
Efficient distribution of video frames to achieve better

throughput

Bhavik Vyas

Reliance Consulting

bhavik@gmail.com

Suruchi Jain

Marseille Networks

Suruchi.Jain@marseillenetworks.com

Kiran Maiya

Synopsys Inc.

Kiran.Maiya@synopsys.com

Abstract—Verification engineers are constantly looking to reap

more simulation cycles with limited available resources. There

are several methods to achieve this goal. One such method is to

design the verification environment with multiple instances of

identical design - frame driver pairs. A traffic flow controller

picks the data packets or video frames from the image library

and drives through these multi-channel drivers. The frames are

reordered before being driven through these multiple channels.

This reordering of data packets alone can give a better

throughput.

This paper also proposes an algorithm involved in reordering of

the video frames before they are driven. This algorithm groups

the frames in an intermediate repository, so as to have an equal

simulation cycles in each group. This algorithm for deciding the

optimal distribution of video frames was implemented using

SystemVerilog constraints. Based on the solution generated by

the constraint solver, a SystemVerilog ® based testbench was

used to distribute and transmit the frames among available video

channels. The results were promising and saw increased

throughput.

Keywords-component;

HDMI, VCS®,SystemVerilog®, Constraints

A. Abbreviations and Acronyms

DUT – Device Under Test

HDMI – High Definition Multimedia Interface

SVTB – System Verilog Test Bench

VIP – Verification Intellectual Property

II. INTRODUCTION

With growing demand for a short time to market, engineers
are bracing for solutions to run as many simulations that are
possible in a short time span utilizing the available resource at
its maximum efficiency. Typically, verifying graphics chips
involves running multiple simulations while programming
different aspects of the design. The DUT will be programmed
either through register settings or using knobs. Frames having
varying lengths and types are generated by the driver and are

applied to the DUT under different programming modes. Once
the processed image is available at the output of the DUT, the
receiver recreates the image for further process depending on
the verification goal. This driver, DUT and receiver
combination is pretty much self contained, which can be
instantiated multiple times to create multiple parallel channels
that can process several frames simultaneously.

III. METHODOLOGY

A. Typical setup

Figure-1 shows a typical setup used by verification engineers
for verifying graphics chip using Verification IPs. This setup
shows different methods to generate frames.

The frames can be either a randomly generated image or
image picked from library of images that typically fits the
profile of the DUT being verified. Verification IPs like
Synopsys HDMI VIP

[2]
, can generate images having pixel

values determined by constraints applied on them and also
drive as per HDMI standard. These constraints are part of the
testbench and can generate different frames by just changing
the seed at runtime, without having to change the testbench.
For testing the functionality of the design in the real world
scenario, it is necessary to drive the DUT with actual images. A
simple image to frame converter block can take the existing
image tailored to test the functionality of the DUT, and split it
into packets that will be transmitted using the VIP driver.

Figure 1. Typical setup for graphics device using VIPs

Depending on the functionality of the DUT, images
undergo transformation or scaled (up-scaling or down-scaling)
as it passes through the DUT. When this processed image
arrive at the receiver, it will be forwarded for further
operations, which may include displaying these images for a
visual comparison with the source image or automatically
checking the pixels for correctness by passing it to a
scoreboard.

With the ever increasing image sizes, simulations involving
video frames can consume significant amount of CPU cycles.
Submitting simulation process to a large farm is the widely
adopted methodology to speed up the simulation process.
However there are several other ways one can adopt to achieve
the same, with significantly lesser CPU cycles. One such
method is to have a single simulation environment with
multiple design instances inside it.

B. Methodology for parallel simulation

With designs having larger memory foot prints, simulation
loading time can be significant. This amounts to significant
boot up time when several simulations are to be run with
different frame formats and DUT register settings. Under such
circumstances, it is efficient to architect the verification
environment as multiple copies of identical set of transmitter,
DUT and receiver blocks creating one large image. Each of
these copies acts as a standalone image processing pipe or
channel. The entire image will be loaded only once in the
beginning of the simulation and inside this image, multiple
frames are processed in parallel.

This multiple identical design instance allows parallelism at
runtime which can be subjected to various types of
optimizations by simulators. With the advent of new
technologies in simulators, it is more efficient to run two tests
in one image rather than running two individual tests in two
different simulations. Simulators like VCS®

[1]
 can optimize

large binaries by collapsing the duplicate logic in an efficient
manner. Automatic module inlining allows grouping of
identical logic and collapsing them to one group resulting in
optimized simulation binary that is faster in simulation.
Features such as Design Level Partitioning (DLP) in VCS®,
allows partitioning of the design and create simulation threads
that runs on multiple cores. These threads run in parallel across
multiple cores leading to faster simulation.

Figure-2 shows a setup having multiple instances running
in parallel. A master scheduler will retrieve the frames from
frame database and feeds into multiple pipes as they become
ready for processing the frames. Monitors at the output will
recreate the frames and passes to comparators for checking for
correctness.

Figure 2. Setup for running multiple instances simultaneously

Main drawback of this methodology is that the overall
turnaround time for a given set of frames. With each
randomization, the frame order can vary and are fed in different
order for processing. This change in order can cause some
pipes to finish early than the others making the overall
turnaround time unpredictable.

C. Reordering frames with uniform distribution

One of the major disadvantages in the parallel simulation
setup described above is the under utilization of the design-
stimulus channel causing inefficiency of resources. This under
utilization is caused because of the random distribution of
frames of varying length across multiple channels. This
unequal distribution of frames can affect the overall turnaround
time (TAT) for the simulation, especially when long running
simulations are submitted at the end. In such cases the TAT is
dictated by the longest running frame that runs till the end.

Figure 3. Turnaround time without distribution

Figure-3 shows a scenario where a long running simulation

holds up one of the design instance reducing the efficiency of
the other pipes. In this scenario pipe-4 runs for 45 time units,
whereas the remaining pipes have completed their share of the
frames and stay idle. Measuring the efficiency of the individual
design instance shows that the distribution of efficiency is
unequal among pipes. Except for the pipe-4 instance, that had
the longest frame executing till the end, rest of the design
instances were idle for significant amount of time. This
reduced their efficiency significantly. Efficiency is determined
as the ratio of simulation cycles executed by the design
instance to the overall simulation cycles (i.e. longest running
design instance).

Figure 4. Turnaround time with equal distribution

Figure-4 shows how the distribution by rearranging the
same set of images. Once the same frames are rearranged with
long running tests equally distributed among each design
instance, the simulation in each instance completes around the
same time. This keeps all of the design instance fully occupied,
resulting in higher efficiency. As seen in figure-4, the
simulation is completed in 35 time units compared to 47 time
units without redistribution. This redistribution of frames alone
gives around 30% speed up.

For effective verification, every feature of the design needs
its own set of images that should be used. Say, to verify the up
scaling logic of a design, it makes sense to run simulations
involving smaller images like 640x480 or 720x480 that gets up
scaled, rather than picking larger images like 1920x1080p.
When verification engineer wants to verify different features,
image library needs to be changed accordingly. Under such
circumstances, one cannot guarantee fixed order of frames that
gives efficient distribution every time. There is a need for
automation to determine efficient frame order, when the
images in the library are constantly changing.

IV. ALGORITHM FOR OPTIMAL DISTRIBUTION

This section of the paper discusses the algorithm developed
to achieve the automation. Native simulator’s constraint solver
was used to achieve this automation of finding the best possible
distribution of frames. The logic to determine the distribution
was written using SystemVerilog

[3]
 constraints which are

solved by the SystemVerilog simulator. The results obtained
from the solver were used to determine the distribution.

Logic used here is a simple and straight forward one. The
frame lengths of all the images were read into a holder array.
Since frame length of each image is directly proportional to the
simulation cycles that are needed to process that particular
image, sum of this holder array should essentially give the
rough estimate of total simulation time, if all the frames from
holder array were to be run in serial in one pipe. In the
SystemVerilog code, an array per simulation pipe is created
and the frames from the holder array are distributed among
these arrays. Constraints are applied such that the sum of frame
lengths in each of these individual arrays are either equal or fall
under certain threshold between each other. The individual
frame buffer inside the master scheduler is then filled with
these frames from corresponding array. This ensures that all
frame buffers inside master scheduler are filled with equally
distributed frames.

Following code snippets shows the logic used in
distributing the frames equally among the available four arrays.
For better readability of the code, a simplified version of the
actual constraint code is shown here. In this code snippet,
integral frame lengths are used as each item instead of the
frame itself.

Following code snippet in Figure-5 shows the class
structure containing the individual array that holds the frames
(note that the frame lengths are used instead of actual frames)
to be driven on each the pipe.

class Pipe ;

 rand int arr[] ; // Array holding frames lengths

 rand int sz ; // Variable to hold the array size

 rand int sm ; // Variable to hold the array sum

 constraint basic

{

 sz == arr.size() ;

 sm == arr.sum() ;

 sz < 100; // Pipe holds less than 100 frames

}

 endclass: Pipe

Figure 5. Class structure showing individual buffers

A top level structure is created as shown in the code snippet
in Figure-6, where deck of individual buffer classes are
instantiated and constrained it to be as wide as the number of
pipes in the design. Basic constraints are applied such that the
individual arrays are no wider than the holder array. Here
constraints are applied such that the sum of frame lengths
inside each individual buffers are either equal or falls under
certain threshold.

class Structure ;

 rand Pipe deck[] ;

 rand int wide ; // Decides pipe count

 int hldr[];//Array to hold complete set of frames

 int hldr[];//Temporary array

 rand int ind[] ; //Array to hold indices

 rand int threshold ; // Threshold for individual
array sum variation

 constraint basic

{

 deck.size == wide ; //no. of pipes

 hldr.size() == deck.sum with (item.sz) ;

 foreach (deck[i])

 {

 deck[i].arr.size < hldr.size() ;

 deck[i].arr.size > 0 ;

} // deck[i]

foreach (deck[i])

{

 deck[i].sm >=(hldr.sum()/wide)-threshold ;

 deck[i].sm <=(hldr.sum()/wide)+threshold ;

 } // deck[i]

} // basic

Figure 6. Class structure to hold deck of individual buffer classes

The logic adopted to assign the frames from holder array into
individual buffers, is by creating a temporary holder array,
t_arr, whose contents are shuffled values from holder array.
Figure 7 shows the code snippet to shuffle the holder array
contents and assign it to the temporary array. There are several
ways to shuffle an array, here is one such method where the

indices of the array are maintained in an indices array. ind[],
and used to shuffle the contents.

constraint con_shuffle

{

 foreach(ind[i])

 {

 foreach(t_arr[j])

 {

if(j == ind[i])

t_arr[i] == hldr[j] ;

 } // t_arr[j]

 foreach (ind[j])

 {

 (i!=j) -> (ind[i] != ind[j]) ;

 }// ind[j]

 ind[i] inside {[0:ind.size() -1]} ;

 ind[i] >= 0 ;

} // ind[i]

} // con_shuffle

Figure 7. Constraints showing shuffling of holder array contents

The contents of this shuffled array are assigned to each
individual buffers as shown in code snippet in figure-8.

constraint con_assign

{

 t_arr.size() == hldr.size() ;

 ind.size() == hldr.size() ;

 foreach (hldr[k])

 {

 foreach(hldr[j])

 {

 foreach(hldr[i])

 {

 if((i%wide) == k)

 {

 if (j == (i- (i%wide))/wide)

 {

 deck[k].arr[j] == t_arr[i] ;

 }

 } // if

 } // foreach hldr[i]

 } // foreach hldr[j]

 } // foreach hldr[k]

}

Figure 8. Constraints assigning holder array contents to individual buffers.

V. RESULTS

Experiments were run with multiple frames of varying size
and numbers. In each of these experiments totally 12 frames
were driven through the device. Each experiment had two sets
of simulations runs. First, frames were generated randomly and
applied to the pipes as they were available for simulation. This
data is plotted as Turnaround time without distribution in Table
1. Second, frames were redistributed and applied to the pipes
so as to get equal distribution as discussed in this paper. This
data is plotted under Turnaround with distribution column in
Table-1.

TABLE I. TURNAROUND TIME WITH AND WITHOUT TEST DISTRIBUTION

Expt.

Number Image

Format

Number

of

Frames

Time (in normalized units)

Turnaround

without

distribution

Turnaround with

distribution

1 640x480p 2

582 535 1280x720p 4

1920x1080i 6

2 640x480p 3

508 471 1280x720p 5

1920x1080i 4

In the first experiment there was 8% performance gain in
total turnaround time by redistributing the frames for this given
combination. In this experiment the overall utilization of the
pipes were increased by 8%. Without the redistribution the
pipes were occupied 86% of the time, whereas after the
distribution they were occupied 94% on average.

In the second experiment there was more than 7% gain in
total turnaround time with a similar redistribution. Here the
pipe utilization was increased by 6%.

There can be a significant variation in the gain after
distribution, depending on the frame length of the images that
are used. In this section of the paper, a set of frames with
modest gain were selected to plot these results. The actual time
in secs were normalized while tabulating these results.

VI. CONCLUSION

Synopsys VCS simulator was used to simulate the design
along with Synopsys-HDMI-VIP as the frame generator. Some
of the key technologies available in the VCS simulator were
used to further enhance the throughput of the simulation.

From the experiment it was concluded that having multiple
instances of the design in parallel that are fed with evenly
distributed frames gives a better throughput. Having an
automated way of finding the equal distribution gives more
flexibility in terms of picking random images from library and
still able to benefit from this methodology.

As a future enhancement, we would like to plug the
distribution algorithm into the design environment making the
decision making process seamless. Currently the distribution
algorithm is standalone and is not part of the overall flow. As
per Amdahl’s law, there is a limitation in terms of number of
parallel channels that can be used before there is degradation in
the overall performance. The optimal number for this setup
needs to be measured.

VII. ACKNOWLEDGMENT

We would like to thank the engineering team from both
Synopsys

[4]
 and Marseille Networks

[5]
 for helping in

answering our questions and providing guidance in places
where we needed help.

VIII. REFERENCES

Following materials and websites were referred during the
course of this work.

[1] VCS Users guide

[2] HDMI VIP users guide

[3] SystemVerilog Language Reference Manual

[4] http://www.synopsys.com

[5] http://www.marseillenetworks.com/

http://www.synopsys.com/

