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Abstract—With the increasing complexity of systems, the
current simulation based circuit verification used in indugry
are becoming more expensive while providing low coverage.he
paper presents a systematic way to reduce the verificationrie
by optimizing the execution order of test cases. Compared Wi
the default order maintained by engineers, the optimal orde can
achieve a high coverage in a short time as it guarantees runmg
the important test case first.

We developed bothoffline and online algorithms to find the
optimal order that maximizes the ratio of coverage to verifiation
time. The offline algorithms analyzes the simulation data ad
compute an efficient order for later executions. Three algathms
are provided to find the optimal, near-optimal and super-
optimal solutions respectively. To find a better order withait
any precomputed data, an online algorithm is developed. The
algorithms predicts the coverage and running time of a new tst
case by taking advantage of special properties of test cases

We applied our algorithms to the verification of XIO devices
from Rambus Inc. It is shown that the order produced by the
offline based greedy algorithm saves up to 85% of verification
time. And the result from the online algorithm saves about 506
time on average.

|I. INTRODUCTION

According to the Moore’s law, the number of transistors on
single chip doubles every 18 months. But the circuit desigh a

verification productivity increase at a much lower rate, athi

causes a gap between physical implementation and circ ?&
design and verification. During the past decade, verificatio
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correctness of AMS circuits. However, the increased dircui
complexity makes each single simulation notoriously long.
Process variation also increases the difficulty of AMS dircu
verification. Although Monte Carlo simulation [4] is used
for growing ranges of process variations and environmental
conditions, a large testbench is required to cover all kioids
corner cases. As a result, the simulation takes severalsveek
or even months for industrial scale AMS circuits.

The problem is compounded by the ad-hoc nature of to-
day’s simulation based verification. In a typical circuitsam
process, the system level specification is set by the system
architects based on customers’ requirements, industry sta
dards, etc. After the architectural decisions have beenemad
designers begin to design individual subsystems and rge lar
numbers of simulations to check the implementation. Right t
the end of development, more test cases to verify the complet
system are added to the testbench. Because the collection of
test cases are developed by many engineers during a long
period, redundancies are inevitable in such a testbench.

Techniques to analyze and optimize the testbench and to
iénprove the performance of verification are very useful for
industrial circuit design. We noticed that the efficiency of
verification highly depends on the execution order of test
cases. The currently used order is maintained by engineers
m nually and usually is not optimal. This paper proposes a
method to reduce verification time and increase simulation

time has taken up an increasing amount of the design cycle

and verification of digital circuit [1] since electronic degs
are largely composed of digital circuits. However, verifyi

analog and mixed signal (AMS) circuits, which play a cruci
role when interfacing with inherently analog environmemt t

digital components, is still an open problem.

to verifying that a system satisfies a property or specificati

Even though formal methods, like model checking [2], [3][,
can provide higher reliability and have gained great sigc

in digital circuit verification, in practice simulation beg

verification is still used in industry. Over the years, desig .
methodology has relied heavily on simulation to verify the
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_.COverage by reordering the execution order automatically.

‘Qveral algorithms are developed to compute the optimairprd
which puts the most important test cases at the beginning

af1md redundant ones at the end. Experimental results from rea

industrial devices demonstrate the efficiency of our sofuti
The paper is organized as follows. The next section de-
scribes the problems and our mathematical model. Section II
%?esents our offline and online algorithms to find the optimal
execution order. Section IV shows how to apply our algorghm
0 real circuits and the experimental results. Finally, our

€S

conclusion and future work are presented.

PROBLEM AND DEFINITIONS

This section introduces the necessary basic notions and
definitions to build a mathematical model for the verificatio
problem.



In this paper, thepecificationF = { f1,--- , f,, } definesall And the importancer of a test case refers to the ratio of
functionsf to be implemented and verified. And ttestbench coverage increment to running time
J = {j1,--- ,jn} consists of a set ofest casej, which is i
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usually a standalone simulation file. Thenning timet of a ey = —Uuded A3)
test case refers to the time to complete the verification’and S ti
is the total verification time. With these definitions, the problem of improving verificatio

Usually, one test case checks several functions and edfiformance is translated to an optimization problem: how t
function is verified by several test cases. The relationsHipd an order ofJ to maximize the verification efficiency?
between test cases and functions is representecdcasesiage 1. ALGORITHM
matrix M. The element of the matrix indicates whether a test

case verifies a function or not , as defined in Equation 1. We developed several algorithms 1o solve the above prob-

lem. First, three offline algorithms are presented in Sec-

0 3, does not checl,, tion 111-A to reduce the verification time for the case wheas th
My, = p  jn covers a part off,, (1) testbenchis executed multiple times. Then, an online algor
1 3, fully covers f,, which tries to guess a good execution order to speedup the

) verification without any precomputed information is delsed
We call the column of coverage matrix, denotedlasthe in section II1-B.

coverage vectoof the test case. If two coverage vectdrs ] .
and V; have non-zero elements on the same position, théte Offline Algorithm
might beredundancybetween test casg and test casg;. In the typical design process, circuit design and verifaati
A vector IV is used to represent the weights of functioniteract with each other. The design is modified if it fails to
in the specification if they are not equally weighted. Them ttpass the verification. Even though the modification might be

coverageC of a test case is defined as minor, the testbench should be run and checked again. Thus,
the testbench is often executed many times during the whole
C=W-V), development period.

Noticing that the running time and coverage vectors are

where(a - b) is the inner product of vectors andb. similar during different executions, we developed offlihgoa

. The_set coverage vectdor a set of test case§ji, -+ . jk} ithms to speedup the verification. The algorithms first rlin a
is defined as test case in the testbench= {j;,---,j,}, and then collect
k the simulation data including the running tirdeéy, - -- ,¢,},
Vi, gy = min(l,ZVi)- the coverage matrix{/ and also the weight vecto =
i=1 {wy, -+ ,wn}. With this information, the algorithms find an
The correspondinget coverages defined as optimal execution order to be used later.
The algorithms also solve two problems which are espe-
Ciinrgiry =W - Vigi o 5iy) - cially important when there is not enough time to complete

) ) ] _ the testbench. The first is to find a subset.oto achieve
And the coverage incrementor test casej;, as defined in aximum coverage within given tim@, and the other is

Equation 2, is the difference of coverages before and aftgr find a subset of/ to achieve given coverag€ within
addingjj; to the set{ji, -, jx}. minimum time. We present three algorithms with different
i A~ complexities in the following sections.
ACG gy = Cline iy ~ Clne e} 2) 1) Optimization Problem:The first algorithm solves the
It is noticed that the coverage increment of a test caBEoblems by converting them to integer linear program-

depends not only on its coverage vector but also the tess ca84nd [5] (ILP) problems. . o
executed before. Therefore, the execution order is cragial 1ne problem of maximizing function coverage within given

reduce the redundancy and improve efficiency of verificatioime 7' is converted to an ILP problem as:

As it is expected to gain high coverage as soon as possible, it m

is better to run the most important test case at the beginning max Z hj - w;j (4a)
In this paper, the verificatioefficiency £ is defined as the J=1

ratio of coverage to total running time
g J T o> Y it (4b)
B L C{jl-,----,jk} i=1
{edk} — T, - L n
{71, Jx} h] < in ]\/[71 (] =1, 7m) (4C)
IHere, we over estimate the coverage by assuming there isdoodancy h S =1 1 4d
between test cases. The estimation error is usually smzdiise it is common J = 0 (] = e ,m) ( )
that most elements of coverage mattl{ are either Os or 1s in a typical h: < 1 (j =1..-- m) (4e)
project. Themin operation is used to ensure the total coverage of any functio 7 - ’ ’
does not exceed 1. x, € [0,1] (i=1,---,n), (4f)



wherez; is a boolean variable that indicates whether test case3) Super-optimal SolutionAlthough there is no efficient
7i is in the subset or noty; is the weight of functionf;, h; algorithm to solve general ILP problem, there are many
is the total coverage of functiofi;, » is the number of test efficient ways, like Simplex [6] algorithm, to solve linear
cases andh is the number of functions. The linear inequalityprogramming (LP) problem. Therefore, the third algorithm
from Equation 4b adds the constraint that the total verificat converts the ILP problems to LP problems by relaxing the
time is not longer thar¥'. Equation 4c,4d,4e constraints thénteger constraint in Equation 4f. The solution of relaxe® L
value of h;. The optimization goal is to maximize the totalproblem is a super-optimal solution which might be bettenth

coverage as shown in Equation 4a. the optimal one when it violates the constraints of origih&l
Similarly, the problem of minimizing running time with problems. The relaxed LP problems are:
given coverage&’ is also converted to a 0-1 ILP problem: m
" max Z hj - w,
min Z ti - x; jzl
i;l T > Z Ti-t;
C < Z hj - Wj izl
7 hi < Y@My (j=1--,m)
< . _ i=1
hi < sz Mys G=1L-om) hj > 0 (j=1,---,m)
i=1
h7 S 1 (]_11 '7m) Lq Z 0 (’L:laan)
T € [011 (i=1, ;1) Ti < 1 (i=1,--,n)

The differences is that Equation 4b is replaced with the
constraint for total coverage, and the optimization goabis and
minimize the verification time. n

2) Greedy Algorithm:However, the general ILP is a NP mn Zti "L
hard problem [5]. Therefore, we developed another efficient izl
approximation algorithm to compute an near optimal sofutio c < Z he - w
The algorithm is a greedy algorithm. It always finds and o 7
executes the most important test case at each step, as shown n
in Algorithm 1. Line 4 computes the importance of a test case hj < in M (j=1,---,m)
as defined in Equation 3. =1
hj 2 0 (] =1,---,m)
Algorithm 1: Greedy Algorithm hy < 1 (j=1,---,m)
Input: A testbench/ = {j,---,j,}, coverage matrix x, > 0 (i=1,---,n)
M, and running timel’ = {¢,--- ,t,} i < 1 (i=1,---,n),

Output: The execution order
1fori=1,...,ndo )
) AR = 0 which allow x; to be any value between 0 and 1.
’ With these three algorithms, we first compute the near

3 for k=14,...,ndo . . .
optimal order using the greedy algorithm and compare the

Ik
4 r= Ac“ltikj’” result with the super-optimal solution by solving relaxeesL
5 if » > AR then If the gap is small enough, the solution from greedy algarith
6 AR =, is close to the optimal one, thus it is not necessary to solve
7 m =k; the expensive ILP problems. Otherwise, the optimal satutio
8 addm to the end of execution order ; is computed by solving the ILP problems using commercial

tools, like CPLEX [7]. Because the size of our problem is not

huge, the computation is still efficient, especially for gom
From the experimental results in section IV, it is showBpecial form of ILP problems. From our experimental result,

that the result from this greedy algorithm is much bettenthanhe greedy algorithm works well for most of the times.

the default order. However, we want to know how big is the . .

gap between the optimal result and the approximated one fr&n Online Algorithm

greedy algorithm. Therefore, we developed the third atori  The offline algorithms described above compute an optimal

to find a super-optimal solution. order based on the previous simulation data. However, it is



still necessary to speedup the first execution of the testberis approximated by:
because a single run of all test cases is also very expensive.

k
. . . . Fi - _ . AoaN. 7
Therefore, an online algorlth.m is developed to find an orde{il,m’jk} ~ 1 ZSZm(Jth) Ac{ghmﬁil} 7)
better than the default one without the knowledge of coverag =1
matrix and running time. k A
Firstly, the algorithm predicts the running tinmig as the ~ 1- chz’m(cjl,cji) - fsim(f;,, f5.) - AC%{”}
length of its coverage vectdi|. The assumption that the =1

running timet,, is proportional to|V;| is reasonable becauseThe intuition behind the equation is that if the coveragemesc

it usually costs more time to check more functions. It is alsg;, V; are very similar then test casg is less important

supported by the experimental results. We replace tterm because lots of functions in test cagehave already been

with |[V4| in line 4 of the greedy algorithm and find the resulehecked by test casg.

changes slightly. Algorithm 2 shows the implementation of the online al-
To predict the coverage vector of a new test case, werithm. It is similar with the greedy algorithm, but at each

analyzed the special structure of test cases used in thegbrojstep it finds the test case with minimum similarity with other

All test cases in the testbench consist ofanfigurationand test cases already executed. The importance of a test case is

a feature The configuration usually defines the environmengredicted using Equation 7 in lines 5-12. After the executio

modes of operation, and parameters of the device. A featwfethe new test case, its coverage vector is used to update

is usually a basic operation of the device, which may covéfe configuration similarity and feature similarity acciogito

several different functions depending on the configurafléve Equation 5, 6.

testbench contains all possible combinations of confignmat

and features. We usg, ¢, to represent a test case which usesalgorithm 2: The Online Algorithm

configurationc; and featuref;, and uséV, ;, to represent its Input: A testbench/ = {J1, -, jn}

corresponding coverage vector. Output: The order of test cases to run
Thesimilarity of two test caseg;, j; is defined as the angle

between their coverage vectors V;: 1 csim =1, fsim = 1;
2fori=1,...,ndo
sim(ji,j;) = Vi Vi) 3 AR = o0
B Vil - [Vj 4 for k=4,...,ndo
r=0;

The similarity of test cases with same configuration or fesatu®

is usually large. For example, two test cases with the sarfie fori=1,...,i—1do

feature usually have similar running path and thus covér w= Ac?jl,...,jl,l};
similar functions. Therefore, we also compute the sintijari 8 sim = csim(cj,,, ¢5,) - fsim( [, f3,);
of features and configures. Thenfiguration similarityof two 9 r=r4w-sim,
configurations:;, ¢; is defined as 10 if r < AR then
11 AR =,
, nf . N 12 m=k;
esim(ci,¢;) = H SUM(Jes, fis Jeg i)™ (®) 13 executej,, and collect the coverage and running time
k=1 data;
wheren f is the number of features. And tfieature similarity 14 updatecsim and fsim as shown in Equation 5 and
of two featuresf;, f; is defined as Equation 6;
. il . A ~ 1
fsimi(fis £5) = 1] simGew.sir Jew.s,) 7 ) IV. EXPERIMENTAL RESULT

k=1
We applied our algorithms to the verification of two XIO

where nc is the. n.um_ber. of conﬁg_uratmns. It is found th%evices [8] developed by Rambus Inc. The XIO cell is a high-
the coverage similarity is approximately the product of it§e ormance, low-latency controller interface to XDR DRAM
configuration similarity and the feature similarity: memory devices.

The verification platform used in this project $pecman
Figure 1 shows its architectur®UT is the device to be
The assumption is verified by the experimental result. Therified, which is the XIO device in this paper. Tliansaction
average error of using this approximation is less than 0.083éneratorgenerates transactions based on the test constraints
and the maximum error is less than 4.25%. Thus, the prodaetd drives inputs to the DUT. Theutput checkemonitors the
of configuration similarity and feature similarity is a goodutput signals from DUT and compares them with the correct
approximation of the coverage similarity. results frompredictor. The coverage data and other informa-

With the predication of running time and similarity betweetion are collected during the simulation by tbeverageblock.
coverage vectors, the importanceas defined in Equation 3

Sim(jcl;fl ’jcz,fz) ~ CSim(cla 02) ’ fsz'm(fl, f2)
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super-optimal one at the beginning, we do not think the super
optimal solution is feasible because the integer congtiain
Equation 4f is seriously violated. Therefore, there islditt
benefit to solving the expensive ILP to compute the exact
optimal result. From the greedy algorithm’s result, we can
see that 169 over 222 test cases are redundant thus can be
removed without reducing coverage, or more than 85% time
can be saved using the execution order from greedy algorithm
It should be mentioned that the coverage increases to 40%
rapidly within 2% of total verification time, which is very
useful when there is not enough time to run all test cases to
achieve a coverage of 50%.

vManager also provides eanking function to rank the
importance of all test cases. We compare the results from
vManager and our greedy algorithm. As shown in Figure 3,

The XIO devices are implemented in therilog language it is obviously that the results from vManager and greedy
and simulated by Cadence®-simsimulator. The test casesalgorithm are almost the same. Thus we believe vManager
are coded with the= language. And thesManagertool is also uses a similar greedy algorithm.
used to collect coverage data required by our algorithms. Ou

algorithms are implemented in the Matlab platform which he
the advantage of fast prototyping and powerful visual@ati o0 o6 © © O -
The result of offline algorithms are described first, witl ~ 0.5¢ SO0
the comparison with the result from vManager. Then sevel ©
methods are used for the online problems and their resudts &
compared. 0.45 ©
& |f .ot
A. Result of Offline Algorithms © $ P
. [}
We apply both the greedy algorithm and relaxed LP bas 3 4. nr
method to the Toshiba XIO device. Figure 2 shows resu © *
where the horizontal axis is for the verification time and th e
vertical axis indicates the coverage. 0.350
‘ +E T + default order
: o greedy algorithm
0.51 03 * ‘ ‘ ‘ ‘ vManager |
"0 0.5 1 15 2 25 3 35
Time (second) % 10°
0.4
i Fig. 3. Result from vManager
Q
(o))
@ 0.3}
(5] . .
2 1 B. Result of Online Algorithms
© 0.2t Then the online algorithm is applied to a similar BE-XIO
device. To check the efficiency of our algorithm, severakoth
T default order orders are also considered. THefault ordermaintained by
0-16; o greedy algorithm engineers lists all test cases mainly by its creation time.
~—+— sup-optimal(time) The column first orderputs all test cases with the same
0 ‘ ‘ ‘ |7 sup-optimal(cov) | configuration together, and thew first order puts all test
0 0.5 1 15 2 25 3 3.5 cases with the same feature together. Tdrelom orderselect

Time (second)

Fig. 2. Result of Offline Algorithms

x 10°

the next test case to execute randomly. The results for these
execution order are shown in Figure 4.

Obviously, the result for the default order, shown as the
black curve in the plot, is the worst one. The column first

In the figure, we noticed that the result from greedy algmrder and row first order are a little better. And the columst fir
rithm is much better than the default order and is quite closeder is usually better than the row first order, which intkésa
to the super-optimal order by solving relaxed LP. Althougthat the similarity of test cases with same feature is uguall
there is a large gap between approximated solution and taeger. The blue curve in the plot shows the average result fo



000 000 CIVOOTIAOO0000A00G 0.0, PB4 projects. Of course, different methods to predict coverage
035 o g tors are required for other testbenches with differentcstmes.
S ﬁ Further improvement can be gained by applying similar
oglo/ 7" * algorithm to small granularity given it works for large gran
) ularity. The testbench is composed of test cases, similarly
o of et test case usually consists of several components. Optigiizi
2025 ,‘:’ . et within a test case would be more powerful and reduce more
§ oo redundancy. However, the reordering method does not work
o ool directly for components because they are not independémt wi
O ! each other as are test cases. On the other hand, the coverage
‘\‘ + default order of a test case depends on both the order of components
0.15( O gg?jr?]{]?‘i'?s‘t’mhm and their combinations. This also provides the opportutaity
| . .
~__ row first generate new test cases and increase coverage autorydticall
R - - - random combining components from different user provided tesésas
* ‘ ‘ ‘ | ———online . Of course, it is challenging to handle the dependency betwee
0 1 2 3 4 5 6 7 components and generate functionally correct test cases.
Time (second) x 10" The online algorithm can be also extended to small granu-
_ _ _ larity. The components in a test case usually have multiple
Fig. 4. Result of Online Algorithms operation modes, for example, there are several different

ways to initialize the XIO device. However, it is usually
impossible to check all possible cases because the number
random order, which is slightly better than column first erdeof combinational cases is huge especially for large circuit
at the beginning. But there is still big gap between randomherefore, only a small subset of typical cases are coreider
order and the near optimal order from greedy algorithm. due to time constraints. Now the subset is usually selected
The online algorithm as shown in algorithm 2 producesianually or randomly which can not guarantee a good result.
better result than all other pre-defined orders. Howevsr, iThe online algorithm can be extended to solve the problem
result is close to the result from random order at the begmnibecause it does not require any information of test cases and
when the algorithm does not have enough data to predict {n@duces a close to optimal result automatically.
importance of a test case accurately. Similarly, the result
are similar at the end which can be explained by the large ACKNOWLEDGMENT
accumulated estimation error in Equation 7. We would like to thank Mark Greenstreet for his advice on
the mathematical model, and also thank Kathryn Mossawir,
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