Efficient Exploration of Safety-Relevant Systems Through a Link Between Analysis and Simulation

Moomen Chaari^{1,2}, Wolfgang Ecker^{1,2}, Thomas Kruse¹, Cristiano Novello¹, and Bogdan-Andrei Tabacaru^{1,2}

¹ Infineon Technologies AG, ² Technische Universität München

SYSTEMS INITIATIVE

Contents

- Scope: Safety Evaluation for Automotive
- Motivation and Challenges
- State of the Art
 - Safety Analysis Methods
 - Fault Injection Techniques
- Model-Based Safety Analysis
- Link to Fault Injection and Simulation
- Summary and Outlook

Scope: Safety Evaluation for Automotive (1/2)

> Evaluation at different levels and process steps:

Scope: Safety Evaluation for Automotive (2/2)

Safety Evaluation for E/E Systems System Modeling and Simulation Generic. Failure Sources (standards, reusable Catalogue old projects...) Formalisms for fault modeling and fault-effect simulation **Relations** Platform for fault-effect simulation Reliability Block **FMFDA Spreadsheets** Diagrams Use cases, Executable Fault applications Models injection **FTA Trees DFA Tables** probabilistic analysis quantitative assessment

2016

DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

IRCE

Motivation and Challenges

Safety Analysis

- + Established methodologies in the industry
 + ISO 26262 compliant
- Manual character
- Huge documents
- High effort and time costs

Missing link

Missing link

Fault Injection and Simulation

- + Easy integration in common design/verification platforms
- Late application
- Implementation details required
- Slow simulation

State of the Art Safety Analysis Methods (1/2)

Safety Analysis

essential aspect in system design & manufacturing

State of the Art Safety Analysis Methods (2/2)

DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

State of the Art Fault Injection Techniques

Fault Injection and Simulation highly recommended for ASIL C and D

Model-Based Safety Analysis (1/3)

> Traditional flow:

Strategy to reduce efforts and costs in the flow: Use data models constructed as instances of so-called metamodels as substitution of huge documents.

DESIGN AND VERIEIC

Model-Based Safety Analysis (2/3)

> Proposed flow:

DESIGN AND VERIFICATION

Model-Based Safety Analysis (3/3)

> Example of Metamodel-Based Formalization:

© Accellera Systems Initiative

DESIGN AND VERIFICATION

Link to Fault Injection and Simulation (1/2)

SYSTEMS INITIATIVE

Link to Fault Injection and Simulation (2/2) – Data Mapping

	Safety Analysis	Fault Injection
Targets	Parts, Functions (FMEDA), Elements (DFA)	Modules, Submodules, Entities, Components
Threats	Failure modes (FMEDA), Dependent failures (DFA), Events (FTA)	Injection points (signals, ports, variables, sockets, processes)
	Failure Effects (FMEDA/DFA), Events (FTA)	Observation points (signals, ports)
Counter- measures	Safety measures (FMEDA, DFA)	Diagnostic and correction points (modules, submodules, signals)

Summary and Outlook

Model-Based Safety Analysis and Link to Fault Injection

- Formalization and automated support
- Comprehensive and flexible framework (partly synthesized)
- Model-to-model mapping

Main Benefits

- Systematic and well-organized approaches for safety analysis
- Dynamic failure modes database
- Generation of fault libraries to stimulate fault injection
- Effort savings and speed-up reaching 70%
- Future Work and Planned Improvements
 - Refinements of data mapping algorithms
 - Link to requirements-engineering

Questions?

Thank you for your attention.

