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Motivation and Action 

• Floating Point (FP) bugs unacceptable: 

– Cost: $ and Good Will 

• Search space huge; Control requirements contained 

– Sequential Equivalence Checking emerging as good 

fit 

• ARM’s high-end Cortex® A-class CPUs 

• Mentor’s SLEC (Sequential Equivalence Checker) 

• Partnered to tackle FP block validation: 

– C++ vs RTL 
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Formal Equivalence Checking 

• Mathematical state space search  

(no test vectors) 

• Full proof is  

complete state space comparison 

• Constrain the space if you want 

• Two types: 

– Combinatorial —  

internal flops must map 

– Sequential —  

no internal flop mapping required 
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SLEC 

• Sequential Logic Equivalence Checker 

• Provide designs and setup 

• Setup: Control script written in TCL 

• Setup allows comparison despite differences 

– In timing 

– In interfaces 

– In levels of abstraction 

• Falsifications 

– Provide shortest error trace waveform 
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Why choose an FPU? 

• Formal setup is relatively easy 

– Limited control signals 

– Vast state space 

• Sophisticated high-performance designs 

– More room for bugs.  More special-conditions and 

corners. 

• Setup is portable to newer designs, architectures 
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FPU Operations 

• Operations (IEEE 754): 

– Conversions (SP <=> DP, fixed <=> floating) 

– Scaling and quantizing 

– Comparisons and total ordering 

– Others that are even easier 

• Setup is easy 

• Full proof in minutes 

– Arithmetic (add, multiply, divide, square root, fused 

multiply-add, remainder) 

• We’ll go into more detail here 
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FADD 

• Setup is easy, like conversions 

• For Double-precision, case split operand inputs 

– One operand ➛ Three ranges 

(1) {zero, NaN, infinity} 

(2) normals 

(3) subnormals 

– 3 x 3 = 9 cases total 

• Full proof in a few hours for Double-precision 
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Decomposition Structure of 

FMUL 

• Structure is different enough that end-to-end 

verification is not successful (this is expected) 

• Decompose the proof 

• At the core of FMUL, in both models: 

a multiplier 

– the Mantissa Multiplier (MM) 

– RTL: Booth Multiplier implementation 

• Divide our proof into two parts 

– Verify the multiplier 

– Verify the logic outside the multiplier 
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FMUL Multiplier:  

by multipart iteration 

• Check for a small N=2 

– that’s the base case 

• Iterate for N=3..51 

– Assume is proven 

– Lemma 1 and Lemma 3 

prove the Goal of this 

iteration 

– Which is Assume of 

next iteration 

Assume:

a[N-1:0] * b[51:0] = Booth( a[N-1:0], b[51:0] )

Lemma 1:                            easy word-level problem

a[N:0] * b[51:0] =

         (a[N] * b[51:0]) << N + (a[N-1:0] * b[51:0])

Lemma 2:                            trivial — vacuously true

(a[N] * b[51:0]) << N + (a[N-1:0] * b[51:0]) =

       (a[N] * b[51:0]) << N + Booth( a[N-1:0], b[51:0] )

Lemma 3:                            manageable bit-level problem

(a[N] * b[51:0]) << N + Booth( a[N-1:0], b[51:0] ) =

       Booth( a[N:0], b[51:0] )

Goal (for a given N):

a[N:0] * b[51:0] = Booth( a[N:0], b[51:0] )
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FMUL: Check Everything Else 
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Transactors 

• Modules in Verilog, SystemVerilog, VHDL, or 

SystemC 

• Added to your spec or impl DUT in SLEC 

• Ports can connect to inputs, outputs, or internal 

signals of the DUT 

• Unconnected ports become primary inputs/outputs 

• Add a lot of flexibility 

• Example on next slide 
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FMUL: More fun, adapt with 

transactors 

• Previous slides glossed 

over some model 

differences 

• Transactors allow us to 

do that 

– C: concat for long vector 

– RTL: do final summation 

• Transactor: similar to 

– Verilog bind feature 

 

Equal?

MM (mantissa 

multiplier)

manA manB

MM (mantissa 

multiplier)
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3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 13 



FMUL: More fun, adapt with 

transactors (2) 

• The previous slide 

glossed over another 

piece of the puzzle 

• Transactors again 

provide solution 

• C normalized up front 

• RTL does not 

• Affects intermediate 

cuts in manageable way 
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FMA Proof Decomposition 

• FMUL and FMA proof 

decomposition is the 

same: 

– Verify the MM 

– Verify the logic 

outside the multiplier 

• This FMA reused 

same mantissa 

multipliers already 

proven equivalent. 

15 

manProd

norm+

opA opB

MM (mantissa 

multiplier)

manA manB

rounding+

manProd

(o
th

e
r 

st
u

ff
)

result ex

norm+

opA opB

MM (mantissa 

multiplier)

manA manB

rounding+

(o
th

e
r 

st
u

ff
)

result ex

Fused-Add

norm+

opC

FMUL FMA

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 



FMA 

• FMA thus turned into a variation of FMUL 

decomposition proof where “the logic outside the 

multiplier” is different 

• Case split on input types, like FADD-DP: 

– 3 x 3 x 3 = 27 cases 

– Reduction exists, but not worthwhile since what is 

coalesced are fast cases.  But they are already fast. 
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FMA Proof Decomposition 

• FMUL and FMA proof decomposition is the same: 

– Verify the MM 

– Verify the logic outside the multiplier 
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SP FDIV / FSQRT 

• C model 

– Restoring division (elementary school algorithm) 

– Per iteration: Single bit of quotient + a new remainder 

 

• RTL model 

– Radix 4 SRT (Non restoring division) 

• Per iteration: 2 bits of quotient + a new remainder 

• Redundant representation (signed digit representation) 

– Multiple iterations in a cycle 
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SP FDIV - 2 

• Assume-guarantee reasoning based proof 

decomposition 

– Intermediate maps: all RTL iterations 

– Assume RTL iteration N, to prove iteration N+1 

– Alternate C model iterations skipped for comparison 

• Due to quotient bit generation throughput difference 

– Non restoring to restoring transactor required 

• Required close interaction with designer 

• All compare points can be run in parallel 
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SP FDIV - 2 
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Branch Predictor Verification 

• Designer driven effort 

• Verified using Perf correlation 

– Bugs not functional, but perf related 

– Typically, correlation done late in design cycle 

• Aggressive goal to validate Branch Predictor earlier 

– Code a new C model of BP 

– Ensure its equivalence to RTL using SLEC 

– Replace original BP in perf model with new C model 

– Do perf correlation with original perf model 

– Adjust RTL, new C model till correlation satisfactory 
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Branch Predictor Verification 
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Verification complexity 

• Structural/algorithmic/abstraction difference between 

C/C++ model and RTL 

 

• C/C++ model coding style, and specifying cut points 

for assume/guarantee reasoning 

– SLEC supports a large subset of C/C++ 

– But using complicated template C++ functions creates 

RTL  C model mapping complexity 

– If possible, re-write C models in simple form 

• Prove correct once; reuse for each project 
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Results 

RTL 
operation 

CPU-time (single machine / parallel / 
number of jobs) 

Comments 

SP DP 

FCVT 10 mins/n.a./1 per op On single machine 

FADD 40 mins/n.a./1 4.5 hrs/10 hrs/9 SP done on single machine 

FMUL 0.5 hr/2 hrs/45 2 hrs/4.2 hrs/100 For DP, longest single sub-job was 2 hrs, 
but most complete much faster 

FDIV 2 hrs/12 hrs/9 Under development For SP, a few jobs ran for up to 2 hours, 
but most completed much faster 

FMA 5.5 hrs/26 hrs/27 Under development For SP, a few jobs tan for up to 5 hrs, 
but most completed much faster 

FSQRT 16 hrs/65 hrs/6 Under development For SP, one job took 16 hrs and a few 
took 12 hrs. 

Branch 
Predictor 

8 hours (sequential)  This was a single monolithic run 
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• After the paper submission, 2 bugs were found on HP FMA 



Methodology benefits 

• Eliminate exhaustive simulations for half precision 

operations 

– 100+ days of CPU time 

– Compute farm saving 

• Run automatically at a regular cadence 

• Provide bug hunting formal TBs to designers early in 

design cycle  

• And of course, find bugs early.  
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