
Efficient Simulation Based Verification by
Reordering

Chao Yan
Department of Computer Science
University of British Columbia

Vancouver, BC, V6T1Z4, Canada
chaoyan@cs.ubc.ca

Kevin Jones
Green Plug, Bishop Ranch 2
2694 Bishop Drive, Suite 209
San Ramon, CA 94583, USA

drkdjones@gmail.com

Abstract—With the increasing complexity of systems, the
current simulation based circuit verification used in industry
are becoming more expensive while providing low coverage. The
paper presents a systematic way to reduce the verification time
by optimizing the execution order of test cases. Compared with
the default order maintained by engineers, the optimal order can
achieve a high coverage in a short time as it guarantees running
the important test case first.

We developed bothoffline and online algorithms to find the
optimal order that maximizes the ratio of coverage to verification
time. The offline algorithms analyzes the simulation data and
compute an efficient order for later executions. Three algorithms
are provided to find the optimal, near-optimal and super-
optimal solutions respectively. To find a better order without
any precomputed data, an online algorithm is developed. The
algorithms predicts the coverage and running time of a new test
case by taking advantage of special properties of test cases.

We applied our algorithms to the verification of XIO devices
from Rambus Inc. It is shown that the order produced by the
offline based greedy algorithm saves up to 85% of verification
time. And the result from the online algorithm saves about 50%
time on average.

I. I NTRODUCTION

According to the Moore’s law, the number of transistors on a
single chip doubles every 18 months. But the circuit design and
verification productivity increase at a much lower rate, which
causes a gap between physical implementation and circuit
design and verification. During the past decade, verification
time has taken up an increasing amount of the design cycle.
Thus, significant research effort has gone into the modeling
and verification of digital circuit [1] since electronic devices
are largely composed of digital circuits. However, verifying
analog and mixed signal (AMS) circuits, which play a crucial
role when interfacing with inherently analog environment to
digital components, is still an open problem.

Formal verification and simulation are two main approaches
to verifying that a system satisfies a property or specification.
Even though formal methods, like model checking [2], [3],
can provide higher reliability and have gained great success
in digital circuit verification, in practice simulation based
verification is still used in industry. Over the years, design
methodology has relied heavily on simulation to verify the

This work was done when both authors were at Rambus Inc., Los Altos,
California

correctness of AMS circuits. However, the increased circuit
complexity makes each single simulation notoriously long.
Process variation also increases the difficulty of AMS circuit
verification. Although Monte Carlo simulation [4] is used
for growing ranges of process variations and environmental
conditions, a large testbench is required to cover all kindsof
corner cases. As a result, the simulation takes several weeks
or even months for industrial scale AMS circuits.

The problem is compounded by the ad-hoc nature of to-
day’s simulation based verification. In a typical circuit design
process, the system level specification is set by the system
architects based on customers’ requirements, industry stan-
dards, etc. After the architectural decisions have been made,
designers begin to design individual subsystems and run large
numbers of simulations to check the implementation. Right to
the end of development, more test cases to verify the complete
system are added to the testbench. Because the collection of
test cases are developed by many engineers during a long
period, redundancies are inevitable in such a testbench.

Techniques to analyze and optimize the testbench and to
improve the performance of verification are very useful for
industrial circuit design. We noticed that the efficiency of
verification highly depends on the execution order of test
cases. The currently used order is maintained by engineers
manually and usually is not optimal. This paper proposes a
method to reduce verification time and increase simulation
coverage by reordering the execution order automatically.
Several algorithms are developed to compute the optimal order,
which puts the most important test cases at the beginning
and redundant ones at the end. Experimental results from real
industrial devices demonstrate the efficiency of our solution.

The paper is organized as follows. The next section de-
scribes the problems and our mathematical model. Section III
presents our offline and online algorithms to find the optimal
execution order. Section IV shows how to apply our algorithms
to real circuits and the experimental results. Finally, our
conclusion and future work are presented.

II. PROBLEM AND DEFINITIONS

This section introduces the necessary basic notions and
definitions to build a mathematical model for the verification
problem.

In this paper, thespecificationF = {f1, · · · , fm} defines all
functionsf to be implemented and verified. And thetestbench
J = {̂1, · · · , ̂n} consists of a set oftest casê, which is
usually a standalone simulation file. Therunning timet of a
test case refers to the time to complete the verification andT

is the total verification time.
Usually, one test case checks several functions and each

function is verified by several test cases. The relationship
between test cases and functions is represented as acoverage
matrix M . The element of the matrix indicates whether a test
case verifies a function or not , as defined in Equation 1.

Mm,n =







0 ̂n does not checkfm

p ̂n covers a part offm

1 ̂n fully coversfm

(1)

We call the column of coverage matrix, denoted asV , the
coverage vectorof the test case. If two coverage vectorsVi

and Vj have non-zero elements on the same position, there
might beredundancybetween test casêi and test casêj .

A vector W is used to represent the weights of functions
in the specification if they are not equally weighted. Then the
coverageC of a test case is defined as

C = 〈W · V 〉 ,

where〈a · b〉 is the inner product of vectorsa andb.
The set coverage vectorfor a set of test cases{̂1, · · · , ̂k}

is defined as1

V{̂1,··· ,̂k} = min(1,

k
∑

i=1

Vi).

The correspondingset coverageis defined as

C{̂1,··· ,̂k} =
〈

W · V{̂1,··· ,̂k}

〉

.

And the coverage incrementfor test caseji, as defined in
Equation 2, is the difference of coverages before and after
addingji to the set{̂1, · · · , ̂k}.

∆C
̂i

{̂1,··· ,̂k}
= C{̂1,··· ,̂k,̂i} − C{̂1,··· ,̂k} (2)

It is noticed that the coverage increment of a test case
depends not only on its coverage vector but also the test cases
executed before. Therefore, the execution order is crucialto
reduce the redundancy and improve efficiency of verification.
As it is expected to gain high coverage as soon as possible, it
is better to run the most important test case at the beginning.
In this paper, the verificationefficiencyE is defined as the
ratio of coverage to total running time

E{̂1,··· ,̂k} =
C{̂1,··· ,̂k}

T{̂1,··· ,̂k}
.

1Here, we over estimate the coverage by assuming there is no redundancy
between test cases. The estimation error is usually small because it is common
that most elements of coverage matrixM are either 0s or 1s in a typical
project. Themin operation is used to ensure the total coverage of any function
does not exceed 1.

And the importancer of a test case refers to the ratio of
coverage increment to running time

r
̂i

{̂1,··· ,̂k}
=

∆C
̂i

{̂1,··· ,̂k}

ti
(3)

With these definitions, the problem of improving verification
performance is translated to an optimization problem: how to
find an order ofJ to maximize the verification efficiency?

III. A LGORITHM

We developed several algorithms to solve the above prob-
lem. First, three offline algorithms are presented in Sec-
tion III-A to reduce the verification time for the case when the
testbench is executed multiple times. Then, an online algorithm
which tries to guess a good execution order to speedup the
verification without any precomputed information is described
in Section III-B.

A. Offline Algorithm

In the typical design process, circuit design and verification
interact with each other. The design is modified if it fails to
pass the verification. Even though the modification might be
minor, the testbench should be run and checked again. Thus,
the testbench is often executed many times during the whole
development period.

Noticing that the running time and coverage vectors are
similar during different executions, we developed offline algo-
rithms to speedup the verification. The algorithms first run all
test case in the testbenchJ = {̂1, · · · , ̂n}, and then collect
the simulation data including the running time{t1, · · · , tn},
the coverage matrixM and also the weight vectorW =
{w1, · · · , wm}. With this information, the algorithms find an
optimal execution order to be used later.

The algorithms also solve two problems which are espe-
cially important when there is not enough time to complete
the testbench. The first is to find a subset ofJ to achieve
maximum coverage within given timeT , and the other is
to find a subset ofJ to achieve given coverageC within
minimum time. We present three algorithms with different
complexities in the following sections.

1) Optimization Problem:The first algorithm solves the
problems by converting them to integer linear program-
ming [5] (ILP) problems.

The problem of maximizing function coverage within given
time T is converted to an ILP problem as:

max

m
∑

j=1

hj · wj (4a)

T ≥
n

∑

i=1

xi · ti (4b)

hj ≤

n
∑

i=1

xi · Mj,i (j = 1, · · · , m) (4c)

hj ≥ 0 (j = 1, · · · , m) (4d)

hj ≤ 1 (j = 1, · · · , m) (4e)

xi ∈ [0, 1] (i = 1, · · · , n), (4f)

wherexi is a boolean variable that indicates whether test case
̂i is in the subset or not,wj is the weight of functionfj , hj

is the total coverage of functionfj , n is the number of test
cases andm is the number of functions. The linear inequality
from Equation 4b adds the constraint that the total verification
time is not longer thanT . Equation 4c,4d,4e constraints the
value of hj. The optimization goal is to maximize the total
coverage as shown in Equation 4a.

Similarly, the problem of minimizing running time with
given coverageC is also converted to a 0-1 ILP problem:

min

n
∑

i=1

ti · xi

C ≤

m
∑

j=1

hj · wj

hj ≤

n
∑

i=1

xi · Mj,i (j = 1, · · · , m)

hj ≥ 0 (j = 1, · · · , m)

hj ≤ 1 (j = 1, · · · , m)

xi ∈ [0, 1] (i = 1, · · · , n).

The differences is that Equation 4b is replaced with the
constraint for total coverage, and the optimization goal isto
minimize the verification time.

2) Greedy Algorithm:However, the general ILP is a NP
hard problem [5]. Therefore, we developed another efficient
approximation algorithm to compute an near optimal solution.
The algorithm is a greedy algorithm. It always finds and
executes the most important test case at each step, as shown
in Algorithm 1. Line 4 computes the importance of a test case
as defined in Equation 3.

Algorithm 1 : Greedy Algorithm

Input : A testbenchJ = {̂1, · · · , ̂n}, coverage matrix
M , and running timeT = {t1, · · · , tn}

Output : The execution order

for i = 1, . . . ,n do1

∆R = 0;2

for k = i, . . . ,n do3

r =
∆C

̂k
{̂1,...,̂i−1}

tk
;4

if r > ∆R then5

∆R = r;6

m = k;7

addm to the end of execution order ;8

From the experimental results in section IV, it is shown
that the result from this greedy algorithm is much better than
the default order. However, we want to know how big is the
gap between the optimal result and the approximated one from
greedy algorithm. Therefore, we developed the third algorithm
to find a super-optimal solution.

3) Super-optimal Solution:Although there is no efficient
algorithm to solve general ILP problem, there are many
efficient ways, like Simplex [6] algorithm, to solve linear
programming (LP) problem. Therefore, the third algorithm
converts the ILP problems to LP problems by relaxing the
integer constraint in Equation 4f. The solution of relaxed LP
problem is a super-optimal solution which might be better then
the optimal one when it violates the constraints of originalILP
problems. The relaxed LP problems are:

max

m
∑

j=1

hj · wj

T ≥

n
∑

i=1

xi · ti

hj ≤

n
∑

i=1

xi · Mj,i (j = 1, · · · , m)

hj ≥ 0 (j = 1, · · · , m)

hj ≤ 1 (j = 1, · · · , m)

xi ≥ 0 (i = 1, · · · , n)

xi ≤ 1 (i = 1, · · · , n)

and

min

n
∑

i=1

ti · xi

C ≤

m
∑

j=1

hj · wj

hj ≤

n
∑

i=1

xi · Mj,i (j = 1, · · · , m)

hj ≥ 0 (j = 1, · · · , m)

hj ≤ 1 (j = 1, · · · , m)

xi ≥ 0 (i = 1, · · · , n)

xi ≤ 1 (i = 1, · · · , n),

which allow xi to be any value between 0 and 1.
With these three algorithms, we first compute the near

optimal order using the greedy algorithm and compare the
result with the super-optimal solution by solving relaxed LPs.
If the gap is small enough, the solution from greedy algorithm
is close to the optimal one, thus it is not necessary to solve
the expensive ILP problems. Otherwise, the optimal solution
is computed by solving the ILP problems using commercial
tools, like CPLEX [7]. Because the size of our problem is not
huge, the computation is still efficient, especially for some
special form of ILP problems. From our experimental result,
the greedy algorithm works well for most of the times.

B. Online Algorithm

The offline algorithms described above compute an optimal
order based on the previous simulation data. However, it is

still necessary to speedup the first execution of the testbench
because a single run of all test cases is also very expensive.
Therefore, an online algorithm is developed to find an order
better than the default one without the knowledge of coverage
matrix and running time.

Firstly, the algorithm predicts the running timetk as the
length of its coverage vector|Vk|. The assumption that the
running timetk is proportional to|Vk| is reasonable because
it usually costs more time to check more functions. It is also
supported by the experimental results. We replace thetk term
with |Vk| in line 4 of the greedy algorithm and find the result
changes slightly.

To predict the coverage vector of a new test case, we
analyzed the special structure of test cases used in the project.
All test cases in the testbench consist of aconfigurationand
a feature. The configuration usually defines the environment,
modes of operation, and parameters of the device. A feature
is usually a basic operation of the device, which may cover
several different functions depending on the configuration. The
testbench contains all possible combinations of configurations
and features. We usêci,fj

to represent a test case which uses
configurationci and featurefj , and useVci,fj

to represent its
corresponding coverage vector.

Thesimilarity of two test caseŝi, ̂j is defined as the angle
between their coverage vectorsVi, Vj :

sim(̂i, ̂j) =
〈Vi · Vj〉

|Vi| · |Vj |

The similarity of test cases with same configuration or feature
is usually large. For example, two test cases with the same
feature usually have similar running path and thus cover
similar functions. Therefore, we also compute the similarity
of features and configures. Theconfiguration similarityof two
configurationsci, cj is defined as

csim(ci, cj) =

nf
∏

k=1

sim(̂ci,fk
, ̂cj ,fk

)
1

nf (5)

wherenf is the number of features. And thefeature similarity
of two featuresfi, fj is defined as

fsim(fi, fj) =
nc
∏

k=1

sim(̂ck,fi
, ̂ck,fj

)
1

nc (6)

where nc is the number of configurations. It is found that
the coverage similarity is approximately the product of its
configuration similarity and the feature similarity:

sim(̂c1,f1
, ̂c2,f2

) ≈ csim(c1, c2) · fsim(f1, f2)

The assumption is verified by the experimental result. The
average error of using this approximation is less than 0.08%
and the maximum error is less than 4.25%. Thus, the product
of configuration similarity and feature similarity is a good
approximation of the coverage similarity.

With the predication of running time and similarity between
coverage vectors, the importancer as defined in Equation 3

is approximated by:

r
̂i

{̂1,··· ,̂k}
≈ 1 −

k
∑

l=1

sim(̂l, ̂i) · ∆C
̂l

{̂1,··· ,̂l−1}
(7)

≈ 1 −
k

∑

l=1

csim(c̂l
, c̂i

) · fsim(f̂l
, f̂i

) · ∆C
̂l

{··· }

The intuition behind the equation is that if the coverage vectors
Vi, Vl are very similar then test casêi is less important
because lots of functions in test case̂i have already been
checked by test casêl.

Algorithm 2 shows the implementation of the online al-
gorithm. It is similar with the greedy algorithm, but at each
step it finds the test case with minimum similarity with other
test cases already executed. The importance of a test case is
predicted using Equation 7 in lines 5-12. After the execution
of the new test case, its coverage vector is used to update
the configuration similarity and feature similarity according to
Equation 5, 6.

Algorithm 2 : The Online Algorithm

Input : A testbenchJ = {̂1, · · · , ̂n}
Output : The order of test cases to run

csim = 1, fsim = 1;1

for i = 1, . . . ,n do2

∆R = ∞;3

for k = i, . . . ,n do4

r = 0 ;5

for l = 1, . . . ,i − 1 do6

w = ∆C
̂l

{̂1,...,̂l−1}
;7

sim = csim(c̂k
, c̂l

) · fsim(f̂k
, f̂l

);8

r = r + w · sim;9

if r < ∆R then10

∆R = r;11

m = k;12

executêm and collect the coverage and running time13

data;
updatecsim andfsim as shown in Equation 5 and14

Equation 6;

IV. EXPERIMENTAL RESULT

We applied our algorithms to the verification of two XIO
devices [8] developed by Rambus Inc. The XIO cell is a high-
performance, low-latency controller interface to XDR DRAM
memory devices.

The verification platform used in this project isspecman.
Figure 1 shows its architecture.DUT is the device to be
verified, which is the XIO device in this paper. Thetransaction
generatorgenerates transactions based on the test constraints
and drives inputs to the DUT. Theoutput checkermonitors the
output signals from DUT and compares them with the correct
results frompredictor. The coverage data and other informa-
tion are collected during the simulation by thecoverageblock.

Predictor

C
hecker

G
enerator

T
est DUT

Coverage

Fig. 1. The Verification Framework

The XIO devices are implemented in theverilog language
and simulated by Cadence’snc-simsimulator. The test cases
are coded with thee language. And thevManager tool is
used to collect coverage data required by our algorithms. Our
algorithms are implemented in the Matlab platform which has
the advantage of fast prototyping and powerful visualization.

The result of offline algorithms are described first, with
the comparison with the result from vManager. Then several
methods are used for the online problems and their results are
compared.

A. Result of Offline Algorithms

We apply both the greedy algorithm and relaxed LP based
method to the Toshiba XIO device. Figure 2 shows result,
where the horizontal axis is for the verification time and the
vertical axis indicates the coverage.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

Time (second)

C
ov

er
ag

e

default order
greedy algorithm
sup−optimal(time)
sup−optimal(cov)

Fig. 2. Result of Offline Algorithms

In the figure, we noticed that the result from greedy algo-
rithm is much better than the default order and is quite close
to the super-optimal order by solving relaxed LP. Although
there is a large gap between approximated solution and the

super-optimal one at the beginning, we do not think the super-
optimal solution is feasible because the integer constraint of
Equation 4f is seriously violated. Therefore, there is little
benefit to solving the expensive ILP to compute the exact
optimal result. From the greedy algorithm’s result, we can
see that 169 over 222 test cases are redundant thus can be
removed without reducing coverage, or more than 85% time
can be saved using the execution order from greedy algorithm.
It should be mentioned that the coverage increases to 40%
rapidly within 2% of total verification time, which is very
useful when there is not enough time to run all test cases to
achieve a coverage of 50%.

vManager also provides aranking function to rank the
importance of all test cases. We compare the results from
vManager and our greedy algorithm. As shown in Figure 3,
it is obviously that the results from vManager and greedy
algorithm are almost the same. Thus we believe vManager
also uses a similar greedy algorithm.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0.3

0.35

0.4

0.45

0.5

Time (second)

C
ov

er
ag

e

default order
greedy algorithm
vManager

Fig. 3. Result from vManager

B. Result of Online Algorithms

Then the online algorithm is applied to a similar BE-XIO
device. To check the efficiency of our algorithm, several other
orders are also considered. Thedefault ordermaintained by
engineers lists all test cases mainly by its creation time.
The column first order puts all test cases with the same
configuration together, and therow first order puts all test
cases with the same feature together. Therandom orderselect
the next test case to execute randomly. The results for these
execution order are shown in Figure 4.

Obviously, the result for the default order, shown as the
black curve in the plot, is the worst one. The column first
order and row first order are a little better. And the column first
order is usually better than the row first order, which indicates
that the similarity of test cases with same feature is usually
larger. The blue curve in the plot shows the average result for

0 1 2 3 4 5 6 7

x 10
4

0.1

0.15

0.2

0.25

0.3

0.35

Time (second)

C
ov

er
ag

e

default order
greedy algorithm
column first
row first
random
online

Fig. 4. Result of Online Algorithms

random order, which is slightly better than column first order
at the beginning. But there is still big gap between random
order and the near optimal order from greedy algorithm.

The online algorithm as shown in algorithm 2 produces
better result than all other pre-defined orders. However, its
result is close to the result from random order at the beginning
when the algorithm does not have enough data to predict the
importance of a test case accurately. Similarly, the results
are similar at the end which can be explained by the large
accumulated estimation error in Equation 7.

V. CONCLUSION AND FUTURE WORK

In summary, we improved the performance of simulation
based verification by reordering the test cases. We developed
both offline algorithms and an online algorithm. The greedy
algorithm produces a close to optimal execution order and the
online algorithm makes the first execution of the testbench
more efficient by predicting the coverage vector and running
time of a test case. The results from two XIO devices demon-
strate that our algorithms can save large percentage of time
for practical verification.

The methods presented in this paper are general and can
be applied to other AMS circuits as well. First, the offline
algorithms can be applied to any verification problem given
the precomputed coverage information. Second, the online
algorithm can be extended to support similar problems in other

projects. Of course, different methods to predict coveragevec-
tors are required for other testbenches with different structures.

Further improvement can be gained by applying similar
algorithm to small granularity given it works for large gran-
ularity. The testbench is composed of test cases, similarly, a
test case usually consists of several components. Optimizing
within a test case would be more powerful and reduce more
redundancy. However, the reordering method does not work
directly for components because they are not independent with
each other as are test cases. On the other hand, the coverage
of a test case depends on both the order of components
and their combinations. This also provides the opportunityto
generate new test cases and increase coverage automatically by
combining components from different user provided test cases.
Of course, it is challenging to handle the dependency between
components and generate functionally correct test cases.

The online algorithm can be also extended to small granu-
larity. The components in a test case usually have multiple
operation modes, for example, there are several different
ways to initialize the XIO device. However, it is usually
impossible to check all possible cases because the number
of combinational cases is huge especially for large circuit.
Therefore, only a small subset of typical cases are considered
due to time constraints. Now the subset is usually selected
manually or randomly which can not guarantee a good result.
The online algorithm can be extended to solve the problem
because it does not require any information of test cases and
produces a close to optimal result automatically.

ACKNOWLEDGMENT

We would like to thank Mark Greenstreet for his advice on
the mathematical model, and also thank Kathryn Mossawir,
Tom Sheffler, John Hong and Victor Konrad for their help on
this project.

REFERENCES

[1] K. Thomas, Introduction to Formal Hardware Verification. Springer,
1999.

[2] E. M. Clarke and B.-H. Schlingloff,Model checking. Amsterdam, The
Netherlands, The Netherlands: Elsevier Science Publishers B. V., 2001.

[3] K. L. McMillan, Symbolic Model Checking. Norwell, MA, USA: Kluwer
Academic Publishers, 1993.

[4] N. Metropolis and S. Ulam, “The monte carlo method,”Journal of the
American Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[5] A. Schrijver, Theory of linear and integer programming. New York, NY,
USA: John Wiley & Sons, Inc., 1986.

[6] N. Jorge and W. Stephen,Numerical Optimization. Springer, 2000.
[7] “Using the cplex linear optimizer,” CPLEX OptimizationInc, Incline

Village, NV, 1994.
[8] “Xdr io cell technical document.” [Online]. Available:

http://www.rambus.com/us/downloads/documentabstracts/products/dl-
0362 v0 71.html

