
Efficient and Exhaustive

Floating Point Verification

Using Sequential Equivalence

Checking

Travis Pouarz, Mentor Graphics Corp.

Vaibhav Agrawal, ARM, Inc.

Outline

• Motivation

• Formal Equivalence Checking

– SLEC

• FPU

– Conversions, FADD, FMUL, FMA, FDIV, FSQRT

• Bonus: Global History Buffer

• Moving Forward

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 2

Motivation and Action

• Floating Point (FP) bugs unacceptable:

– Cost: $ and Good Will

• Search space huge; Control requirements contained

– Sequential Equivalence Checking emerging as good

fit

• ARM’s high-end Cortex® A-class CPUs

• Mentor’s SLEC (Sequential Equivalence Checker)

• Partnered to tackle FP block validation:

– C++ vs RTL

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 3

Formal Equivalence Checking

• Mathematical state space search

(no test vectors)

• Full proof is

complete state space comparison

• Constrain the space if you want

• Two types:

– Combinatorial —

internal flops must map

– Sequential —

no internal flop mapping required

4 3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

SLEC

• Sequential Logic Equivalence Checker

• Provide designs and setup

• Setup: Control script written in TCL

• Setup allows comparison despite differences

– In timing

– In interfaces

– In levels of abstraction

• Falsifications

– Provide shortest error trace waveform

5

Setup

(Tcl)

Spec

Model

Impl

Model

SLEC RESULT

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

Why choose an FPU?

• Formal setup is relatively easy

– Limited control signals

– Vast state space

• Sophisticated high-performance designs

– More room for bugs. More special-conditions and

corners.

• Setup is portable to newer designs, architectures

6 3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

FPU Operations

• Operations (IEEE 754):

– Conversions (SP <=> DP, fixed <=> floating)

– Scaling and quantizing

– Comparisons and total ordering

– Others that are even easier

• Setup is easy

• Full proof in minutes

– Arithmetic (add, multiply, divide, square root, fused

multiply-add, remainder)

• We’ll go into more detail here

7 3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

FADD

• Setup is easy, like conversions

• For Double-precision, case split operand inputs

– One operand ➛ Three ranges

(1) {zero, NaN, infinity}

(2) normals

(3) subnormals

– 3 x 3 = 9 cases total

• Full proof in a few hours for Double-precision

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 8

Decomposition Structure of

FMUL

• Structure is different enough that end-to-end

verification is not successful (this is expected)

• Decompose the proof

• At the core of FMUL, in both models:

a multiplier

– the Mantissa Multiplier (MM)

– RTL: Booth Multiplier implementation

• Divide our proof into two parts

– Verify the multiplier

– Verify the logic outside the multiplier

norm+

opA opB

MM (mantissa

multiplier)

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

9 3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

FMUL Multiplier:

by multipart iteration

• Check for a small N=2

– that’s the base case

• Iterate for N=3..51

– Assume is proven

– Lemma 1 and Lemma 3

prove the Goal of this

iteration

– Which is Assume of

next iteration

Assume:

a[N-1:0] * b[51:0] = Booth(a[N-1:0], b[51:0])

Lemma 1: easy word-level problem

a[N:0] * b[51:0] =

 (a[N] * b[51:0]) << N + (a[N-1:0] * b[51:0])

Lemma 2: trivial — vacuously true

(a[N] * b[51:0]) << N + (a[N-1:0] * b[51:0]) =

 (a[N] * b[51:0]) << N + Booth(a[N-1:0], b[51:0])

Lemma 3: manageable bit-level problem

(a[N] * b[51:0]) << N + Booth(a[N-1:0], b[51:0]) =

 Booth(a[N:0], b[51:0])

Goal (for a given N):

a[N:0] * b[51:0] = Booth(a[N:0], b[51:0])

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 10

FMUL: Check Everything Else

norm+

opA opB

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

MM (mantissa

multiplication)

norm+

opA opB

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

Equal?

Drive C from RTL

Equal?

Equal?

C Model RTL Model

Equal?

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 11

Transactors

• Modules in Verilog, SystemVerilog, VHDL, or

SystemC

• Added to your spec or impl DUT in SLEC

• Ports can connect to inputs, outputs, or internal

signals of the DUT

• Unconnected ports become primary inputs/outputs

• Add a lot of flexibility

• Example on next slide

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 12

FMUL: More fun, adapt with

transactors

• Previous slides glossed

over some model

differences

• Transactors allow us to

do that

– C: concat for long vector

– RTL: do final summation

• Transactor: similar to

– Verilog bind feature

Equal?

MM (mantissa

multiplier)

manA manB

MM (mantissa

multiplier)

manA manB

C Model RTL Model

ma mc ppa ppb

C concat

transactor

manProd

RTL summing

transactor

manProd

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 13

FMUL: More fun, adapt with

transactors (2)

• The previous slide

glossed over another

piece of the puzzle

• Transactors again

provide solution

• C normalized up front

• RTL does not

• Affects intermediate

cuts in manageable way

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 14

Equal?

MM (mantissa

multiplier)

manA manB

MM (mantissa

multiplier)

manA* manB*

C Model RTL Model

ma mc ppa ppb

C concat

transactor

manProd

RTL summing

transactor

manProd

RTL LZC shifting

transactor

FMA Proof Decomposition

• FMUL and FMA proof

decomposition is the

same:

– Verify the MM

– Verify the logic

outside the multiplier

• This FMA reused

same mantissa

multipliers already

proven equivalent.

15

manProd

norm+

opA opB

MM (mantissa

multiplier)

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

norm+

opA opB

MM (mantissa

multiplier)

manA manB

rounding+

(o
th

e
r

st
u

ff
)

result ex

Fused-Add

norm+

opC

FMUL FMA

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc.

FMA

• FMA thus turned into a variation of FMUL

decomposition proof where “the logic outside the

multiplier” is different

• Case split on input types, like FADD-DP:

– 3 x 3 x 3 = 27 cases

– Reduction exists, but not worthwhile since what is

coalesced are fast cases. But they are already fast.

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 16

FMA Proof Decomposition

• FMUL and FMA proof decomposition is the same:

– Verify the MM

– Verify the logic outside the multiplier

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 17

norm+

opA opB

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

Fused-Add

norm+

opC

norm+

opA opB

MM (mantissa

multiplier)

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

Fused-Add

norm+

opC

Equal?

Drive C from RTL

Equal?

Equal?

Equal?

C Model RTL Model

norm+

opA opB

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

MM (mantissa

multiplication)

norm+

opA opB

manA manB

rounding+

manProd

(o
th

e
r

st
u

ff
)

result ex

Equal?

Drive C from RTL

Equal?

Equal?

Equal?

FMULFMA

SP FDIV / FSQRT

• C model

– Restoring division (elementary school algorithm)

– Per iteration: Single bit of quotient + a new remainder

• RTL model

– Radix 4 SRT (Non restoring division)

• Per iteration: 2 bits of quotient + a new remainder

• Redundant representation (signed digit representation)

– Multiple iterations in a cycle

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 18

SP FDIV - 2

• Assume-guarantee reasoning based proof

decomposition

– Intermediate maps: all RTL iterations

– Assume RTL iteration N, to prove iteration N+1

– Alternate C model iterations skipped for comparison

• Due to quotient bit generation throughput difference

– Non restoring to restoring transactor required

• Required close interaction with designer

• All compare points can be run in parallel

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 19

SP FDIV - 2

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 20

norm,scaling+

opA opB

(o
th

e
r

st
u

ff
)

RTL Model

Partial Quotient Remainder

Digit Selection,

Q&R Update

Digit Selection,

Q&R Update

Partial Quotient Remainder

Partial Quotient Remainder

norm,scaling+

opA opB

(o
th

e
r

st
u

ff
)

C Model

Digit Selection,

Q&R Update

Partial Quotient Remainder

Partial Quotient Remainder

Non-restoring

to Restoring Transactor

Non-restoring

to Restoring Transactor

Non-restoring

to Restoring Transactor

Non-restoring

to Restoring Transactor

Maps

Equal?

Branch Predictor Verification

• Designer driven effort

• Verified using Perf correlation

– Bugs not functional, but perf related

– Typically, correlation done late in design cycle

• Aggressive goal to validate Branch Predictor earlier

– Code a new C model of BP

– Ensure its equivalence to RTL using SLEC

– Replace original BP in perf model with new C model

– Do perf correlation with original perf model

– Adjust RTL, new C model till correlation satisfactory

 3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 21

Branch Predictor Verification

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 22

Verification complexity

• Structural/algorithmic/abstraction difference between

C/C++ model and RTL

• C/C++ model coding style, and specifying cut points

for assume/guarantee reasoning

– SLEC supports a large subset of C/C++

– But using complicated template C++ functions creates

RTL  C model mapping complexity

– If possible, re-write C models in simple form

• Prove correct once; reuse for each project

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 23

Results

RTL
operation

CPU-time (single machine / parallel /
number of jobs)

Comments

SP DP

FCVT 10 mins/n.a./1 per op On single machine

FADD 40 mins/n.a./1 4.5 hrs/10 hrs/9 SP done on single machine

FMUL 0.5 hr/2 hrs/45 2 hrs/4.2 hrs/100 For DP, longest single sub-job was 2 hrs,
but most complete much faster

FDIV 2 hrs/12 hrs/9 Under development For SP, a few jobs ran for up to 2 hours,
but most completed much faster

FMA 5.5 hrs/26 hrs/27 Under development For SP, a few jobs tan for up to 5 hrs,
but most completed much faster

FSQRT 16 hrs/65 hrs/6 Under development For SP, one job took 16 hrs and a few
took 12 hrs.

Branch
Predictor

8 hours (sequential) This was a single monolithic run

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 24

• After the paper submission, 2 bugs were found on HP FMA

Methodology benefits

• Eliminate exhaustive simulations for half precision

operations

– 100+ days of CPU time

– Compute farm saving

• Run automatically at a regular cadence

• Provide bug hunting formal TBs to designers early in

design cycle

• And of course, find bugs early.

3/1/17 Travis Pouarz, Mentor Graphics Corp, and Vaibhav Agrawal, ARM, Inc. 25

