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Abstract— Releasing cars without software and hardware defects requires close collaboration between 

semiconductor vendors, OEMs and tier-one OEM suppliers to provide safety mechanisms and related safe 

implementation approaches. Virtual prototypes (VP) and fault-injection (FI) are among diverse existing methods 

recommended by the ISO26262 standard to verify safety requirements. This paper presents a VP-based fault-injection 

methodology flow in order to validate the safe execution of system automotive software. Using examples of safety 

monitoring software that implements the level-3 E-Gas concept and runs on a powertrain electronic control unit (ECU) 

model, we explain our methodology and highlight limitations and future working axes for semiconductor and tier-one 

OEM VP products. 
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I. INTRODUCTION  

To comply with the ISO26262 automotive safety standard [1], the hardware and software components as well 

as their development process should be ISO26262-conform. In an automotive system, each electronic control unit 

(ECU) is composed of a set of hardware elements (e.g. microcontroller (MCU), Application Specific Integrated 

Circuit (ASIC), sensor) on which a complex software stack runs. Due to the high complexity of such systems and 

the high dependency between the different software modules of one ECU stack, system software testing should 

start at early development stages. It should be performed according to a well-defined methodology that fits the 

incremental process of integration and configuration of software packages. Such high complexity leads to a 

complex system safety concept which requires the development of the software that activates and configures the 

safety hardware mechanisms and software error reactions. Using ECU virtual prototype (VP) along with fault 

injection (FI) mechanisms helps accelerating the development and test of system safety-relevant software before 

the availability of the real device. In this paper, a well-structured methodology for the construction of VP-based 

fault injection (FI) test cases is presented. Mapping rules that ease the conversion of existing safety-related test 

software are defined and should be applied along with the proposed methodology. Our approach is explained by 

using a VP for the Bosch MDG1 powertrain ECU [2] based on AURIXTM 2G MCU, as well as concrete examples 

of the level 3 (L3) E-Gas monitoring concept [3]. 

The paper is organized as follows: section II reviews the state of the art of FI methods and outlines our 

contributions. Section III introduces the e-Gas monitoring concept and the challenges of developing functional 

safety compliant ECU. In Section IV, we introduce the VP modeling approach of AURIXTM 2G-based ECU. In 

Section V, we present our methodology flow using examples of our VP use case. Results from our experiments 

are described in section VI. Finally, section VII concludes the paper and outlines future work areas.  

II. RELATED WORK 

Since the first release of the ISO26262 standard [1], a large number of FI techniques for software safety testing 

has been published. Many of them have targeted simulation-based FI at software level. They are mainly based on 
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offline instrumentation of software with additional fault detectors and injectors across the different software layers 

[4] [5] [6]. Since modification of software is required, the main drawback of those methods reside in the non-

proven degree of intrusiveness and interference with the original software under test. In addition to that, most of 

these methods rely on additional FI software components at the highest application level. Therefore, their use is 

limited during the incremental development and integration process of the ECU software, especially in a pre-

silicon phase. At the hardware level, a wide spectrum of methods have coped with simulation-based FI methods, 

ranging from Gate Level (GL) [7] to Register Transfer Level (RTL) [8,9] and Transaction Level of Modeling 

(TLM) [10,11,12,13,14,15]. Among the proposed TLM techniques, non-intrusive models for error injection and 

detection are added to the system hardware model [16,17]. These techniques ensure indeed a high safety 

confidence level of a VP, but only when applied throughout the design and deployment flow of a VP. This paper 

shapes this need based on explicit examples of a real industrial use case. These techniques target as well FI  

methods for the verification of the hardware VP. Contrary to that, this work targets testing software features on a 

VP. In [18], authors have presented four VP-based FI methods and demonstrated their application based on 

examples of Infineon’s AURIXTM MCU. In general, the techniques in [18] lack the definition of a well-defined 

FI methodology. Therefore, our work complements [18] through the definition of such a methodology.  

III. BACKGROUND  

A. The E-Gas Monitoring Concept 

The Electronic Gasoline (E-Gas) 

Monitoring Concept [3] is a safety concept 

standardized by the AKEGAS working group 

and applicable for gasoline and diesel ECU. It 

describes the monitoring system structure to 

ensure safety in automotive ECU. Since 2013, 

the E-Gas concept complies with the 

ISO26262 standard and any powertrain ECU 

can be based on it to claim ISO26262 

compliance. As depicts Figure 1, the E-Gas 

concept consists of three levels (L1, L2 and L3) 

and relies on two independent hardware 

components: Function Controller (FC) and Monitoring Module (MM). The hardware-relevant monitoring within 

the FC (L3) incorporates self-tests between FC and MM. The MM consists in a separate silicon chip (e.g. ASIC 

or small-scale MCU). It incorporates an external watchdog for the FC, permanently uses L3 query-response 

communication with the FC, and controls separate disabling paths. L1 is a Quality Management software (QM) 

including the primary functions of engine control. L2 monitors the performance regulating functions of L1. The 

same controller (FC) typically runs L1 and L2. L3 straddles the FC and monitoring module (MC). Thus, it is a 

combination of software monitoring tasks and hardware monitoring structures.  

B. Challenges of Functional Safety Compliant ECU Platform 

Figure 2 depicts hardware and software composition of ECU. The hardware consists typically of a main 

controller (e.g. MCU) connected to specialized control units (e.g. ASIC or MCU) for sensor measurements 

processing and actuations control. The AUTOSAR-based software [19] includes an application layer (ASW), a 

Run-Time Environment (RTE) and the Basic Software (BSW). The Complex Device Driver (CDD) cross layer 

provides means to implement project specific functionalities with direct access to RTE and ECU hardware. 

Drivers of complex sensors and ASIC are usually implemented in the CDD while abiding to AUTOSAR port and 

interface specifications. AUTOSAR-based software is developed according to the safety mechanisms specified in 

AUTOSAR, commercially available and ISO certified (e.g. CUBAS from Bosch [20], MICROSAR Safe from 

Vector [21] etc.). This reduces enormously its safety evaluation effort. Contrary to that, safety evaluation of CDD 

software and its interference with AUTOSAR layers presents a challenge to tier-one suppliers. Therefore, not only 

the definition of hardware safety mechanisms, but also the software that configures and monitors those hardware 

 

Figure 1. Block Diagram of the 3-level E-gas Monitoring Concept 

 



 
mechanisms and reacts to detected errors, 

should be developed according to a standard 

compliant with ISO26262 (e.g. E-Gas 

monitoring). Typically, the L3 monitoring 

software is hardware-dependent and usually 

developed as part of the CDD layer, while the 

L2 and L1 software are part of the QM 

application layer (ASW).  

IV. A VIRTUAL PROTOTYPE FOR 

POWERTRAIN MDG1 ECU 

Executing automotive safety software on a 

VP requires the modeling of specific features. 

In the following, the modeling approach of our 

VP use case is described from functional and 

safety perspectives. 

A. Overview on the VP Use Case Structure 

Figure 2 illustrates the basic structure of 

our VP use case. It is a TLM model of a 

powertrain Bosch MDG1 ECU [2] based on the 

AURUXTM 2G MCU of Infineon Technologies 

Inc.. Components of this VP have different 

suppliers: the MCU model is provided by Infineon Technologies Inc., while the set of ASIC models for power 

stages and stimuli generators are developed by Robert Bosch Inc. according to software test driven requirements. 

The assembly of the complete VP is done according to a project specific layout. The AURIXTM 2G MCU model 

is based on 32-bit TricoreTM Fast-Timed Model (FTM) [23] from Synopsys® as well as a mixture of Loosely 

Timed (LT) and Approximately Timed (AT) memory and peripheral IP models from Synopsys Inc. (e.g. 

memories), Infineon Technologies Inc. and Robert Bosch Inc. A good tradeoff between timing and functionality 

accuracy and simulation speed was achieved in the MCU model. The validation of the processor model reaches 

more than 90% timing accuracy compared to RTL. The critical IP models are co-simulated with their 

correspondent RTL unit test environment, and calibrated against system RTL test benches. In order to run 

unmodified automotive software, the AURIXTM VP was extended by a set of ASIC LT models for external 

monitoring, low-side and high-side power stages, ignition/injection and power supply.  

B. Safety Mechanisms of the VP Use Case 

The MDG1 ECU family [2] is a scalable multi-core processor system that was designed to ease the 

development of a safe system conform to ISO26262 up to the Automotive Safety Integrity Level (ASIL)-D. Based 

on the L3 monitoring concept, its safety concept includes hardware-integrated safety mechanisms, which enable 

checks either by software, or by error-detection hardware, or by a combination of both. In the AURIXTM 2G MCU, 

effort of developing software function tests (e.g. instruction-set and memory tests) is saved since dedicated 

hardware logic blocks (e.g. locked step cores, Built-In Self Test (BIST), Error Code detection and Correction 

(ECC)) are directly embedded in hardware. Nevertheless, configuration of hardware integrated safety mechanisms 

and error software reaction still needs to be protected and checked by the software during runtime. At the ECU 

level, additional hardware safety-mechanisms (e.g. watchdog timers, shut-off decoupling) should also be 

configured and controlled by safety software in order to ensure a certain product ASIL level. Safety software 

testing on the ECU VP requires therefore the availability in the MCU model of safety hardware-related features, 

which are relevant for safety software validation. For instance, the Safety Management Unit (SMU) is a central 

module of the AURIXTM 2G MCU responsible for capturing all the hardware safety errors during software 

execution and needs to be modeled in the VP. Depending on software configuration, SMU can either notify the 

software or the hardware in case of error, or react directly by resetting some modules or the complete system.  
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Figure 2. Hardware and software components of a powertrain ECU 



 
V. MAPPING RULES AND FAULT INJECTION METHODOLOGY FLOW  

In order to test safety software on new hardware devices, software programmers tend to maximize the reuse 

of software tests used for old device variants. These tests consist in the original software augmented at specific 

locations with additional code lines, which either inject faults, or check error effects and reactions. In this section, 

we present our methodology flow to perform VP-based safety software testing.  

A. Mapping Rules for Efficient Safety Software Testing Based on VP 

As depicts Figure 3, we distinguished four different mapping rules to be applied for the efficient construction 

of safety test scenarios suitable to run a VP. They are described below using L3 monitoring software examples. 

a) Mapping Rule 1 (MR1) 

MR1 is applicable during the bring-up on a VP of a 

safety software. Most of the periodic checks performed 

by such software are hardware-dependent and might be 

constrained by a missing functionality in the VP model. 

Typical constraints are the stub models in the VP, where 

internal behavior and/or communication side effects are 

not modeled. MR1 states that a software modification 

will not be necessary in the presence of workarounds. 

Workarounds consist in converters of original software 

checks to alternative ones with the same validation 

purpose. These intercept at runtime the real software flow 

and trigger differently the monitoring checks. Figure 4 

illustrates the real hardware design controlled by the 

ADC monitoring software. This software is responsible for the periodic control of the switch ‘sw0’ by setting a 

test function register of the ADC module to pull ‘sw0’ down and observing software reaction to a null voltage. If 

such register is missing in the VP, an alternative would consist in setting the analog input of the ADC (ANx) to a 

null value just before writing to the test function register.  

b) Mapping Rule 2 (MR2) 

Software tests are usually implemented according to a detailed specification of safety requirements. Therefore, 

they implement all intermediate steps until error creation, detection and effect checks. A direct one to one mapping 

from the software test code to a script-based FI scenario is recommended in case no constraints are observed to 
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Figure 3: Classification of mapping rules and related analysis flow 

Figure 5. PMU Safety Test Case Flow 



 
apply the complete 

scenario flow. If it is 

not the case, MR3 

should be 

considered. Figure 5 

illustrates the test 

software flow to 

inject double bit 

ECC error during 

the program flash 

(PFlash) operation. 

Depending on the 

L3 monitoring 

software 

configuration, a 

reaction to this error 

could be handled, 

either by the cores as a response to received interrupt from PFlash, or by the SMU, which raises an alarm and 

results in a non-maskable interrupt (NMI). Figure 6 illustrates the hardware layout involving the mentioned 

modules. Considering the configured reaction, a direct one-to-one mapping of this scenario to a VP-based one 

could only be achieved in case of existing write callbacks to set the DMU_HF_ECCS register in the PFlash 

module. In general, status registers are read only e.g. DMU_HF_ECCS, and access to some registers is restricted 

and only allowed under specific rules e.g. safety protected registers. To ease VP-based FI, reading and writing in 

registers that might be relevant to capture a safety violation condition are still highly recommended. According to 

our experience, some IP model suppliers follow this recommendation while others offer implementations upon 

customer request due to the error-prone nature of such approach. 

c) Mapping Rule 3 (MR3) 

MR3 is applicable in case of constraints to apply MR2. It consists in defining alternatives to trigger the error 

effect differently.  This could be done by inspecting the error occurrence flow and defining a potential entry to 

inject a fault and get the same effect. There is often no need to perform all intermediate behavior of a fault, but 

more importantly consider the fault part that is directly obvious to the software and on which it reacts. The most 

important drawback of MR3 is the limited possibility of debug and analysis of error path propagation. A common 

use case for MR3 is the use of hardware error injection and detection logic by the software test. For instance, in 

the AURIXTM 2G VP model, it was not possible to run a software test case that injects a fault into the LMU safety 

control register to generate an error in ECC. This was due to non-modeled error injection registers in the VP. An 

alternative way was to set the memory control register that corresponds to the hardware detection logic of such 

internal ECC errors. This was as well not possible since hardware provided error detection logic offered by the 

device were not present in the VP. The only way to inject this fault was by triggering its direct effect on software 

consisting in triggering the corresponding alarm input signal of the SMU (see Figure 6). 

d) Mapping Rule 4 (MR4) 

MR4 is used for the creation of new fault 

scenarios, typically faults which are hard to apply 

on real hardware e.g. short circuit, open load, 

over-and under voltage. The shut-off path test in 

the E-Gas L3 concept is a good candidate for 

MR4. Figure 7 illustrates this concept in case of 

MDG1. MDG1 implements a decoupling 

mechanism between power stages, the external 

watchdog and the MCU controlled by a 
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Figure 6. Interconnection between SMU, IR, CPU and PMU in the AURIXTM 2G Architecture 



 
dedicated error-pin set by the SMU in case of sever faults. It 

is up to the system programmer to configure which events lead 

to an error pin event and how to recover to a safe state. Those 

hardware safety features can force direct error reactions e.g. 

CAN communication can be stopped and power stages can be 

switched off. An easy way to test those error reactions and 

dependency of monitoring software on other BSW packages, 

is to pull low the error pin during a CAN communication in 

one scenario and to pull low the power stage error-pin in 

another one. 

e) No Mapping Rule (no MR) 

Due to specific limitations in the ECU VP, neither software 

tests can be converted to VP-based analog ones, nor new pure 

VP related test scenarios, can sometimes be imagined. The 

typical limitation is the non-modeled functionality inside the VP model. For instance, although creating over and 

under voltage situations is recommended to be applied on a VP (MR4), having in the AURIXTM 2G VP only a 

stub model of the Power Management System  (PSM) module, makes the creation of such fault situations 

impossible. 

B. The Overall Methodology for VP-based FI Tests Construction  

In order to construct Fault models and libraries based on existing software test cases, establishing and applying 

a well-structured VP-based FI methodology is required. Figure 8 illustrates the overall flow of our proposed 

methodology. It is composed of five sequential phases and a parallel phase. The parallel phase consists in applying 

the previously explained mapping rules as guidelines to construct a VP-based FI script across the sequential 

phases. In the following, each sequential phase is explained based on the example code on Figure 9, which 

implements a FI test scenario for the PMU based on the flow in Figure 5. 

a) Step 1: Analysis of Safety Requirements Test cases 

The first step consists in analyzing the software test case in order to identify necessary means (e.g. registers, 

signals, software global variable, etc.) which are responsible of injecting faults in the existing implementation. 

This is needed to understand the desired software behavior that should be triggered to cause the safety error 

reaction. Mapping the existing test scenario on the VP requires the application of the four mapping rules. The 

choice of the suitable mapping rule relies on an examination of the offered mechanisms and functionality in the 

VP and comparing them to software response/error detection and reaction requirements as explained. 

b) Step 2: Definition of Fault Library 

Based on the chosen mapping rule, a library specifying the FI inspectors should be defined. FI inspectors are 

responsible either to inject faults into the target module or to capture events that determine FI timing points. They 

are usually instances of monitor modules attached to interfaces of hardware models. These are for instance the so-

called ‘probes’ in the Synopsys® VirtualizerTM IDE and could be created using a pre-defined VP tool python-

based API. For instance, in order to inject the OPER flag error in the PMU, a probe on the target socket of the 

system bus (SRI) is needed (see Figure 9). Capturing the simulation timing point when to alter the OPER flag 

requires the creation of a probe on the CPU (“coreprobe”). It monitors any change in the ‘tewstSMU_triggerECC’ 

software variable (indicating hence the start of the desired monitoring task). This is an example of a dynamic 

event that triggers a FI scenario, but could not be predicted offline. 

c) Step 3: Definition of Fault Method Library 

This step consists in defining the necessary set of callbacks that should be called whenever an event is captured 

by one of the probes defined in step 2. These callbacks are responsible to inject the faults by altering register or 

port values. They should be separated as atomic operations while considering their timing processing latency and 

side effect. As depicts the example on Figure 9, the non-intrusive TLM debug_write and debug_read interfaces, 
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which bypass bus operations to directly get and 

set values in models, should be used to alter 

register values. Constraints to update register 

contents (e.g. read only or safety protected 

registers) should be considered. 

d) Step 4: Definition of Fault Scenario 

Sequences 

Given the probes defined in step 2 and the 

callbacks in step 3, step 4 specifies the test 

scenario flow (e.g. see flow on Figure 5) starting 

from a triggering condition of the FI, until 

calling pre-defined callback functions in the 

right sequential order, ending with applying 

checks (step 5) to validate specific conditions of 

error detection or reaction.  

e) Step 5: Definition of Recovery from Error 

States Library 

Step 5 focuses on the implementation of a 

library of checks applied for validating the 

desired safety reaction to the injected faults. The 

callback functions forming this library could 

then be called by the FI scenario defined in step 

4. For instance, the periodic monitoring task of the L3 query-response communication between the external 

watchdog and the MCU (see Figure 7) is done by injecting faults in the responses to queries received by the 

external watchdog over the serial peripheral bus. Error software reaction is then checked inside the test software 

by reading specific status registers of the MCU. Analog checks could be implemented in the VP-based FI script, 

eventually to check the fault propagation in the dependent layers (see function check_Flashconf on Figure 9). 

VI. EXPERIMENTAL RESULTS 

The methodology presented above and FI error scenarios deduced from original software test cases based on 

the four mapping rules, have been applied on AURIXTM 2G-based powertrain ECU VP. The main resultant benefit 

was the enabling of system programmers to start checking issues related to safety monitoring and system reaction 

to defects six months before availability of real hardware, while even being not affected by delays in shipping the 

hardware prototypes. Up to 40% of critical L3 software reactions were tested on virtual prototype. Applying the 

remaining 60% test cases was mainly constrained by missing functional behavior in some of the MCU sub-models 

as well as to missing HW safety mechanisms in the ARURIXTM 2G model (e.g. locked step cores, ECC logic, 

hardware error injection mechanisms). The flexibility offered by the virtual prototype model enabled the software 

testers to test up to 6 critical and important safety software error scenarios, which are hard to realize on the board 

level (e.g. shut-off path, Generic Timer Module (GTM) testing), and that by applying the MR4. Once a real 

hardware ECU became available, a quick software bring-up free of traps and uncomprehensive shut-down and 

resets was ensured, allowing hence a high quality, on-time and safe software release to OEMs.  

VII. CONCLUSION AND FUTURE WORKS 

We presented a real industrial automotive use case for testing safety-monitoring software based on VP. We 

explained our FI methodology based on examples of AURIXTM 2G MCU and MDG1 ECU safety concepts. 

Applied in a pre-silicon phase, we reported its benefits in increasing the released software quality and gaining 

TTM via a fast software bring-up on a real ECU. We recognized although the necessity to perform safety 

architecture exploration for the next generations of ECU, based on a well-established virtual prototyping flow. 

This will increase test bandwidth of hardware-dependent safety software testing. We highlighted as well the need 

 

Figure 9. Application of the methodology on an example 



 
for a serious consideration by VP suppliers of the ISO26262 qualification of their tools and models. Due to VP 

qualification lack and workaround-based conversion of some test scenarios, our approach is only an efficiency 

measure and safety software tests have to run in the end on the real silicon. Future work will focus on automating 

the application of mapping rules and on developing generic VP-based fault libraries for the post-silicon VP use 

e.g. continuous regression testing of software variants.   
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