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Abstract—In the automotive domain, where failures may lead to serious human injuries, the ISO 26262 standard 

provides state of the art guidelines for safety evaluation. It prescribes a comprehensive flow ranging from hazard 

analysis and risk assessment procedures to fault injection and simulation techniques. 

In this paper, we present a model-based approach to bridge the gap between safety analysis and fault simulation. 

By formalizing analysis procedures on the one hand and establishing a model-driven data mapping to fault injection 

and simulation contexts on the other hand, we achieve an efficient exploration methodology for safety-related 

systems. The quality and consistency of safety evaluation outcomes are subsequently improved and a considerable 

speed-up of the safety assessment cycle is realized by reducing up to 60% of the cumbersome manual tasks. 
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I.  INTRODUCTION 

Integrated circuits are used nowadays in a wide range of safety-critical systems whose operation may affect 

human life. Therefore, safety assessment represents a key step in the design and manufacturing cycle. Through 

this assessment, the risk of an erroneous behavior with critical impact on system safety is minimized. For this, 

designers follow safety evaluation guidelines given by domain-relevant standards (e.g., the ISO 26262 standard 

for functional safety of road vehicles [1] which has been built upon the IEC 61508 standard [2]). To certify an 

electrical/electronic (E/E) system as functionally safe in compliance with ISO 26262, an extensive procedure is 

required. It starts by predicting potential risks, whose causes and effects are subsequently identified. To mitigate 

failure effects, appropriate countermeasures are deployed. Then, evaluation metrics are computed to provide 

evidence about the system's safety level. This probabilistic safety analysis process relies on manual data gathering 

and inspection, expert judgment, and spreadsheet based calculations. It is performed using different methods such 

as Fault Tree Analysis (FTA), Failure Modes, Effects, and Diagnostic Analysis (FMEDA), and Dependent 

Failure Analysis (DFA). When the targeted safety level is particularly high, the standard prescribes the additional 

application of fault injection techniques. For this, faults are deliberately inserted into an executable system model 

whose response is afterwards monitored. Running modified system models on appropriate simulation platforms 

enables the perception of failure effects, the detection of faulty scenarios leading to critical system failures, and 

the qualification of already integrated safety/diagnostic mechanisms. Thus, we consider fault injection as a 

quantitative safety assessment process as it delivers measured values for failure rates and coverage metrics.  

 

Figure 1 - Different Perspectives of Safety Evaluation 
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Figure 1 gives an overview of the two considered safety evaluation perspectives. For each perspective, we 

differentiate between reusable generic basics and application-dependent use cases. On the one hand, a failure 

catalogue is commonly used in the industry for probabilistic analysis. It represents a database for already known 

failure modes, recognized failure rates, and similar knowledge derived from relevant reliability handbooks or 

gathered from older projects. Among tangible reflections of such a failure catalogue, we mention fully 

constructed fault trees and filled FMEDA spreadsheets. On the other hand, quantitative assessment relies on 

system modeling and simulation guidelines, extended through formalisms for fault modeling and fault effect 

simulation. These are applied through fault-injection campaigns performed on executable models within an 

appropriate simulation platform. 

In this paper, we address the connection between safety analysis and fault injection in Section II. After 

presenting the most relevant safety analysis methods (Subsection II.A) and fault injection techniques 

(Subsection II.B), differences and potential correlations between both contexts are outlined in Subsection II.C. 

Afterwards, our model-driven solution to link analysis and simulation is detailed in Section III. After a general 

presentation of the approach (Subsection III.A), the metamodel-based formalization of safety analysis methods is 

explained in Subsection III.B and their consequent mapping to fault injection in Subsection III.C. 

II. THE CHALLENGE: CONNECTING SAFETY ANALYSIS WITH FAULT INJECTION 

A. Safety Analysis Methods 

According to the ISO 26262 standard, safety analyses are performed at different stages of the safety 

evaluation cycle. They are mainly applied to (i) validate safety goals and concepts, (ii) verify safety requirements, 

(iii) identify conditions and events (faults, failures, etc.) that may cause a safety goal violation, and (iv) determine 

appropriate counter-measures [1]. The standard mentions several safety analysis methods and differentiates 

between them with respect to their cause-to-effect exploration direction (deductive versus inductive) and to their 

level of detail (qualitative versus quantitative).  

Fault Tree Analysis (FTA) is a well-established deductive (top-down) safety analysis approach. It considers 

undesirable events causing system failures and subsequently analyzes all possible causes. The fault tree is an 

acyclic graphical representation which uses logical connectors and gates and depicts successive levels of events. 

It is built through a systematic backward-stepping process starting at the top-event and leading eventually to the 

elementary (also called primary) events [3].  The predominant combinatorial aspect of FTA makes it 

inappropriate for advanced system descriptions including timing and sequencing. However, it has been extended 

by different approaches such as Temporal Fault Trees (TFT) and Dynamic Fault Trees (DFT). The TFT approach 

captures timing dependencies between faults and events. Furthermore, in the DFT methodology, the FTA syntax 

is extended with additional fault tree gates (e.g., functional dependency and priority AND) to model dynamic 

behavior of fault-tolerant systems such as sequence-dependent failures. The FTA methodology can be 

summarized through the following three fundamental observations: 

1. Overall structure: The analysis is performed top-down starting at the system failure for which all potential 

causes must be identified. The analysis information is structured using a tree format containing a number of 

events which are interconnected using logical combinations (see example in Figure 2). The tree contains 

necessarily one and exactly one top event. To enable modularization and allow separate analysis of 

different system parts, the tree can be optionally decomposed in further sub-trees. 

2. Events: We differentiate between top events, primary events (leaf nodes of the tree), and remaining 

intermediate events. Primary events can be basic (requiring no further development), undeveloped (not 

further on developed because of unavailable information for example), conditioning (specific conditions or 

restrictions that may apply to the logic gates), or external. 

3. Failure logic: The tree construction is based on backward-stepping from top events to primary events. A 

non-primary event can be initiated by one single event or by a combination of events. Beyond classical 

combinations such as AND, OR, and XOR gates, we also consider FTA specific gates such as VotingOR. 

Another popular safety evaluation technique is Failure Modes and Effects Analysis (FMEA). This inductive 

(bottom-up) methodology consists in (i) identifying potential failure modes, (ii) evaluating their impact on system 

behavior, and (iii) proposing appropriate countermeasures to mitigate them [4]. Basically, FMEA is a qualitative 

technique. However, a quantitative aspect is introduced through (i) a criticality evaluation (Failure Modes, 

Effects, and Criticality Analysis - FMECA) and (ii) a diagnostic coverage analysis (Failure Modes, Effects, and 

Diagnostic Analysis - FMEDA). By analyzing the occurrence probabilities of severe failure effects and 

characterizing the risk detection through coverage factors and failure rates, design actions are prioritized and 

failure mitigation mechanisms are refined [5], [6]. FMEDA documentation is done in tabular form, as seen in the 

simplified extract of an FMEDA spreadsheet given in Table 1. For each safety-relevant system part, an element 
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type according to the ISO standard and a failure rate are allocated. The multiple functions of the part can be 

affected by different failure modes which are then characterized by their failure distributions (basically the 

percentage of their contribution to the failure rate of the whole part), their failure types (hard errors vs. soft errors) 

and their failure effects. These are classified according to their severity and finally, appropriate safety measures to 

mitigate failure effects are documented along with their diagnostic coverage values. 

 

Figure 2 - Example of a Fault Tree                                                     

 The third major safety analysis technique is Dependent Failure Analysis (DFA) where the probability of 

simultaneous or successive occurrence of two given dependent failures cannot be simply expressed as the product 

of their respective occurrence probabilities. Dependent failures are classified as common-cause failures or 

cascading failures. Common-cause failures result from a single specific event or root cause, while cascading 

failures are failures of a device element causing at least one other element to fail because of coupling mechanisms 

in the architecture. DFA is documented in tabular form (see example in Table 2). 

B. Fault Injection Techniques 

Fault injection is an approach which has been used over the last decades in order to assess the dependability of 

a system under test. It consists in the deliberate insertion of faults into a system which is afterwards monitored to 

determine its behavior in response to the introduced faults. The main purposes of fault injection are the 

observation of system reactions in faulty environments and the validation of fault detection and/or correction 

mechanisms. Thereby, appropriate injection spots, observation/diagnostic points, and workloads are determined. 

Inactive fault locations may be discarded by using so-called operational-profiles (quantitative characterization of 

the way a system is used [7]). Furthermore, fault collapsing is commonly used to reduce the amount of faults to 

be injected. Several fault injection techniques are used by the design community. Some of them deal with 

physical prototypes, while others address virtual models. There are different fault injection categories [8], [9]: 

 Hardware-based fault injection: It is accomplished at the physical level to affect the actual system's 

hardware. This may be done by changing environment parameters (e.g., heavy ion radiation, 

electromagnetic interferences...), modifying circuit pin values, or disturbing power supplies (e.g., power 

rails manipulation with voltage sags). 

  Software-based fault injection: It is applied to reproduce faults and errors occurring in the hardware. It 

consists in introducing faults into applications or operating systems and addresses implementation details, 

program state, and communications. Based on the application phase, we differentiate between compile-time 

and runtime injection. 

 Simulation-based fault injection: It is conducted at early evaluation stages by introducing faults in register-

transfer and gate-level models. It can be performed (i) through code modification by adding saboteurs or 

by applying mutants or (ii) through simulator built-in commands which extend simulation tools to support 

fault-insertion and response-monitoring. 

Table 1 - Simple Example of an FMEDA Table 

Table 2 - Simple Example of a DFA Table 
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C. Differences and Potential Correlations 

The gap between safety analysis (SubsectionII.A) and fault injection (Subsection II.B) results from their 

differences in terms of requirements, work styles, and purposes. On the one hand, analysis aims at providing 

safety evidence at higher abstraction levels and at early design stages. Such safety evidence is achieved by (i) 

inspecting conceptual system descriptions, (ii) gathering application-related data, (iii) evaluating safety-

requirements satisfaction, and (iv) performing statistical calculations. Safety analysis data is structured in multiple 

ways, such as tables, trees, etc. For large systems considered in industrial contexts, data creation and maintenance 

are particularly cumbersome and error-prone because of manual tasks. In many cases, safety analysts are 

confronted with FMEDA spreadsheets containing thousands of lines and with fault trees including hundreds of 

items. On the other hand, fault injection aims at validating concrete system implementations with respect to safety 

by (i) extending nominal design models with expected behavior under faulty conditions and (ii) observing the 

resulting impact through simulation and monitoring. However, there are multiple limitations: the fully 

deterministic and detailed system model required by fault-injection is only available at a late implementation 

phase, where redesign is very costly. Furthermore, the tremendous number of possible deviations from correct 

system behavior makes exhaustive fault-injection campaigns rather unfeasible. It is thus clear that tackling safety 

evaluation challenges for today's complex systems requires a balanced mixture of both scopes, taking advantage 

of the benefits and minimizing the drawbacks of each one of them. Therefore, the link between safety analysis 

(FME(C/D)A, FTA, DFA,...) and fault simulation represents a significant research topic. In our work, we address 

this challenging issue by considering the structural similarities between both procedures. Indeed, independently 

from the abstraction layer and the evaluation methodology, three basic element groups are always considered: 

1. Targets: the system elements or functions that must be protected to ensure the dependable, or more 

specifically in our case the safe operation of the system. 

2. Threats: malfunctions, discrepancies, failures, and other events against which the targets must be protected. 

3. Countermeasures: different mechanisms and measures used to protect the targets and mitigate the threats. 
 

 Based on this perception, and through a formalization of safety-analysis artefacts making them compatible 

with model-driven techniques, we establish a correlation between analysis and simulation domains. Thereby, 

automated data exchange in the system-safety evaluation cycle is achieved, the overall efforts are reduced, and 

the quality of the resulting outcome is improved. 

III. MODEL-BASED SAFETY ANALYSIS AND LINK TO FAULT INJECTION AND SIMULATION 

Our work introduces model-based alternatives to traditional safety analysis procedures and maps them to 

quantitative assessment (see Figure 1). The application of model-driven development techniques, particularly 

metamodeling and code-generation, allows a formalization of safety-analysis methods, enables a systematic 

extraction of relevant analysis data, and offers speed-up and quality improvement by reducing manual tasks. 

A. Approach Overview 

Figure 3 shows on the one hand the traditional safety evaluation flow and illustrates on the other hand the 

alternatively proposed flow for model-driven linking between safety analysis and fault simulation.  

Traditionally, the safety evaluation is performed by different teams: one for the safety analysis and another 

one for the fault injection and simulation. The conventional inputs for safety analysis include the design 

specification, the area information, the safety requirements, the failure catalogue, and the reliability data 

consisting in the base failure rates for the different component types. Safety engineers take this information as 

source for the analysis which is documented for example in the FMEDA Excel spreadsheet. Through a tedious 

manual input, which is very costly and time-consuming, the analysis artefacts are identified and put into the 

spreadsheet. On the other side, fault injection is performed when it comes to ASIL C and D which are the most 

stringent safety and integrity levels in ISO 26262. For that purpose, the responsible team inserts faults in the 

nominal system model through Monte-Carlo oriented campaigns for example. In some cases, the outcomes of the 

FMEDA are used to define the injection points. Running the corresponding simulations allows the measurement 

of diagnostic coverage values and potentially the comparison of the simulation results with the analysis outcomes. 

This correlation between the two contexts requires a highly complicated manual inspection of the analysis data. In 

real-life cases, where FMEDA spreadsheets contain thousands of lines, going through the analysis data to derive 

fault injection points is cumbersome and error-prone. That is why we developed an alternative flow to introduce a 

systematic and automated mapping between the two safety evaluation contexts. The conventional inputs remain 

basically unchanged. However, the contents of the failure catalogue are covered by a formalized failure modes 

database along with the reliability data. This database makes it easier to systematically get the relevant 

information for the analysis. 
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Figure 3 - Approach Overview: Model-Based Safety Analysis and Link to Fault Injection and Simulation 

The central point of the solution consists in substituting the traditionally used formats for safety analysis and 

documentation by corresponding data models built as instances of respective metamodels. These metamodels 

cover the structure of FMEDA spreadsheets, fault trees, and DFA tables, so that the analysis artefacts, their 

respective properties, and the relationships between them are described in a formal way. Subsequently, the 

manual data input is replaced by an automated data extraction using a set of parsers and readers leading to the 

construction of appropriate data models which syntactically and semantically confirms to the metamodels. These 

data models represent the link to the simulation context. In fact, through model-to-model mapping, specific 

elements of the safety analysis data models are associated to the appropriate elements of the nominal system 

model to be simulated. The outcome of the mapping is used to generate the basis of a fault library listing the 

concrete faults to be injected in the system model: this basis is the list of fault types or classes to be injected and 

the related injection points in the system model. The fault library is accordingly processed in the fault simulation 

platform to automatically trigger fault injection campaigns. Eventually, the obtained results through running the 

corresponding simulations are compared to those of the analysis, allowing consistency and quality checks of the 

expert judgement on which the analytical methods are based. For example, measured diagnostic coverage values 

during simulation are back-annotated into the FMEDA data model. Potential refinements are then undertaken if 

the target values of the safety evaluation metrics have not been reached. 

B.  Formalized Safety Analysis through Metamodeling 

Model-driven development (MDD) is an established approach in system engineering. It reduces complexity 

and enhances productivity by applying models to raise the level at which applications are developed. A further 

abstraction step is based on so-called metamodels which highlight model properties, specify the relationships 

between their elements, and determine the constraints that they must validate in a formal way [10]. This 

formalization aspect offered by metamodeling is the main motive to apply it in the context of our work on safety 

evaluation. We respectively construct metamodels for FTA [11], FMEDA [12], and DFA [13]. In the remainder 

of this section, we focus on the FMEDA metamodel represented in Figure 5.  

In order to construct the metamodel, we take two basic sources into account. First, we consider the FMEDA 

steps previously mentioned in Subsection II.A. Second, the structure of the spreadsheets used by safety engineers 

to document FMEDA outcomes is used as a reference (an example of an FMEDA table has been represented in 

an abstracted and condensed in Table 1). In the FMEDA metamodel (see Figure 5), the team members and the 

allocation of their responsibilities are captured by the root class. 
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Figure 5 - Simplified FMEDA Metamodel 

    The parts of the structure being analyzed, may it be a system, a component, or a subcomponent, are 

characterized through their types as given by the ISO 26262 standard, the failure rate they have, and the functions 

they fulfill. Furthermore, the failure modes affecting these functions are covered along with the corresponding 

attributes such as the failure type and the failure distribution. The failure effects and their severity levels are also 

taken into account and the safety measures used to mitigate one or more failure modes are addressed along with 

their diagnostic coverage. Based on the FMEDA metamodel, a framework is created. It consists of an Application 

Programming Interface and a set of tools including data readers and parsers, writers, and other plugins used for 

the construction, visualization, and modification of data models. A key artefact of the framework is a plugin used 

for importing relevant failure modes from the corresponding database. This database contains information derived 

from internal failure catalogues, field return data of older projects, as well as fault model lists provided by the ISO 

26262 standard in Part 5, Annex D. It also includes typical base failure rate values for component types as given 

by recognized reliability handbooks or industrial norms such as the Siemens Norm SN 29500. The structure of 

the failure modes database is also covered by a metamodel (see Figure 4), from which we generate an SQL API to 

manage the database. Different directories, corresponding to the different potential data sources, are included in 

the database. In each directory, multiple domains are taken into account (e.g., the processing units and 

communication domains in the ISO 26262 standard). A set of components, or more precisely component types 

are related to every domain. Each component is then subject to a group of failure modes, characterized for 

example by the distribution and the rationale behind it. The component failure rates depend on the technology and 

operation parameters. This is covered by the database in so-called configurations. 

C. Model-Driven Data Mapping from Safety Analysis to Fault Simulation 

Supporting model-based safety analysis through FMEDA, FTA, and DFA metamodels (see Subsection III.B) 

is the first step in the transition from safety analysis to fault injection. Indeed, the correspondingly built data 

models as a substitution for huge amounts of tabular data do not only simplify exploration, maintenance, and 

reuse. They also represent the starting point for the second step of the transition, namely the mapping towards 

fault injection processes. By identifying relations between those safety data models (sets of associated objects 

which can be handled using a common object-oriented programming language such as Python or C++) on the one 

hand and elements of executable system models (generally developed in SystemC, SystemVerilog, VHDL...) on 

the other hand, the link between both contexts is established. Here, we achieve a considerable effort reduction by 

applying model-driven techniques and systematic matching algorithms to identify relevant mapping points. 

The first step of the mapping procedure is to capture the nominal system model on which we perform fault 

injection and simulation. This nominal model can have a more or less complex architecture depending on the 

considered development stage which may range from early conception to final implementation. Moreover, it can 

be described at different abstraction levels such as TLM (Transaction Level Modeling), RTL (Register Transfer 

Level), or GL (Gate Level). Multiple modeling languages are also taken into account. In our use cases, we mainly 

consider virtual prototypes developed in SystemC which has been extensively addressed in the literature for fault-

Figure 4 - Simplified Metamodel for Failure Modes Database 
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injection, error simulation, and safety evaluation purposes (e.g., [14], [15]). In order to obtain a generic 

mechanism for capturing the system model within the model-driven safety evaluation environment, we 

constructed an abstract metamodel to cover the basic system structure independently from the abstraction level 

and the modeling language. In fact, despite all syntactical and semantic differences, the system model architecture 

can be simply represented as a set of interconnected elements constituting a structural hierarchy. Based on this 

perception, we create the metamodel shown in Figure 6. 

 

 

Once the nominal system model is captured, its elements are then considered as mapping targets for the 

different safety analysis artefacts such as safety-relevant system parts, failure modes and effects, and safety 

measures. Associations between FMEDA/FTA/DFA data models and system model objects (instances of the 

metamodel classes in Figure 6) are created through appropriate references according to the correspondences 

outlined in Table 3. The mapping is enabled by so-called matching algorithms which identify potential candidates 

(i.e., system model elements) that may be assigned to a specific analysis artefact. Matching algorithms are either 

based on the unique IDs of the data model objects in both contexts or on their names (more details in [13]).  

Afterwards, a configuration step is required. In addition to the identified injection, observation, and diagnostic 

points, extra details required for the injection are defined (e.g., signal/variable values to be inserted and exact time 

frames). This configuration is either manually performed or semi-automatically derived from operational profiles. 

The final task of the transition between the safety analysis and the fault injection and simulation contexts is 

the template-based generation of the fault library out of the safety analysis data model which has been extended 

by mapping and configuration information. In this library, all concrete faults to be inserted into the system model 

are listed in a manageable format by the associated tools in the fault injection and simulation platform. 

IV. MAIN CONTRIBUTIONS 

The model-driven safety evaluation environment proposed in this paper offers considerable improvements and 

benefits in comparison to the traditionally applied procedures for analysis and assessment. Model-based 

automation support is achieved through the safety-analysis metamodels (for FTA, FMEDA, and DFA) and the 

associated frameworks facilitating data extraction, visualization, and manipulation. The substitution of classical 

safety analysis documents by structured and concise data models, built as instances of the respective metamodels, 

offers opportunities for reuse, consistency checks, and template-based generation of derived model views. 

Thereby, the process cycle is accelerated and the outcome quality of the quantitative evaluation is increased. In 

addition to effort savings due to automation support, the environment offers a dynamically extendable failure 

modes database which provides a well-organized compilation of available prior knowledge about safety and 

reliability. A special plugin allows the storage of newly added failure modes or failure rate values by the 

environment users during analysis iterations. 

Another essential contribution of this work is the established link between safety analysis and fault simulation 

in industrial contexts for automotive applications. Semantic and syntactic correspondences are defined and 

model-to-model transformation techniques are applied to enable structures and systematic data exchange between 

different teams working in different contexts on decoupled platforms related to safety evaluation. The basic idea 

behind that is the classification of data model objects on both sides onto three basic groups of safety evaluation 

elements: targets, threats, and counter-measures. Matching algorithms are then used to identify relevant mapping 

candidates and generating extensive parts of the fault library to automatically trigger fault injection campaigns. 

Among the case studies used to evaluate the feasibility and practicability of the proposed methodology, the safety 

evaluation of a CPU model (MIPS architecture) performed within the new environment shows a reduction of up 

to 60% of the manual tasks in comparison to the traditional process. 

Figure 6 - Simplified Metamodel of System Architecture Table 3 - Mapping Between Safety Analysis Artefacts and Relevant 

System Elements for Fault Injection and Simulation 
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V. CONCLUSION AND FUTURE WORK 

In this paper, we addressed the divergences between the two main safety evaluation aspects: probabilistic 

analysis and fault simulation. As both of them are needed to certify safety-critical systems, a systematic data 

exchange is convenient. Through model-driven development techniques, we formalize established safety analysis 

methods in the industry (FMEDA, FTA, and DFA) and create a link to fault injection and simulation. Thereby, 

manual data entering is replaced by an automated extraction and an extensive framework is used to enhance data 

handling and visualization. Matching algorithms are applied to map specific artefacts of safety analysis data 

models to appropriate system model elements. A fault library is accordingly generated and a back-annotation 

mechanism from simulation to analysis is implemented in order to detect potential deficiencies in the analysis.  

In Summary, our approach offers a considerable speed-up of the safety assessment cycle, reduces 

cumbersome and error-prone tasks, and improves the quality of evaluation outcomes. In the future, the matching 

algorithms used for the detection of mapping candidates will be improved and the created metamodels will be 

enhanced to enable automated requirement traceability and implement more appropriate consistency checks. 
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