IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Efficient and Exhaustive
Floating Point Verification
Using Sequential Equivalence
Checking

Travis Pouarz, Mentor Graphics Corp.
Vaibhav Agrawal, ARM, Inc.

cMsSir ARM

IIIIIIIIIIIIIIIIIIIIIII

DV Outline

NNNNNNNNNNNNNNNNNNNNNNN

 Motivation

* Formal Equivalence Checking
— SLEC

* FPU
— Conversions, FADD, FMUL, FMA, FDIV, FSQRT

* Bonus: Global History Buffer
* Moving Forward

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

IIIIIIIIIIIIIIIIIIIIIII

DV Motivation and Action

NNNNNNNNNNNNNNNNNNNNNNN

* Floating Point (FP) bugs unacceptable:
— Cost: $ and Good Will

* Search space huge; Control requirements contained
— Sequential Equivalence Checking emerging as good

fit

* ARM's high-end Cortex® A-class CPUs

* Mentor's SLEC (Sequential Equivalence Checker)

* Partnered to tackle FP block validation:
— C++ vs RTL

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 3

IIIIIIIIIIIIIIIIIIIIIII

DV 0N Formal Equivalence Checking

* Mathematical state space search
(no test vectors) A— }>

* Full proof is T

complete state space comparison ¢
* Constrain the space if you want

8 Safl)
 Two types: U
s T e
— Combinatorial — To——
Internal flops must map

— Sequential —
no internal flop mapping required

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM. Inc. 4

2017
DVCOn SLEC
* Seqguential Logic Equivalence Checker
* Provide designs and setup
* Setup: Control script written in TCL
* Setup allows comparison despite differences

— In timing -

— In Interfaces

— In levels of abstraction M
* Falsifications

— Provide shortest error trace waveform -

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 5

2017

DESIGN AND VERIFICATION™

DveoN\Why choose an FPU?

* Formal setup is relatively easy
— Limited control signals
— Vast state space
* Sophisticated high-performance designs

— More room for bugs. More special-conditions and
corners.

* Setup is portable to newer designs, architectures

e ——
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

IIIIIIIIIIIIIIIIIIIIIII

DV FPU Operations
* Operations (IEEE 754):
— Conversions (SP <=> DP, fixed <=> floating)
— Scaling and guantizing
— Comparisons and total ordering

— Others that are even easier
* Setup Is easy
* Full proof in minutes

— Arithmetic (add, multiply, divide, square root, fused
multiply-add, remainder)

* We'll go into more detalil here

e ——
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 7

2017

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION I ‘ ‘ D D

* Setup is easy, like conversions

* For Double-precision, case split operand inputs

— One operand > Three ranges
(1) {zero, NaN, infinity}
(2) normals
(3) subnormals

— 3 x 3 =9 cases total
* Full proof in a few hours for Double-precision

e ——
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

e Structure is different enough that end-to-end
verification Is not successful (this is expected)

OpA opB
* Decompose the proof | l
At the core of FMUL, in both models: o
a multiplier g 4menh mer
— the Mantissa Multiplier (MM) gl| Morren
— RTL: Booth Multiplier implementation 8" |manProc
* Divide our proof into two parts
— Verify the multiplier result ex

— Verify the logic outside the multiplier

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 9

... 207 FMUL Multiplier:
DV . . .
by multipart iteration

CONFERENCE AND EXHIBITION

e Check for a small N=2 Goal [foragiven NJ:
a[N:0] * b[51:0] = Booth(a[N:0], b[51:0])
— that’s the base case
Assume:

* |terate for N=3..51 a[N-1:0] * b[51:0] = Booth(a[N-1:0], b[51:0])
— Assume is proven

Lemma 1: easy word-level problem
— Lemmaland Lemma3 g[N:0] *b[51:0] =
prove the Goal of this (a[N] * b[51:0]) << N + (a[N-1:0] * b[51:0])
iteration .
o Lemma 2: frivial — vacuously true
— Which is Assume of (@[N] * b[51:0]) << N + (a[N-1:0] * b[51:0]) =
next iteration (a[N] * b[51:0]) << N + Booth(a[N-1:0], b[51:0])
Lemma 3: manageable bit-level problem

(@[N] * b[51:0]) << N + Booth(a[N-1:0], b[51:0]) =
Booth(a[N:0], b[51:0])

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 10

2017

pDvieon FMUL: Check Everything Else

CONFERENCE AND EXHIBITION

C Model RTL Model

OpA opB OpA opB

1 1 1 1

norm-+
_’v

manB MAanA manB

5 ~— S|

17 \t Equalz+—5] /M«M’(m/cnﬂsso

) . . .

2 Equol@A/g multiplication)

L) ™ O
lanPer Drive C from RTL manProd

v E v E v
result ex result ex

o

Equal¢

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 11

DDDDDD

IIIIIIIIIIIIIIIII

DV Transactors

NNNNNNNNNNNNNNNNNNNNNNN

Modules in Verilog, SystemVerilog, VHDL, or
SystemC

Added to your spec or impl DUT in SLEC

Ports can connect to inputs, outputs, or internal
signals of the DUT

Unconnected ports become primary inputs/outputs
Add a lot of flexibility
Example on next slide

3/1/17

Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

12

...202. FMUL: More fun, adapt with

CONFERENCE AND EXHIBITION tran S aCtO rS

* Previous slides glossed
over some mOdeI C Model RTL Model
differences JmG”A JmG”B \mOHA JmGﬂB

MM (mantissa MM (mantissa

* Transactors allow us to multiplier) otiofien
dO that lmo lmc lppo lppb
— C: concat for long vector C concat RTL summing
— RTL: do final summation fransactor “G”SGCW

.. Prod

e Transactor: similar to fronero jraneroa

— Verilog bind feature \ /

Equal?e

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 13

...202. FMUL: More fun, adapt with
transactors (2)

* The previous slide
glossed over another

_ C Model RTL Model
piece of the puzzle jmonA jmgnB ijnA* ijnB*
* Transactors again MM (mantissa M (manfissa
- : Itipli ol
provide solution motieten multiplier)
: lmo lmc lppc lppb
* C normalized up front —— r—
* RTL does not rensactor fransacfor
]] lmonProd RTL LZC shiffing
* Affects intermediate \ transactor
cuts in manageable way cque e__JmanProd

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 14

2017 .
DV FMA Proof Decomposition

CONFERENCE AND EXHIBITION

* FMUL and FMA proof
decomposition is the) B -

. OpA opB
Sam e . FMUL 1 1 FMA 1 1
norm-+ norm-+ norm-+

- Verlfy the MM manA manB

}

— manA manB =
— Verlfy the |OgIC % MM (mantissa :]:")’ MM (erSlpTis)so
. . 2 multiplier) < multiplier
outside the multiplier &—7 " < R
* This FMA reused FosocAde

same mantissa ot ex |

multipliers already

result ex

proven equivalent.

3/1/17 Travis Pouarz, Mentor Graphics C@fp, and Vaibhav Agrawal, ARM, Inc.

NNNNNNNNNNNNNNNNNNNNNNN

* FMA thus turned into a variation of FMUL
decomposition proof where “the logic outside the
multiplier” is different

* Case split on input types, like FADD-DP:
—3x3x3=27cases

— Reduction exists, but not worthwhile since what is
coalesced are fast cases. But they are already fast.

-
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 16

2017

DESIGN AND VERIFICATION™

Dve:o FMA Proof Decomposition

* FMUL and FMA proof decomposition is the same:
— Verify the MM

— Verify the logic outside the multiplier

FMA FMUL
OpA opB opC OpA opB opC OpA opB OpA opB
C Model 1 1 RTL Model 1 1 1 l l l
norm-+ norm+ m norm+ norm-+ norm-+
[——— - [—
—| [manA manB =| [manA manB = [manA manB = |manA manB
5 — 21 > ol
% —+ cquale «— 2| | rmantissa 7 SN Equalz+—5] /MM’(m/onﬁssa
% Equal? % multiplier) g \ Ewale‘/g' multiplication)
= — o e .)
manProd Drive C from RTL manProd manProd brive C from RIL \ImOnProd
result ex result ex
w w N& Equol?7
Equal?
result ex result ex

X Equo?%
Equal?

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

17

2017

DESIGN AND VERIFICATION™

DvCoN SP FDIV / FSQRT

e C model

— Restoring division (elementary school algorithm)
— Per iteration: Single bit of quotient + a new remainder

e RTL model

— Radix 4 SRT (Non restoring division)
* Per iteration: 2 bits of quotient + a new remainder

* Redundant representation (signed digit representation)
— Multiple iterations in a cycle

-
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 18

2017

DESIGN AND VERIFICATION™
CONFERENCE AND EXHIBITION

* Assume-guarantee reasoning based proof
decomposition

— Intermediate maps: all RTL iterations

— Assume RTL iteration N, to prove iteration N+1

— Alternate C model iterations skipped for comparison
* Due to quotient bit generation throughput difference

— Non restoring to restoring transactor required
* Required close interaction with designer

* All compare points can be run in parallel

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

19

2017

DvCON SP FDIV - 2

CONFERENCE AND EXHIBITION

OpA opB OpA opB
C Model 1 1 RTL Model 1 1

norm,scaling+ norm,scaling+
———e

y

Partial Quotient Remainder

|

Digit Selection,
Q&R Update

(other stuff)

(other stuff)

Partial Quotient Remainder Maps Partial Quotient Remainder
Non-restoring L
[o Restoring Transactor Digit Selection,

Non-restoring / Q&R Update
to Restoring Transactor

\

Digit Selection,
Q&R Update

Partial Quotient Remainder

Partial Quotient Remainder Equal?
1 Non-restoring // 1
[fo Restoring Transactor
— Non-restoring

to Restoring Transactor

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

IIIIIIIIIIIIIIIIIIIIIII

DV Branch Predictor Verification

NNNNNNNNNNNNNNNNNNNNNNN

* Designer driven effort

* Verified using Perf correlation
— Bugs not functional, but perf related
— Typically, correlation done late in design cycle

* Aggressive goal to validate Branch Predictor earlier
— Code a new C model of BP
— Ensure its equivalence to RTL using SLEC
— Replace original BP in perf model with new C model
— Do perf correlation with original perf model
— Adjust RTL, new C model till correlation satisfactory

e —
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 21

2017

DESIGN AND VERIFICATION™

DvConN Branch Predictor Verification

Alternate C model for GHB

SLEC run / Perf model framework
RTL Alternate C / B
Branch model for M modelfor | Performance
Predictor GHB GHB model
SystemC wrapper
4

Effective qualification of branch predictor RTL with perf model

e ——
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 22

IIIIIIIIIIIIIIIIIIIIIII

DV Verification complexity

NNNNNNNNNNNNNNNNNNNNNNN

* Structural/algorithmic/abstraction difference between
C/C++ model and RTL

* C/C++ model coding style, and specifying cut points
for assume/guarantee reasoning
— SLEC supports a large subset of C/C++

— But using complicated template C++ functions creates
RTL < C model mapping complexity

— If possible, re-write C models in simple form
* Prove correct once; reuse for each project

-
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 23

2017

DESIGN AND VERIFICATION™

DVCON Results

RTL CPU-time (single machine / parallel /

Comments
operation number of jobs)
SP DP

FCVT 10 mins/n.a./1 per op On single machine

FADD 40 mins/n.a./1 4.5 hrs/10 hrs/9 SP done on single machine

FMUL 0.5 hr/2 hrs/45 2 hrs/4.2 hrs/100 For DP, longest single sub-job was 2 hrs,
but most complete much faster

FDIV 2 hrs/12 hrs/9 Under development | For SP, a few jobs ran for up to 2 hours,
but most completed much faster

FMA 5.5 hrs/26 hrs/27 Under development | For SP, a few jobs tan for up to 5 hrs,
but most completed much faster

FSQRT 16 hrs/65 hrs/6 Under development | For SP, one job took 16 hrs and a few
took 12 hrs.

Branch 8 hours (sequential) This was a single monolithic run

Predictor

« After the paper submission, 2 bugs were found on HP FMA

e —
3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 24

IIIIIIIIIIIIIIIIIIIIIII

DV Methodology benefits

NNNNNNNNNNNNNNNNNNNNNNN

* Eliminate exhaustive simulations for half precision
operations

— 100+ days of CPU time
— Compute farm saving

* Run automatically at a regular cadence

* Provide bug hunting formal TBs to designers early In
design cycle

* And of course, find bugs early.

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 25

