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Abstract— The hardware and software worlds have been drifting apart ever since John W. 

Tukey coined the terms “software” and “bit” back in 1958. Tukey introduced these terms as 

computers were evolving from electromechanical to electronic components. Hardware had 

long meant something you can touch and typically assemble from parts into a larger system. 

Software has come to mean that which you can’t touch, yet that which you can change 

without touching the hardware. In the early age of software development, programmers 

required extensive knowledge of proprietary hardware architectures in order to write the 

programs that executed on them. Today, software programming has evolved to standardized 

languages, like C/++ and Java so programmers can write code independent of the hardware 

architecture the programs are running on. Finding engineers experienced in both disciplines 

is becoming very difficult making communication between software and hardware engineers 

daunting to say the least. This is further complicated because of different modeling languages 

used by each discipline and different abstraction levels required during each phase of a 

project. 

Virtual Prototyping is an evolving methodology for the verification of software and hardware 

in a single environment that is designed to catch these communication breakdowns. 

Performance of this virtual prototype is critical to the successful completion of this 

verification task. Execution of software on simulated hardware models can be many orders of 

magnitude slower than the software executing on the real target hardware, so a virtual 

prototyping methodology partitions the execution of software and hardware into the proper 

abstraction level to achieve the desired performance versus accuracy trade-off. 

This paper discusses various virtual prototyping methodologies available along with the 

verification and performance goals each is optimized to address. It will explain the trade-offs 

considering the different perspectives that hardware and software engineers are able to 

understand. In particular, this paper will demonstrate a virtual prototype using the modeling 

interface provided by the SystemVerilog “DPI-C” construct that bridges the C software 

world with Verilog Hardware Description Language (HDL) world.  

Additionally, this paper will explain mechanisms for transaction-level communication 

between hardware and software using a UVM testbench. It will demonstrate software 

transactions on the C side that are converted into sequences of bus cycles represented by calls 

to the UVM register abstraction layer. This makes the hardware verification environment 

considerably reusable with the virtual platform environment. 

 
 



I. INTRODUCTION  

By definition, a System-on-Chip (SoC) device is the 
blending of software and hardware domains.  The 
architecture of an SoC is a compromise of trade-offs between 
implementation of tasks in hardware or software based on a 
number of performance goals. Verification of an SoC is 
usually divided independently into their respective domains 
before full system-level verification begins on the actual 
platform, or a representative prototype such as a hardware 
FPGA or emulation system implementation. Unfortunately, 
the availability of a full system usually comes too late in the 
project cycle to get the desired amount of verification 
completed in time. Virtual prototyping is a methodology that 
addresses this problem by getting earlier access to a full 
system using a variety of software emulation and simulation 
techniques. 

If you look at the typical components that make up an SoC, 
you may see what is shown in Figure 1 [1]. 

 

Figure 1 Typical SoC Block Diagram 

1. An embedded processing unit, or units, and its sub-
system for executing instructions, the core. 

2. A bus or fabric that connects all the processing units 
and devices together; AHB and APB, as in this 
example. 

3. A set of instructions in software/firmware that 
manage the entire SoC, executing each processing 
unit, represented by data in the RAM/ROM 

4. A set of hardware devices that communicate 
through standard protocol interfaces with devices 
external to the SoC. 

5. A set of hardware devices that manipulate data 
external to the processing units; other master or 
slave bus devices, a DMA controller as in this 
example. 

In most cases, the processing units as well as some of the 
hardware devices are acquired Intellectual Property (IP) and 
are considered pre-verified by the organization that 
developed them. Some of the software is also acquired, such 
as the embedded OS and the drivers that go along with the 
acquired hardware devices. That leaves the critical task of 
verifying the application software, the application hardware, 
and all the communication mechanisms that connect the SoC 
together. 

II. VERIFICATION ARCHITECTURE 

The methodologies for verifying hardware and software 
separately are fairly well understood. Each methodology has 
a set of practices that require some intimate knowledge of 
their respective domains. Since an SoC uses a fairly standard 
protocol for communication across the system, it is relatively 
easy to verify each individual component in isolation. 
However, the task of verifying the communication between 
those domains becomes a struggle without having the 
complete platform available. 

A virtual prototype addresses a portion of this problem by 
providing high performance models for the missing hardware 
components. The software components may be cross 
compiled onto the same host processor running the virtual 
prototype, which is typically referred to as native code or 
there may be a software emulation of the target processer 
running on the host.  

On the actual platform, an embedded processor 
communicates with other components of the SoC using 
address mapped memory references. Taking advantage of 
standard protocols, a virtual prototype represents 
communication between components in terms of an 
application-specific procedural interface (API). The memory 
references generated by the embedded processor need to be 
converted into API calls in simpler prototypes, or intercepted 
by the virtual prototyping system, and routed by a software 
backplane, in Figure 2, to call the appropriate software 
model. 
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Figure 2 Virtual Prototype Backplane 

The virtual prototype achieves high performance by having a 
host processor running nearly as fast as the target processor, 
and bus cycles abstracted into simple, transactional function 
calls. Performance of a virtual platform may be within one or 
two orders of magnitude of the actual system, which may be 
enough to run the full embedded OS.  Understandably, 
introducing hardware-level description models into this 
virtual platform will have a tremendous impact on 
performance, limiting simulations to smaller portions of the 
OS or stripped down segments of code. 

Verification of hardware can usually begin for each 
component individually without waiting for a significant 
amount of the system to be in place. One or more 
components can be connected to a physical bus for sub-
system simulation. Traffic on each bus may be generated by 
drivers provided by Verification IP (VIP) in place of the 
actual target processor. 

 

Figure 3 Block Level Verification Environment 

Performance of this hardware verification environment is 
reasonable because the processor has been replaced by a 
simplified bus functional equivalent, and only the necessary 
hardware is in place. There is no need to verify the complete 
hardware design as a full system if certain components have 
been verified individually, such as the processor itself. 
Ideally, only the communication between components need 
be verified at the hardware level. 

Correspondingly, there is no need to verify the hardware by 
running software on the processor. Doing so would be 
prohibitive in terms of performance because of the extreme 
number of redundant hardware bus cycles. The only 
remaining need is to verify that the software can properly 
access the hardware components.  

Traditionally, the most efficient way of executing software 
that accesses hardware models has been to drive the physical 
bus with a high-level processor model, like an instruction set 
simulator (ISS). However, the ISS model is burdened with 
the task of driving bus signals with pin-level or cycle level 
accuracy.  

If we can combine the most efficient methodologies from the 
virtual platform environment with the most efficient 
methodologies from the hardware verification environment, 
we can achieve our desired performance target. 

 

Figure 4 Mixed Software/Hardware Simulation 

The SystemVerilog Direct Programming Interface DPI was 
designed to integrate the C language with the hardware 
description language at the software level of procedural calls. 
In contrast, the programming language interface (PLI) was 
designed for pin-level transactions and other tool 
interfaces.[2] This DPI link allows us to keep the 
communication between the virtual bus handler and the bus 
agent at the software abstraction level of procedure call 
transactions. The fact that the virtual platform can be run at 
one level of abstraction while the hardware environment is 
using another level of abstraction has a significant impact on 
performance as well. 

III. MODELLING ABSTRACTION LEVELS 

 

The choice of abstractions levels is very dependent on the 

particular application. A key point to remember is that the 

goal of creating this mixed verification platform is to verify 

communication between software and hardware, not all the 

software and hardware in total. 
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In the simplest terms, levels of abstraction are characterized 

by timing accuracy. The OSCI
1
 SystemC TLM 2.0 

standard[4] introduces terminology for coding styles that we 

can refer to here: 

 Untimed (UT) – limited or unspecified timing 

accuracy. At this level, only ordering of operations 

matters and there may be no bookkeeping of 

elapsed simulated time. 

 Loosely-timed (LT) – time is broken into slices or 

some quantum unit. An SoC virtual platform is 

likely to choose the execution of an instruction as 

its quantum time unit.  

 Approximately-timed (AT) – Quantum units are 

broken down into phases and the tracking of 

elapsed simulated time is enough to gather relative 

performance statistics. 

 Cycle-accurate/cycle-callable (CC) Timing is 

accurate enough to run in lock-step to match the 

hardware models at a pin-level, clock or bus-cycle 

boundaries. 

On the software side any one of these abstraction levels may 
be attained. When you cross-compile code written for your 
target processor to run natively on your current host, you 
may not care about the timing, only the functionality of the 
code. There might not even be a way to represent the target 
processor’s timing. If you compile your code to run on an 
ISS model of your target processor, that model may have 
statistics for the instruction execution times for each 
instruction and simply provide a summation of the results. 
That would be loosely timed. To model the effects of a 
pipelined system may require that you use an approximately-
timed model. 

The hardware modeling side has fewer choices. Most 
synthesizable designs require cycle-accurate or lower level 
abstractions than what has been described here. However, 
the testbench verification modeling can be at a much higher 
level.  

Methodologies such as the UVM let you treat the verification 
architecture more like software. The UVM’s register 
abstraction layer is designed so that you can write hardware 
verification tests by providing memory address maps that 
either generate or intercept memory references from simple 
procedural calls written in your testbench. 

IV. SYNCHRONIZATION BETWEEN ABSTRACTION LEVELS 

At the simplest level, let us think of our software as native 

C/C++ code running on a host processor, where our host 

processor is also where the simulation of hardware in 

SystemVerilog is running. We can use the SystemVerilog 

DPI to blend the two languages by having the software call 

a function that represents a bus transaction. In more 

sophisticated virtual prototyping systems, memory 

                                                           
1
 OSCI is now the Accellera Systems Initiative 

references are intercepted and routed via a table to the 

appropriate handler, but the end result is the same: a 

memory reference becomes a procedural call. 

The key feature of the SystemVerilog DPI is that it lets a 

SystemVerilog function or task appear as a simple routine 

on the C side, and a C routine appears as a task or function 

on the SystemVerilog side. A subset of compatible 

argument types may be accessed transparently without any 

knowledge of the language used to call the routine. 

Compatible types are those with the same semantic meaning 

and representation in memory without any need of 

conversion. 

 

 
Figure 5 Software to Hardware DPI link 

 

In the code fragment shown in Figure 5, the C code has no 

notion of timing except when it calls the DPI exported tasks 

which are both cycle accurate on the SystemVerilog side. 

The C_routine calls and is blocked until the APB_read and 

APB_write tasks have completed. While the C code is 

blocked, simulated hardware time advances on the 

SystemVerilog side waiting for each clock cycle. This is 

explained further in Figure 11 Inter-process 

Communication. 

 

void C_routine() { 

  if (address==0xFFA) { 

    APB_read(address,&data); 

  } else { 

    data = MemRead[address]; 

  } 

  APB_write(address,data+1); 

task APB_read(input int address, 

              output int data); 

 @(posedge clock) 

  bus <= address; 

  cmd <= read; 

 @(posedge clock) 

  cmd <= ack; 

  data = bus; 

endtask 

 

export “DPI-C” task APB_read; 

export “DPI-C” task APB_write; 
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Figure 6 Compressed Hardware Simulation Timing 

 

In the situation shown in Figure 6, hardware simulation time 

only advances during the bus cycles chosen by the virtual 

prototype to model in hardware. There may be thousands of 

consecutive idle hardware bus cycles between active bus 

cycles. The hardware design might require additional 

simulation time during idle bus cycles to execute other 

activity accurately. The virtual prototype may also have its 

own concept of time by counting the number of instructions 

executed.  We can provide an idle task that advances time to 

gain some extra level of timing accuracy that represents 

some percentage of idle bus activity. For optimal 

performance, there is no need to account for every idle bus 

cycle. 

  

 
Figure 7 Approximated Hardware Simulation Timing 

 

Instead of injecting a separate idle bus operation, you could 

add the instruction count to each bus operation and have 

SystemVerilog inject some constrained random number of 

bus cycles. 

Some designs have interrupts that need to be accounted for. 
The idle task (as well as any bus cycle task) may be modified 
to report back that an interrupt was requested.  

 

 
Figure 8 Interrupt Monitor 

 

A completion model between the hardware and software 

prototypes needs to be agreed upon. Depending on the 

application, the hardware side can either just report that the 

interrupt was requested during the bus operation just 

 
 

task APB_idle( 

input int requestedCycles, 

output int iRequested, 

output int actualCycles); 

int i; 

fork 

  for(i=0;i<requestedCycles;i++)              

             @(posedge clock); 

  @(IRQ!=0); 

join_any 

disable fork; 

actualCycles = i; 

iRequested = IRQ; 

endtask 
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task APB_idle(input int cycles); 

repeat (cycles)              

 @(posedge clock); 

endtask 
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completed, or abort the operation and return immediately 

stating the operation was incomplete. 

V. FLOW OF TRANSACTIONS 

For easier maintenance and reusability, define a standard 

transaction instead of creating individual routines and 

various numbers of argument lists. A transaction is simply a 

structure of data that that represents a common set of 

arguments that are typically passed to a method. They can 

be packed and unpacked into a simple array of bytes making 

data transfers across the inter-language boundary much 

simpler. The design of a transaction is show in Figure 9: 

 

Field Type Description 
Operation Enum Read, write,idle,burst 
Address 32-bit Physical starting address 
ReqStart Time Time of Request 
ReqDuration Time Time allocated for operation 
TrStart Time Actual start time 
TrEnd Time Actual end time 
InterruptMode Enum Ignore, Complete, Abort 
InterruptReq Enum None,Requested 
InterruptTime Time Time of Interrupt 
Length Int Size of data 
Payload nBytes Transaction data 

Figure 9 Transaction Specification 

Depending on the operation, only some of these fields may 

be populated at the start of the transaction, others will be 

filled in at the time of completion. 

One important consideration in a mixed language 

environment is that each side of the language boundary is 

responsible for allocation and management of the memory 

used by a transaction. In the earlier examples, we just 

passed a compatible data type, like an int, as an argument 

that was copied as the call was made. This is fine as long as 

the size of the argument is a known fixed size to both 

languages; passing a pointer to a block of memory of 

unknown size is not allowed. Memory for transactions with 

dynamic sizes must be allocated on both sides before 

making the call. Some methods for dealing with this issue 

are: 

 Allocate a fixed maximum size for your transaction 

and use the Length field to trim the Payload. 

 Send the Payload in fixed sized blocks over 

multiple operations. So if your block size was 2K 

and you need to send a 5K payload, you would 

need to send the payload over 3 transactions. 

 Split the transaction into two calls. The first call 

would specify the length of the payload to allocate, 

and the second call would use the allocated space 

from the first call. 

VI. THE NEED TO BE THE MASTER 

So far, we have not considered how to get the 
communication between the virtual prototype and the 
hardware simulation started.  Software running on a 
processor runs in a limited number of threads; whereas 
hardware is by its nature represented by a prolific number of 
threads. In practice, hardware simulators do not represent 
threads the same way that software does, so there will need 
to be some kind of mapping. 

Going back to the simplest environment where the software 

is just C code natively compiled on a simulation host and 

hardware, the C code can be started from the SystemVerilog 

side by calling a DPI-C routine that has been imported as a 

task. In this case, the SystemVerilog side is the master 

thread. 

In the following example, the routine c_code has been 

imported as a task as opposed to a function which allows it 

to consume time. The way c_code consumes time is by 

calling an exported task, v_code. 

 

 
 

 

Figure 10 Starting a C thread 

 

However, most realistic virtual prototyping systems want to 

be the master starting their own threads and just have the 

API calls act as a slave to their threads. The most common 

way to make this happen is to use an inter-process 

communication socket (IPC)[6]. An IPC socket is a host OS 

mechanism for message passing. A server thread sends a 

message to a client and receives a response from a client 

thread. Both threads can be started independently of each 

 

int c_code() { /* C task */ 

  while(1) { /* C thread */ 

    v_code(args); 

    ... 

  } 

} 

 

 

module top; 

  import “DPI-C” task c_code(); 

  initial  

    c_code;  // start C thread 

  bit clk; always #10 clk++; 

  export “DPI-C” task v_code; 

  task v_code(args); 

    addr <= args; 

    @(posedge clk); 

    args = result; 

  endtask 

endmodule 

 



other as a master thread, but will block waiting to receive 

the message or response.  

The only significant difference between the master and 

slave is the master process initiates the socket and the slave 

process connects to the socket. After that negotiation, the 

two processes can be completely independent of each other, 

using the IPC messages to synchronize with each other. 

 

 

 

 
Figure 11 Inter-process Communication  

The two loops in Figure 11 represent two independent 

processes. The software virtual prototype may have many 

processes, one of which the virtual backplane intercepts and 

calls a software bus model. The software model sends an 

IPC message to the C thread started by the hardware 

simulation client, and waits for a response message. The C 

thread is the other process, waiting to receive an IPC 

message, and then executes the transaction by calling the 

SystemVerilog bus functional models exported through the 

DPI. 

VII. INTEGRATION WITH UVM 

Reuse of the existing testbench from the hardware-only 

based verification environment is always encouraged. The 

sequence mechanism in the UVM provides a convenient 

mechanism to convert the bus transaction into a ready set of 

pin wiggles to the DUT for any particular hardware 

protocol. The SystemVerilog DPI enables the C code to start 

sequences to send transactions through the testbench that 

eventually reaches the interface to the DUT. The UVM’s 

register package provides an additional layer that directs the 

appropriate memory addresses to the appropriate interface 

use a register map. 

 

 
Figure 12 UVM Testbench Re-Use 

In the environment shown above, UVM sequences are 

generated by either a pure UVM test, the virtual prototype 

process, or a combination of both. 

VIII. SUMMARY 

The techniques shown in this paper have been deployed on 
several projects where the virtual prototype has been 
modeled in a variety of environments from internally 
developed platforms, open source Python based stimulus 
generators, and commercially available systems such as 
Wind River Simics.  

There are a number of other issues that time did not permit 
going into detail in this paper, but have been address in some 
of these projects. These issues include dealing with multiple 
interface threads and controlling the interactive debugging 
environments of two processes communicating through IPC 
sockets 
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