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Abstract- Design complexity has been increasing with every passing day and as a result the time required to verify the 

same has also been exponentially increasing. Design and Verification community unanimously agrees to the fact the 
software simulators have not kept pace with the growing design complexity, resulting in longer simulation run time. 
Transaction Based Acceleration (TBA) is one of the hardware assisted acceleration techniques that has received loads of 

attention for its performance and ease of usage. Standard Co-Emulation Modeling Interface (SCE-MI) provides multiple 
use models to establish communication between the untimed software and timed hardware domains, as required by TBA 
architecture. This paper primarily focuses on how the inefficient SCE-MI usage dampens the TBA performance and also 

sheds light on how these hindrances were overcome to achieve significant acceleration. This paper discusses various 
efficient ways of handling SCE-MI use models for creating an efficient TBA testbench and presents practical comparison 
between inefficient and efficient usage of SCE-MI use models.  

Keywords— Simulators, TBA, SCE-MI, untimed software, timed hardware.  

I.   INTRODUCTION 

Today’s SoC designs are highly integrated and feature complex functionalities. The notch of complexity increases 

with every new design, compared to the previous generation designs, and the trend will continue for the years to 

come. Complex testbenches are required to thoroughly test and verify these complex designs. Verifying a design is a 

routine challenge to the verification engineer but what comes as a nightmare is the software simulation run time. 

Software simulators are pushed to the virtual limits while simulating these complex testbenches (plus the complex 

designs). Even though the software simulators are run on high-end computing machines, the simulation run time 

could vary from hours to days. As a result verification cycle engulfs a significant time share in a product cycle.  

Confronted with similar challenges, we decided to explore various acceleration techniques to reduce the 

simulation run time. After a thorough research on the available acceleration techniques and attending few 

conferences/tutorials it was evident to us that TBA (explained in Section II) along with Standard Co-Emulation 

Modeling Interface (SCE-MI) (explained in Section III), as the communication interface, would be an ideal solution 

for the use case under discussion. In the course of development of the TBA testbench, an architecture was finalized 

(explained in section IV), which was later found to be ineffective in providing desired/expected acceleration. The 

root causes for the performance degradation were identified and resolved (explained in section V) and the testbench 

architecture was modified (explained in section VI) with respect to the usage of SCE-MI use model. The 

comparative result between the inefficient and efficient SCE-MI usage along with the overall performance 

improvement in presented in section VII. Conclusion and future work are discussed in section VIII. 

 

II. TRANSACTION BASED ACCELERATION 

Hardware assisted acceleration has always overshadowed the traditional software simulation in terms of 

performance but had not been adopted extensively by industry in the past; owing  to a long list of limitations, such 

as, limited debug features, compilation time, effort to create synthesizable testbench, complex setup procedure, 

return on investment and so on. Things have changed, for the greater good, in the recent years with major limitations 

of traditional hardware assisted acceleration being addressed by the EDA vendors.  

Following is the list of hardware assisted acceleration techniques:  

1) Signal Based Acceleration (SBA) 

2) Transaction Based Acceleration (TBA)  

3) Embedded testbench 

4) Vector Based Acceleration (VBA) 

5) In-circuit Emulation (ICE) 
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The above list of techniques is not comprehensive by any means but lists most of the commonly/widely used 

acceleration techniques. SBA and TBA are often grouped under a common category called as Simulation 

Acceleration. 

SBA is, comparatively, the easiest approach to port the test environment from software simulation to Simulation 

Acceleration mode. To achieve acceleration, the Design Under Test (DUT) runs on emulator and the testbench runs 

on software simulator. Each transition of the interface pin is considered as an event and the emulator is synchronized 

at every event. This obviously is not the most efficient way of utilizing the emulator. Even with this limitation SBA 

can provide respectable acceleration if the DUT is sufficiently large and is exercised in its entirety. The greatest 

advantage of SBA is that it requires no modification to the test environment. 

Embedded testbench is a technique where in the entire test environment (DUT and testbench) is synthesizable and 

is executed on the emulator. Constructing a synthesizable testbench could be a daunting task for the DV Engineer. 

The unique selling proposition of this technique is the acceleration that it delivers, owing to the entirely 

synthesizable test environment. 

TBA is a near-perfect blend of SBA and Embedded testbench techniques. The testbench follows the popular 

UVM structure, as in SBA, and the driving segment of the testbench is synthesizable, as in embedded testbench. It 

also beats the disadvantage of SBA (the performance of the emulator is not optimal in SBA because every pin toggle 

creates an event which increases the emulator and workstation interactions) and embedded testbench (the 

requirement to have the entire testbench needs to be developed using only the synthesizable constructs). 

The typical architecture of TBA agent structure is shown in Figure 1. The traditional UVM agent needs to be split 

into two domains:  

A. Non-Synthesizable domain – Runs on simulator (host machine) 

Only the untimed logic must be implemented in this domain. Untimed logic includes creating constrained random 

stimulus/data, checker/scoreboard etc. This suits the UVM style of coding, except for the fact that the agents will 

neither wiggle the pins nor monitor the pin wiggles directly. This section of the code is time aware during the run. 

These agents are responsible for transferring/receiving the data to/from logic running on emulator over a 

communication interface. These non-synthesizable UVM agents are often termed as proxy agents. 

B. Synthesizable domain – Runs on emulator  

This domain contains the timed logic and is run on the emulator platform. The logic needs to be implemented 

using only the synthesizable constructs. The logic components are called as Bus Functional Model (BFM) and are 

responsible for converting the data received from proxy driver to pin wiggles and to monitor these pin wiggles and 

send the data to proxy monitor. Only BFMs should interact with the DUT. Todays advanced EDA tools allow 

certain non-synthesizable constructs to be run on emulator, by creating required instrumentation, but are not 

recommended to use due to resulting performance degradations. For better acceleration it is recommended to 

implement significant portion of the testbench in BFMs instead of proxy units. 

 
 

Figure 1. Typical TBA architecture 

Since the testbench is split into a proxy (runs on workstation) and a BFM (runs on emulator), a communication 

interface is required to enable the interaction between the two units. EDA vendors provide proprietary interfaces to 



address this issue. Alternatively, SCE-MI (an Accellera standard) could also be used as communication interface. 

More about SCE-MI is explained in following section. 

III. SCE-MI USE MODELS 

SCE-MI is an Accellera standard. It is a multi-channel communication interface developed to resolve the problem 

of connecting/interfacing emulation platforms with the SoC modeling environments. SCE-MI use models can be 

used as a communication interface between the non-synthesizable agents (untimed software domain) and their 

respective BFMs (timed hardware domain). This is an ideal communication interface for TBA environment, 

especially when the testbench is based on UVM methodology. 

Following are the four different types of SCE-MI use model: 

A. SCE-MI Macro-based message passing interface 

It comprises of a set of components both on the hardware side and the software side. The hardware side 

components are a set of macros which provide communication points between transactors and SCE-MI. The 

software side components comprise of the OOP objects and methods which perform a variety of operations. 

Communication interconnects are in the form of message channels operating between the host machine and 

emulator. 

B. SCE-MI Function based interface 

It is based on the concept of SystemVerilog Direct Programming Interface (DPI). It allows software and hardware 

side logic to be written in different languages and yet enabling them to communicate with each other (Inter-language 

communication). The end user is required to implement all the functions necessary to meet the required 

functionality. 

C. SCE-MI Pipe based interface  

It comprises of built-in functions, both on software and hardware side, ready to be deployed in end users code. 

Supports features such as batching, data shaping, variable length messaging, end of message indicator and flushing. 

It is ideal for streaming applications. It has the concept of input pipe (to transfer data from software side to hardware 

side) and output pipe (to transfer data from hardware side to software side). These are basically unidirectional. 

D. SCE-MI Direct memory interface (DMI)  

It provides software side interface to perform backdoor read/write operations on the hardware side memories. It 

basically provides two types of interfaces: Block interface and Word interface. These APIs provides a non-intrusive 

C-side interface to directly access a BFM’s memory or a register at a single instance in simulation time.  

IV.   ARCHITECTURE BEFORE OPTIMIZATION 

The goal was to develop an agent that supports both “Software Simulation” mode and “Simulation Acceleration” 

mode. Since the agent has to be developed on UVM guidelines, it was ideal to opt for TBA technique. As required 

by the TBA technique the agent was split into two segments, one being the non-synthesizable domain (UVM 

environment) and the other being the synthesizable domain (BFMs). SCE-MI pipes were shortlisted as the 

communication interface between the two domains. The testbench had two agents, the master and the slave, and 

hence to test, these agents they were integrated back-to-back as shown in Figure 2. Figure 2 is a simplified block 

diagram to show the high-level architecture of the testbench under discussion. 

Following is the brief list of issues related to SCE-MI pipes that significantly degraded the accelerator’s 

performance. 

A. Multiple SCE-MI pipes 

HDL side implementation of the SCE-MI pipe is not purely synthesizable and hence there are some behavioral 

evals associated with it, depending on the usage. The evaluations performed by the emulator on the non-

synthesizable code (Vendors support some of the non-synthesizable constructs to be implemented on emulators) is 

termed as behavioral evals. In the initial architecture, the required number of instances of master BFM to be created 

was based on a parameter (Ex: If the parameter value was 10 then ten instances of master BFM were instantiated) 

and we had multiple such instances to be integrated as the project requirement. Each instance had its own input 



SCE-MI pipe to receive data from the proxy driver. The total number of behavioral evals was the summation of 

behavioral evals associated with the pipe of all the instances. Increase in the number of behavioral evals resulted in 

the degradation of the acceleration performance. 

 
Figure 2. Simplified testbench architecture before optimization  

B. Clearing the contents of the pipe - Asynchronous access  

It was required to clear the contents of the SCE-MI pipes on reset, to ensure that the unwanted data of previous 

reset cycle does not pollute the data of the current reset cycle. To achieve this functionality, the input SCE-MI pipe 

was used inside a loop. This loop extracts the elements from the pipe until the End of Message (EOM) bit is “1”. 

This ensured that the remaining elements in buffer are cleared on reset. The pipe, used in the loop, was configured to 

operate in asynchronous mode. The SCE-MI pipe in asynchronous mode of operation exhibit behavioral evals (as it 

is not purely synthesizable) and the loop logic results in increased step count. These factors degraded the 

acceleration performance. 

C. Quantity of data accessed  

The data was split into bytes in the proxy for ease of debug. The BFM was expected to collect multiple such bytes 

and form the final data. It was attempted to fill the pipe by configuring BYTES_PER_ELEMENT as one byte and 

PAYLOAD_MAX_ELEMENTS as multiple bytes. Accessing one byte per element resulted in poor accelerator 

performance.  

D. Synchronizing simulator and emulator  

The emulator operates at much higher frequency as compared to the simulator. To avoid loss/overriding of data, 

the simulator and the emulator were required to synchronize (halt the emulator) at frequent intervals (whenever the 

buffer was full/empty in BFM). The overall run time in TBA mode increases as the number of synchronization 

between the timed and untimed domains increases, resulting in reduced acceleration. 

V.   EFFICIENT SCE-MI USAGE 

As discussed in section III there are multiple use models at ones disposal to be used at ones requirement. In the 

initial architecture SCE-MI pipe was the only use model been used to establish communication link between the 

timed and untimed domains. SCE-MI use models support co-existence, different use models could be used in single 

testbench. This was not explored in the initial architecture. This section discusses the workarounds and changes been 

made in the testbench architecture to overcome the challenges discussed in precious section. 



A. Power of back-door access 

Direct Memory Interface (DMI) is a powerful SCE-MI use model when it comes to back door access of registers 

and memories. Instead of transferring the data frequently to the proxy, a memory could be created in the BFM to 

accumulate the data. Once a reasonable amount of data was buffered, SCE-MI DMI API could be used to read the 

whole memory from the proxy domain effectively resulting in the performance improvement. Figure 3 shows an 

example modelling of the C-function, which uses SCE-MI API to read the memory from the BFM. The sole 

negative trait of the DMI is its inability to synchronize simulator and emulator, resulting in a potential loss of data. 

 
Figure 3: C-function with SCE-MI DMI implementation 

B. Optimized SCE-MI pipe usage 

Although SCE-MI pipes usage contributed towards the overall behavioral evals, its ability to synchronize the 

simulator and the emulator made it hard to avoid. The solution would be to tactically optimize its usage, where it 

exhibits less behavioral evals. 

1) Merging SCE-MI pipes: If multiple SCE-MI input pipes are transferring same type of data from proxy to 

BFM then the functionality of these pipes could be merged into a single pipe which would be fed with 

concatenated data required for all instances in the BFM. The wrapper module would have the HDL side 

handle of the SCE-MI pipe which would fetch the data from proxy and distribute it between the instances of 

the required module. This would streamline the operation and reduce the behavioral evals. 

 
Figure 4: TB Architecture with merged SCE-MI pipe 

2) Synchronous access: Asynchronous access to the pipes leads to behavioral evals. It is recommended to use 

SCE-MI pipes in synchronous mode (clocked pipe) to avoid behavioral evals by configuring the parameter 

IS_CLOCKED_INTF of the SCE-MI pipe to one, as shown in the Figure 5. This ensures that the data access 

happens only on the posedge or negedge of clock depending on the sync_control setting in the respective 

calls. 

 
Figure 5: Synchronous SCE-MI pipe 



3) Optimized data transfer: Instead of transferring “N” elements, with size of each element being a byte, the 

data is recommended to be combined and sent as one element of size “N” bytes. This implementation would 

effectively reduce SCE-MI access by “N” times thereby boosting the performance. A sample code snippet of 

the SCE-MI pipe declaration is shown in Figure 6. 

 
Figure 6: Size of each element in a SCE-MI pipe 

4) Minimal Synchronization: Data transfer between proxy and BFM causes simulator and emulator to 

synchronize under the hood. Acceleration could be increased by avoiding frequent data transfers. As an 

example, instead of sending one element of size five bytes at regular intervals, twenty elements could be 

packed together to reduce the simulator – emulator synchronizations. 

 
Figure 7: Maximum number of elements in a SCE-MI pipe 

5) Clearing the pipe: At times it might be necessary to clear any residual data present in the pipe upon reset or 

interrupt. Instead of using for-loop to clear the pipe, as shown in Figure 8, it is recommended to use 

synchronous procedural block to achieve the same functionality. A clock, faster than the operational clock, 

would be required to clear the pipe synchronously. This avoided all the behavioral evals and step counts due 

to the for-loop. The end of message (eom) mechanism with this procedure could be coupled to signal the end 

of the residual data. The logic in Figure 8 uses for-loop to extract data from the pipe whereas the logic in 

Figure 9 uses a faster clock (frequency of clk_fst > clk) to do the same. Use of faster clock helped avoiding 

the for-loop thereby reducing the step-count and behavioral evals. 

 
Figure 8: Clearing a SCE-MI pipe, using for-loop 

 
Figure 9: Synchronously clearing the SCE-MI pipe 

C. Savaging Direct Programming Interface  

Function Based Interface is bundled with the ability to establish a communication interface between the hardware 

side and the software side using DPIs. It also gives the liberty to write one’s own functions, as per the required 

functionality, in one language and invoke it from another. Figure 10 shows an example c-function, which uses DPI 

to invoke a method defined in BFM. Scope to this BFM is set using the function svSetScope. This method is used to 

configure a register in the BFM. 



 
Figure 10: C-function invoking BFM’s method 

Defined C-function can be imported and invoked from the proxy using DPI as shown in the Figure 11. This in 

turn executes the method defined in the BFM. As per this example, data is passed through the C-function to be 

written into the BFM’s register.  

 

 
Figure 11: Proxy using DPI to invoke C-function 

The method implemented in the BFM is exported using the inbuilt DPI, as shown in the Figure 12, to be accessed 

by the proxy through the C-function. Hence the register write invoked by the proxy gets executed in the BFM 

through the C-function which are facilitated by the DPI calls.   

 

 
Figure 12: BFM exports its method through DPI 

 

 

D. Trimming TBA development time using SCE-MI 

As synthesizable BFMs are the integral part of the TBA architecture, it mandates its functionality to be 

implemented in an optimized synthesizable form. Implementation of these functionality by a DV Engineer could 

impact the performance because of the following factors: 

• Increase in effort and time to implement complex functionality in a synthesizable format. 

• Increase in area occupied by the BFM on the emulator. 

 Proper utilization of SCE-MI DPI functions to implement any complex functionality will help to reduce the 

above factors. Although it requires a proper understanding of how to map the C data type with the SystemVerilog 

data type, the benefit it offers outweighs the effort. Any complex functionality, for example: error correction 

algorithm, which is utilized only during an occasional error injection test case is implemented as a method in the C 

membrane and is imported/invoked from the BFM. Implementing basic BFM functionality as a C-function will 

result in performance degradation, hence it would be wise to model complex and rarely utilized functionality as C-

function. Packed array is one of the widely used data type to classify data in SystemVerilog, but mapping it to its C 

counterpart is quite tricky. Below mentioned are couple of useful attributes related to the mapping of a packed array 

with svBitVecVal* or svLogicVecVal*, which will save a definite amount of bring up effort.  

 

1) Packed array – pass by reference: As per the SystemVerilog standard, inout and output arguments, with the 

exception of unpacked arrays, are always passed by reference. Specifically, packed arrays are passed, 



accordingly, as svBitVecVal* or svLogicVecVal*. Hence meddling with these arguments in C will naturally 

have its effect on its SystemVerilog counterpart (BFM).  

  

2) Dissecting a packed array: A packed array is passed as a svBitVecVal* or svLogicVecVal* type to be used in 

a C – function. But mapping this is not straight forward, a svBitVecVal* or svLogicVecVal* acts like a 

dynamic array with each element of size 32-bit. It implies, if a packed array of size more than 32-bit is 

mapped to a svBitVecVal* or svLogicVecVal* type then it is broken in to chunks of 32-bit data and each 32-

bit is mapped to an element of svBitVecVal* or svLogicVecVal* starting from packed array’s LSB. An 

example comparison of a bit-select operation performed in a BFM and a BFM invoking a C-function is 

shown in the Figure 13 and Figure 14 respectively. Figure 13 shows the BFM implementation of the bit-select 

operation of a packed array. In the Figure 14, the same bit-select operation is implemented as a C-function 

bit_sel_c. It is imported in the BFM and mapped to its bit_sel_im function. Hence by invoking bit_sel_im, 

bit_sel_c in C will be executed. Figure 14 shows how a packed array in a BFM is mapped to svBitVecVal* 

type in the C-function.     

 

 
   Figure 13: BFM doing bit select operation 

 
 

Figure 14: BFM doing bit select operation using a C – DPI call 

 

Figure 15. Simplified testbench architecture after optimization  



 

VI.   ARCHITECTURE AFTER OPTIMIZATION 

The simplified architecture of the testbench after performance optimization is as shown in Figure 15. The SCE-MI 

Function Based Interface was used to configure the registers of the BFMs of both master and slave agent. These 

were also used to provide certain notifications (about relevant protocol events) to the proxy agents from the BFMs. 

APIs of SCE-MI DMI were used to perform backdoor read and write operations. EDA vendor proprietary options 

were used to establish the synchronization between the software and hardware domains.   

 

VII.   RESULTS 

This section of the paper presents the statistical comparison between the TBA performance before and after the 

optimization. Finally it also presents the direct run-time comparison between the software simulation mode and 

TBA mode. 

Both the versions of the agent, before and after the optimization, were subjected to the same test case (same 

configuration and same seed) to gauge the true difference in the TBA performance. It was obvious that the test 

environment with optimized agent would perform better compared to predecessor, but the real intent was to gauge 

the return on investment (effort put into optimization v/s performance improvement). The comparative results are 

encouraging as shown in Table 1. The optimized agent performance is better by an order of fifteen. As shown in 

Table 1 the optimized agent had very minimal behavioral evals and reduced hardware-software synchronization, 

these two factors significantly influence the TBA performance. 

 

  
TABLE I  

COMPARATIVE RESULTS OF THE IMPLEMENTATIONS: BEFORE AND AFTER OPTIMIZATION 

Implementation 
TBA properties 

Gate count Bevals HW-SW Sync TBA Time 

Before optimization ~2 M 18,299,173 4,728,998 ~60 min 

After optimization ~1.5 M 218 9,871 ~4 min 

 

The block level run with the optimized agent, which took hours in software simulation, was reduced to mere 

minutes in TBA mode. As shown in Figure 16 acceleration of 45X was achieved with the TBA against the software 

simulation. The acceleration is expected to improve once the DUT is integrated in the test environment, as it is 

entirely made of synthesizable constructs. 

 

  

Figure 16. Software simulation vs TBA run-time comparison  
 

VIII.   CONCLUSION AND FUTURE WORK 

Hardware assisted acceleration techniques are the most advanced and highly utilized techniques in the DV 

Engineers arsenal.  For obvious reasons, setting up the TBA testbench is not as straight forward as it is with the 

software simulation testbench. In this paper we illustrated the adverse impact on the TBA performance by careless 

use of SCE-MI use model (in particular, the usage of SCE-MI pipe) and also proposed workarounds for the issues 

encountered in the course of development of the efficient TBA architecture. Testbench modifications before and 



after optimization were discussed in-detail to assist the engineers to apply these optimization techniques up-front in 

their testbench development cycle.  

As discussed throughout the paper, excessive hardware software synchronizations and behavioral evals has 

continued to remain as the major threat to the TBA performance. All the efforts been putforth in the development 

process of the TBA testbench would not result in “real value add” if appropriate SCE-MI use-models are not 

deployed. In this work, SCE-MI DMI was used for backdoor read/write operation, SCE-MI Function Based 

Interface was used to write to registers and to send notifications to proxy from BFM. Hardware Software syncs were 

generated using vendor proprietary implementation and the number of syncs were brought down to the minimum. 

Although we avoided using SCEMI pipes completely to gain performance in our application, it is generally 

recommended to use SCE-MI pipes for streaming application requiring advanced controls such as data shaping, 

variable length messaging and others. 

As part of the future work, we have planned to integrate the optimized agent with the DUT, to verify the DUT’s 

functionality on the emulator. Furthermore, the agent will be eventually ported to the SoC environment. Also the 

latest SCE-MI version (v2.3) provides additional support to UVM register access which are yet to be explored. 
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