DV Factors Affecting Acceleration

* Various factors directly affect the emulator
performance

— Inefficient usage of SCE-MI

— Behavioral constructs (Not purely-synthesizable)

— Memory Handling

— Amount of code running on simulator and emulator
— Simulator — Emulator synchronizations

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 6

2017

DESIGN AND VERIFICATION™

DvCOnN Agenda

Introduction to SCE-MI and SCE-MI Pipes

e
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 7

IIIIIIIIIIIIIIIIIIIIIII

DVCOIN Introduction to SCE-MI

* Standard Co-Emulation Modeling Interface (SCE-MlI)
IS an Accellera standard

* Communication interface between BFM and proxy

* Different types of SCE-MI use models:
— SCE-MI Pipe based interface
— SCE-MI Direct memory interface (DMI)
— SCE-MI Function based interface

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 8

2017

DESIGN AND VERIFICATION™ |
DvCon SCE-MI Pipes
CONFERENCE AND EXHIBITION

* Salient Features:
— Unidirectional
— Batching m BFM 1
— Buffering VM PrSHFW
— Flushing m 5
— Data shaping
— Blocking and Non-Blocking constructs

s 181 183!

Workstation Emulator

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 9

2017

DESIGN AND VERIFICATION™

DvCOnN Agenda

* Testbench Architecture and Existing Challenges

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 10

2017

DESIGN AND VERIFICATION™

DV Initial Architecture Challenges

—————

: Input SCEMI Pipes

|

| Output SCEMI Pipes

| J=h.

| —_ —

| <

: Master Agent

——————f T Bottlenecks

|

: > //<'=p Multiple SCEMI pipes
|

| Transmission of small
|

| B S packets frequently

: (= — = = = |
|

| | Async loop to clear

!—SEEE—AEE—M ————— f——1 = : p|pye Contepnts

Simulator Emulator

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 11

2017

DESIGN AND VERIFICATION™

DvCOnN Agenda

* Optimizing SCE-MI pipe usage

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 12

2017

DESIGN AND VERIFICATIONT

DVLCOIN

CONFERENCE AND EXHIBITION

M

Optimizing SCE-MI Pipe Usage

* Merging SCE-MI pipes

Challenge Solution

MI access

Behavioral evals with every SCE- |+ Send data via a single SCE-MI pipe.

« Static SCE-MI pipe - Bit vectors
* Dynamic SCE-MI pipe - Array of data

Data transfer using multiple pipes Data transfer using single pipe

Proxy Proxy

Class

Class

Wrapper
SCE-MI SCE-MI SCE-MI PP SCE-MI
Instance 1 Instance 2 Instance 3 Instance 1 Instance 2

BFM BFM

3/1/2022

Ponnambalam Lakshmanan, Analog Devices

13

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

3/1/2022

2017

Synchronous access

Optimizing SCE-MI Pipe Usage

Challenge

Solution

* Asynchronous mode creates
significant behavioral evals

Synchronous mode of SCE-MI pipe

IS CLOCKED_INTF = 1

Code Snippet

scemi input pipe #(
.BYTES PER ELEMENT (20),
.PAYLOAD MAX ELEMENTS (1),
.VISIBILITY MODE(2),

.IS CLOCKED INTF(0))

inbox (clk),

Code Snippet

scemi input pipe #(

.BYTES PER ELEMENT (20),
.PAYLOAD MAX ELEMENTS (1),
.VISIBILITY MODE(2),

.IS CLOCKED INTF(1))
inbox (clk);,

e
Ponnambalam Lakshmanan, Analog Devices

14

2017

DESIGN AND VERIFICATION™

DVvCON Optimizing SCE-MI Pipe Usage

* Optimized data transfer

Challenge Solution
Accessing more than one element per | If the intention is to access 5 Bytes per
access results in behavioral evals call then set
« PAYLOAD MAX ELEMENTS =5; |+« PAYLOAD MAX ELEMENTS = 1;
« BYTES PER_ELEMENT = 1; « BYTES _PER_ELEMENT = 5;

Byte 1 Byte 5 | Byte4 | Byte3 | Byte 2 | Byte 1
Byte 2
5 Elements Byte 3
yte 1 Element
Byte 4
Byte 5

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 15

2017

DESIGN AND VERIFICATION™

DVvCON Optimizing SCE-MI Pipe Usage

* Minimal Synchronization

Challenge Solution
* Frequent data transfer causes the |+ Accumulate multiple bytes of data
emulator to halt frequently and transfer at once

* Results in degraded acceleration « Try to buffer the elements
« Avoid unnecessary flush() usage

Code Snippet

scemi input pipe #/(
.BYTES PER ELEMENT (20),
.PAYLOAD MAX ELEMENTS (1),
.BUFFER_MAX ELEMENTS (10),
.VISIBILITY MODE (2),

.IS _CLOCKED INTF(1)) inbox (clk);

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 16

2017

DESIGN AND VERIFICATION™

DV Optimizing SCE-MI Pipe Usage

CONFERENCE AND EXHIBITION

* Clearing the pipe

Challenge Solution
« Discarding buffer contents onreset |+ Use the fastest clock available to
* No inbuilt functions synchronously fetch data from pipe
* Increase in step-count

Code Snippet : Before Code Snippet : After
always@ (posedge clk, posedge rst) begin alvirays@ (posedg_re fst_clk,|posedge rst) begin
if (rst) begin if(rst) begin
// Statements rst buff = 1;
for (int i=0, i<20), i++) // statements
inbox.receive (1,ve,data,eom) ; end
end else begin
else begin if(rst buff && !eom)
// statements inbox.receive (l1,ve,data,eom)
end else
end rst buff = 0;
end
end

.
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 17

2017

DESIGN AND VERIFICATION™

DvCOnN Agenda

* SCE-MI Direct Memory and Function Based Interface

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 18

IIIIIIIIIIIIIIIIIIIIIII

DV SCE-MI Direct Memory Interface

NNNNNNNNNNNNNNNNNNNNNNN

* Software side interface to perform backdoor
read/write operations on hardware side memories

* Types of interfaces
— Block interface
— Word interface

* Performance Improvement:
— HW-SW synchronizations reduced by ~50%
— TBA run time decreased by >25%

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 19

2017

DESIGN AND VERIFICATION™

DV SCE-MI Direct Memory Interface

CONFERENCE AND EXHIBITION
Backdoor Access ’_\ ﬂ Memory

O SO O OO0
GCJ

:: b © =
Proxy Q = DUT

Agent GEJ {ﬁc =

& z @ oJe] oJoJo a=

BFM

Simulator Emulator
Backdoor Access \—‘ Memory

3/1/2022 Ponnambalam Lakshmanan, Analog Devices

2017

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

C - Backdoor
memory
access
through
predefined
SCE-MI API

C-membrane
writes the
memory
contents in

to the proxy

L

Invoke a

memory

read from
BFM

SCE-MI Direct Memory Interface

cont char*® tbpath =

vath to the proxy where mem_access is defined
static svScope tbhscp = NULL;
extern void mem_access (svBitVecWal* mem);
™ void read mem({){
static void* vmem;
svBitVecval mem;
[it raddr; C membrane
sta signed int width, depth;
thscp = svGE eFromName (tbpath) ;
svSetScope(tbscpl;
vmem = scemi mem c handle serarchical path.mem"};

scemi mem get size(wmem, (unsigne
scemi -mem get -block{vmem - rAddr;--dept
mem_access (mem) ;

}‘jz |
ort "DPI-C" function mem_access; 1

class proxy monitor;
function mem_access(inputlbif [7:01 return mem [81921);

//logic code to process the read BFM memory

endfunction
endclass

th, (unsigned long long *)&depth);

|

Proxy side

import "DPI-C" task read mem(];

module_monitor bfm:
bitl [31:01 mem (219217 <

bit [31:0] wr ptr
bit ths; //Synchronizer between proxy and BFM
always (@(posedge clk) begin

mem[wr ptr] = data;

BFM side

if(wr ptr == FULL) begin
[read mem-l

| —

tbs = ~tbs;
end
else wr_ptr
end
endmodule

wr_ptr ++;

3/1/2022

Ponnambalam Lakshmanan, Analog Devices 21

IIIIIIIIIIIIIIIIIIIIIII

DV SCE-MI Function Based Interface

NNNNNNNNNNNNNNNNNNNNNNN

* Adopts SystemVerilog Direct Programming Interface
(DPI) concept.

* End user is required to implement all the functions
— No built in functions

* Used to configure BFM registers

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 22

2017

DESIGN AND VERIFICATION™

DV SCE-MI Function Based Interface

CONFERENCE AND EXHIBITION

\ /—I Circular FIFO
{ NAN/~Z
()
< b ® s 5| -
Prox © O
Agen); E (IEJ ’ A -. buT
c =
BFM
Simulator Emulator

-—p Write Pointer

-==» Read Pointer

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 23

2017

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

SCE-MI Function Based Interface

J/C-function has the implementation of proxy's write function
J/It also invokes the BFM's write function throuh it

const char® tbpath = "path to the bfm where reg write function is defined

static swScope tbscp = NULL;
extern void Jreg bfm wr] svBitVecVal* reg data);

»void[write bIm req o] svBitVecVal* reg data){

tbscp = svGetScopeFromeName(tbpath) ; (: rT1EBrT1t)rERr1EB

2 gpe (thscp) ;
reg bfm wrj(reg data);

BFM register
L1 write from C

interface
//Proxy code, here is where the write data is passed to the C-Fun:t;oT which is to
//be written on to the BEN
import "DPI-C' context |write bfm write d = functien uuidlwrite bfm re lbit [31:8] data);

class proxy driver;
bit [31:0] data wr;

faprecond Ydata wr C-function imported and
/ T used in proxy Proxy side
Invoke
: //BFM code, here is where the implementation of the write function resides
regISter //It is invoked by the C-interface
5 module BFM; 3 Q
write from export “DPI-C* function reg Bm wr) Verilog -function
proxy bit [31:8] ctl_reg; exported and
thr‘ough C function voicl reg bfm wrilnput bit [31:0] wr_data); < used in the C -
ctl reg = wr_data; f
endfunction i interface
endmodule BFM Slde
3/1/2022

Ponnambalam Lakshmanan, Analog Devices

24

IIIIIIIIIIIIIIIIIIIIIII

DV Trimming Development Time

NNNNNNNNNNNNNNNNNNNNNNN

e Factors

— Increase in effort and time to implement complex
functionality in a synthesizable format.

— Increase in area occupied by the BFM on the
emulator.

* Implement complex functionality that is utilized
occasionally as a method in the C membrane and
import/invoke from the BFM.

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 25

2017

DESIGN AND VERIFICATION™

DvCOnN Agenda

* Optimized Architecture

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 26

2017

DESIGN AND VERIFICATION™

DVCON Optimized Architecture

SCEMI Function Based

Interface

» To configure BFM
registers

* To update proxy about
events in BFM

A
L]
L]
T
b
e
=

SCEMI Direct Memory
Proxy Interface

Driver Criver » To write/read data from
BFM memory

Proxy BFM Slave
Monitor] Mionitor

@ Pipes are removed

Simulator Emulator

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 27

2017

DESIGN AND VERIFICATION™

DvCOnN Agenda

Results and Conclusion

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 28

2017

DESIGN AND VERIFICATION™

DVCON Results

* TBA Performance improvement

Mol e TBA properties

MPIEMENtAtion 1 Gate count Bevals HW-SW Sync | TBATime
Pipe only ~2 M 18,299,173 4,728,998 ~60 min
Pipes only ~2 M 2859320 | 1284765 ~35 min
(Optimized)
DMI + Function .
based Interface 1.5M 218 9,871 4 min

* Simulation v/s TBA run-time comparison for usecase

Simulation Time TBA Time

~360min ~8min

3/1/2022 Ponnambalam Lakshmanan, Analog Devices

IIIIIIIIIIIIIIIIIIIIIII

DVCOIN Conclusion

 SCE-MI has multiple interfaces for different use
cases

— SCE-MI DMI used for backdoor read/write operation

— SCE-MI Function Based Interface used to write into
registers

— SCE-MI Pipes are intended for streaming, variable
length messaging, etc.

* HW-SW sync and Bevals could greatly deteriorate
the performance of emulator.

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 30

IIIIIIIIIIIIIIIIIIIIIII

DVCOIN Conclusion

* Efficient usage of SCE-MI helps in leveraging
maximum performance from emulator resulting in
handsome SPEED-UP.

* HW-SW syncs generated using vendor proprietary
Implementation

— Number of syncs are kept to minimum.

3/1/2022 Ponnambalam Lakshmanan, Analog Devices 31

IIIIIIIIIIIIIIIIIIIIIII

DV O Future Work

* Porting to SOC environment and analyze the
performance

* Explore UVM registers support decribed in SCEMI
v2.3

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 32

2017

DESIGN AND VERIFICATION™

DvCON Acknowledgements

 David Brownell, ADI
 Anilkumar T. S, Cadence

* Dr. Hans van der Schoot, Mentor Graphics

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 33

2017

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Questions

-
3/1/2022 Ponnambalam Lakshmanan, Analog Devices 34

	Efficient Standard Co-Emulation Modeling Interface (SCE-MI) Usage to Accelerate TBA Performance
	Agenda
	Agenda
	Acceleration Concept
	Transaction Based Acceleration
	Factors Affecting Acceleration
	Agenda
	Introduction to SCE-MI
	SCE-MI Pipes
	Agenda
	Initial Architecture Challenges
	Agenda
	Optimizing SCE-MI Pipe Usage
	Optimizing SCE-MI Pipe Usage
	Optimizing SCE-MI Pipe Usage
	Optimizing SCE-MI Pipe Usage
	Optimizing SCE-MI Pipe Usage
	Agenda
	SCE-MI Direct Memory Interface
	SCE-MI Direct Memory Interface
	SCE-MI Direct Memory Interface
	SCE-MI Function Based Interface
	SCE-MI Function Based Interface
	SCE-MI Function Based Interface
	Trimming Development Time
	Agenda
	Optimized Architecture
	Agenda
	Results
	Conclusion
	Conclusion
	Future Work
	Acknowledgements
	Slide Number 34

