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Abstract—Verification engineers are constantly looking to reap 

more simulation cycles with limited available resources. There 

are several methods to achieve this goal. One such method is to 

design the verification environment with multiple instances of 

identical design - frame driver pairs. A traffic flow controller 

picks the data packets or video frames from the image library 

and drives through these multi-channel drivers. The frames are 

reordered before being driven through these multiple channels. 

This reordering of data packets alone can give a better 

throughput. 

This paper also proposes an algorithm involved in reordering of 

the video frames before they are driven. This algorithm groups 

the frames in an intermediate repository, so as to have an equal 

simulation cycles in each group. This algorithm for deciding the 

optimal distribution of video frames was implemented using 

SystemVerilog constraints. Based on the solution generated by 

the constraint solver, a SystemVerilog ® based testbench was 

used to distribute and transmit the frames among available video 

channels. The results were promising and saw increased 

throughput. 
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A. Abbreviations and Acronyms 

DUT – Device Under Test 

HDMI – High Definition Multimedia Interface 

SVTB – System Verilog Test Bench 

VIP – Verification Intellectual Property 

 

II.  INTRODUCTION  

With growing demand for a short time to market, engineers 
are bracing for solutions to run as many simulations that are 
possible in a short time span utilizing the available resource at 
its maximum efficiency. Typically, verifying graphics chips 
involves running multiple simulations while programming 
different aspects of the design. The DUT will be programmed 
either through register settings or using knobs. Frames having 
varying lengths and types are generated by the driver and are 

applied to the DUT under different programming modes. Once 
the processed image is available at the output of the DUT, the 
receiver recreates the image for further process depending on 
the verification goal. This driver, DUT and receiver 
combination is pretty much self contained, which can be 
instantiated multiple times to create multiple parallel channels 
that can process several frames simultaneously. 

III. METHODOLOGY 

A. Typical setup 

Figure-1 shows a typical setup used by verification engineers 
for verifying graphics chip using Verification IPs. This setup 
shows different methods to generate frames.    

The frames can be either a randomly generated image or 
image picked from library of images that typically fits the 
profile of the DUT being verified. Verification IPs like 
Synopsys HDMI VIP 

[2]
, can generate images having pixel 

values determined by constraints applied on them and also 
drive as per HDMI standard. These constraints are part of the 
testbench and can generate different frames by just changing 
the seed at runtime, without having to change the testbench. 
For testing the functionality of the design in the real world 
scenario, it is necessary to drive the DUT with actual images. A 
simple image to frame converter block can take the existing 
image tailored to test the functionality of the DUT, and split it 
into packets that will be transmitted using the VIP driver.  

 

 



 

Figure 1.  Typical setup for graphics device using VIPs 

Depending on the functionality of the DUT, images 
undergo transformation or scaled (up-scaling or down-scaling) 
as it passes through the DUT.  When this processed image 
arrive at the receiver, it will be forwarded for further 
operations, which may include displaying these images for a 
visual comparison with the source image or automatically 
checking the pixels for correctness by passing it to a 
scoreboard. 

With the ever increasing image sizes, simulations involving 
video frames can consume significant amount of CPU cycles. 
Submitting simulation process to a large farm is the widely 
adopted methodology to speed up the simulation process. 
However there are several other ways one can adopt to achieve 
the same, with significantly lesser CPU cycles. One such 
method is to have a single simulation environment with 
multiple design instances inside it.  

B. Methodology for parallel simulation 

With designs having larger memory foot prints, simulation 
loading time can be significant. This amounts to significant 
boot up time when several simulations are to be run with 
different frame formats and DUT register settings. Under such 
circumstances, it is efficient to architect the verification 
environment as multiple copies of identical set of transmitter, 
DUT and receiver blocks creating one large image. Each of 
these copies acts as a standalone image processing pipe or 
channel. The entire image will be loaded only once in the 
beginning of the simulation and inside this image, multiple 
frames are processed in parallel.  

This multiple identical design instance allows parallelism at 
runtime which can be subjected to various types of 
optimizations by simulators. With the advent of new 
technologies in simulators, it is more efficient to run two tests 
in one image rather than running two individual tests in two 
different simulations. Simulators like VCS® 

[1]
 can optimize 

large binaries by collapsing the duplicate logic in an efficient 
manner. Automatic module inlining allows grouping of 
identical logic and collapsing them to one group resulting in 
optimized simulation binary that is faster in simulation. 
Features such as Design Level Partitioning (DLP) in VCS®, 
allows partitioning of the design and create simulation threads 
that runs on multiple cores. These threads run in parallel across 
multiple cores leading to faster simulation.  

Figure-2 shows a setup having multiple instances running 
in parallel. A master scheduler will retrieve the frames from 
frame database and feeds into multiple pipes as they become 
ready for processing the frames. Monitors at the output will 
recreate the frames and passes to comparators for checking for 
correctness. 

 

Figure 2.  Setup for running multiple instances simultaneously 

 

Main drawback of this methodology is that the overall 
turnaround time for a given set of frames. With each 
randomization, the frame order can vary and are fed in different 
order for processing. This change in order can cause some 
pipes to finish early than the others making the overall 
turnaround time unpredictable.  

C. Reordering frames with uniform distribution 

One of the major disadvantages in the parallel simulation 
setup described above is the under utilization of the design-
stimulus channel causing inefficiency of resources. This under 
utilization is caused because of the random distribution of 
frames of varying length across multiple channels. This 
unequal distribution of frames can affect the overall turnaround 
time (TAT) for the simulation, especially when long running 
simulations are submitted at the end. In such cases the TAT is 
dictated by the longest running frame that runs till the end.  

 



 

Figure 3.  Turnaround time without distribution 

 
Figure-3 shows a scenario where a long running simulation 

holds up one of the design instance reducing the efficiency of 
the other pipes. In this scenario pipe-4 runs for 45 time units, 
whereas the remaining pipes have completed their share of the 
frames and stay idle. Measuring the efficiency of the individual 
design instance shows that the distribution of efficiency is 
unequal among pipes. Except for the pipe-4 instance, that had 
the longest frame executing till the end, rest of the design 
instances were idle for significant amount of time. This 
reduced their efficiency significantly. Efficiency is determined 
as the ratio of simulation cycles executed by the design 
instance to the overall simulation cycles (i.e. longest running 
design instance). 

 

 

Figure 4.  Turnaround time with equal distribution 

 

Figure-4 shows how the distribution by rearranging the 
same set of images. Once the same frames are rearranged with 
long running tests equally distributed among each design 
instance, the simulation in each instance completes around the 
same time. This keeps all of the design instance fully occupied, 
resulting in higher efficiency. As seen in figure-4, the 
simulation is completed in 35 time units compared to 47 time 
units without redistribution. This redistribution of frames alone 
gives around 30% speed up. 

For effective verification, every feature of the design needs 
its own set of images that should be used. Say, to verify the up 
scaling logic of a design, it makes sense to run simulations 
involving smaller images like 640x480 or 720x480 that gets up 
scaled, rather than picking larger images like 1920x1080p. 
When verification engineer wants to verify different features, 
image library needs to be changed accordingly. Under such 
circumstances, one cannot guarantee fixed order of frames that 
gives efficient distribution every time. There is a need for 
automation to determine efficient frame order, when the 
images in the library are constantly changing. 

IV. ALGORITHM FOR OPTIMAL DISTRIBUTION 

This section of the paper discusses the algorithm developed 
to achieve the automation. Native simulator’s constraint solver 
was used to achieve this automation of finding the best possible 
distribution of frames. The logic to determine the distribution 
was written using SystemVerilog 

[3]
 constraints which are 

solved by the SystemVerilog simulator. The results obtained 
from the solver were used to determine the distribution. 

Logic used here is a simple and straight forward one. The 
frame lengths of all the images were read into a holder array. 
Since frame length of each image is directly proportional to the 
simulation cycles that are needed to process that particular 
image, sum of this holder array should essentially give the 
rough estimate of total simulation time, if all the frames from 
holder array were to be run in serial in one pipe. In the 
SystemVerilog code, an array per simulation pipe is created 
and the frames from the holder array are distributed among 
these arrays. Constraints are applied such that the sum of frame 
lengths in each of these individual arrays are either equal or fall 
under certain threshold between each other. The individual 
frame buffer inside the master scheduler is then filled with 
these frames from corresponding array. This ensures that all 
frame buffers inside master scheduler are filled with equally 
distributed frames. 

Following code snippets shows the logic used in 
distributing the frames equally among the available four arrays. 
For better readability of the code, a simplified version of the 
actual constraint code is shown here. In this code snippet, 
integral frame lengths are used as each item instead of the 
frame itself. 

Following code snippet in Figure-5 shows the class 
structure containing the individual array that holds the frames 
(note that the frame lengths are used instead of actual frames) 
to be driven on each the pipe.  



 

 

class Pipe ; 

  rand int arr[] ; // Array holding frames lengths 

  rand int sz ; // Variable to hold the array size 

  rand int sm ; // Variable to hold the array sum 

  

 constraint basic 

{ 

 sz == arr.size() ;  

 sm == arr.sum() ; 

 sz < 100;  // Pipe holds less than 100 frames 

} 

 endclass: Pipe 

Figure 5.  Class structure showing individual buffers 

A top level structure is created as shown in the code snippet 
in Figure-6, where deck of individual buffer classes are 
instantiated and constrained it to be as wide as the number of 
pipes in the design. Basic constraints are applied such that the 
individual arrays are no wider than the holder array. Here 
constraints are applied such that the sum of frame lengths 
inside each individual buffers are either equal or falls under 
certain threshold.  

 

class Structure ; 

  rand Pipe deck[] ; 

   

  rand int wide ;  // Decides pipe count 

   

  int hldr[];//Array to hold complete set of frames 

  int hldr[];//Temporary array 

  rand int ind[] ; //Array to hold indices 

  rand int threshold ; // Threshold for individual 
array sum variation 

     

 constraint basic 

{ 

 deck.size == wide ; //no. of pipes 

 hldr.size() == deck.sum with (item.sz) ;  

 foreach (deck[i]) 

 { 

  deck[i].arr.size < hldr.size() ; 

    deck[i].arr.size > 0 ; 

} // deck[i] 

  

foreach (deck[i]) 

{ 

 deck[i].sm >=(hldr.sum()/wide)-threshold ; 

 deck[i].sm <=(hldr.sum()/wide)+threshold ; 

   } // deck[i] 

} // basic   

Figure 6.  Class structure to hold deck of individual buffer classes 

 

The logic adopted to assign the frames from holder array into 
individual buffers, is by creating a temporary holder array, 
t_arr, whose contents are shuffled values from holder array. 
Figure 7 shows the code snippet to shuffle the holder array 
contents and assign it to the temporary array. There are several 
ways to shuffle an array, here is one such method where the 

indices of the array are maintained in an indices array. ind[], 
and used to shuffle the contents.  

constraint con_shuffle 

{ 

 foreach(ind[i]) 

 { 

  foreach(t_arr[j]) 

  { 

if(j == ind[i]) 

t_arr[i] == hldr[j] ; 

  } // t_arr[j] 

 

 foreach (ind[j]) 

 { 

 (i!=j) -> (ind[i] != ind[j]) ; 

 }// ind[j] 

 ind[i] inside {[0:ind.size() -1]} ; 

 ind[i] >= 0 ; 

} // ind[i] 

} // con_shuffle 
 

 

 

Figure 7.  Constraints showing shuffling of holder array contents 

The contents of this shuffled array are assigned to each 
individual buffers as shown in code snippet in figure-8. 

constraint con_assign 

{ 

 t_arr.size() == hldr.size() ; 

  ind.size() == hldr.size() ; 

 

  foreach (hldr[k]) 

  { 

   foreach(hldr[j]) 

   { 

    foreach(hldr[i]) 

    {  

      if((i%wide) == k ) 

      { 

       if (j == (i- (i%wide))/wide) 

       { 

        deck[k].arr[j] == t_arr[i] ; 

        } 

       } // if 

      } // foreach hldr[i] 

    } // foreach hldr[j] 

   } // foreach hldr[k] 

}  

Figure 8.  Constraints assigning holder array contents to individual buffers. 

V. RESULTS 

Experiments were run with multiple frames of varying size 
and numbers.  In each of these experiments totally 12 frames 
were driven through the device.  Each experiment had two sets 
of simulations runs. First, frames were generated randomly and 
applied to the pipes as they were available for simulation. This 
data is plotted as Turnaround time without distribution in Table 
1. Second, frames were redistributed and applied to the pipes 
so as to get equal distribution as discussed in this paper. This 
data is plotted under Turnaround with distribution column in 
Table-1. 

 



TABLE I.  TURNAROUND TIME WITH AND WITHOUT TEST DISTRIBUTION 

Expt. 

Number Image 

Format 

Number 

of 

Frames 

Time (in normalized units) 

Turnaround 

without 

distribution 

Turnaround with 

distribution 

1 640x480p 2 

582 535 1280x720p 4 

1920x1080i 6 

2 640x480p 3 

508 471 1280x720p 5 

1920x1080i 4 

 

In the first experiment there was 8% performance gain in 
total turnaround time by redistributing the frames for this given 
combination. In this experiment the overall utilization of the 
pipes were increased by 8%. Without the redistribution the 
pipes were occupied 86% of the time, whereas after the 
distribution they were occupied 94% on average.  

In the second experiment there was more than 7% gain in 
total turnaround time with a similar redistribution. Here the 
pipe utilization was increased by 6%. 

There can be a significant variation in the gain after 
distribution, depending on the frame length of the images that 
are used. In this section of the paper, a set of frames with 
modest gain were selected to plot these results. The actual time 
in secs were normalized while tabulating these results. 

 

VI. CONCLUSION 

Synopsys VCS simulator was used to simulate the design 
along with Synopsys-HDMI-VIP as the frame generator. Some 
of the key technologies available in the VCS simulator were 
used to further enhance the throughput of the simulation.  

From the experiment it was concluded that having multiple 
instances of the design in parallel that are fed with evenly 
distributed frames gives a better throughput. Having an 
automated way of finding the equal distribution gives more 
flexibility in terms of picking random images from library and 
still able to benefit from this methodology. 

As a future enhancement, we would like to plug the 
distribution algorithm into the design environment making the 
decision making process seamless. Currently the distribution 
algorithm is standalone and is not part of the overall flow. As 
per Amdahl’s law, there is a limitation in terms of number of 
parallel channels that can be used before there is degradation in 
the overall performance. The optimal number for this setup 
needs to be measured.  
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