
Easy Steps Towards Virtual Prototyping using the

SystemVerilog DPI

Dave Rich

Mentor Graphics, Inc.

Fremont, CA

dave_rich@mentor.com

Abstract— The hardware and software worlds have been drifting apart ever since John W.

Tukey coined the terms “software” and “bit” back in 1958. Tukey introduced these terms as

computers were evolving from electromechanical to electronic components. Hardware had

long meant something you can touch and typically assemble from parts into a larger system.

Software has come to mean that which you can’t touch, yet that which you can change

without touching the hardware. In the early age of software development, programmers

required extensive knowledge of proprietary hardware architectures in order to write the

programs that executed on them. Today, software programming has evolved to standardized

languages, like C/++ and Java so programmers can write code independent of the hardware

architecture the programs are running on. Finding engineers experienced in both disciplines

is becoming very difficult making communication between software and hardware engineers

daunting to say the least. This is further complicated because of different modeling languages

used by each discipline and different abstraction levels required during each phase of a

project.

Virtual Prototyping is an evolving methodology for the verification of software and hardware

in a single environment that is designed to catch these communication breakdowns.

Performance of this virtual prototype is critical to the successful completion of this

verification task. Execution of software on simulated hardware models can be many orders of

magnitude slower than the software executing on the real target hardware, so a virtual

prototyping methodology partitions the execution of software and hardware into the proper

abstraction level to achieve the desired performance versus accuracy trade-off.

This paper discusses various virtual prototyping methodologies available along with the

verification and performance goals each is optimized to address. It will explain the trade-offs

considering the different perspectives that hardware and software engineers are able to

understand. In particular, this paper will demonstrate a virtual prototype using the modeling

interface provided by the SystemVerilog “DPI-C” construct that bridges the C software

world with Verilog Hardware Description Language (HDL) world.

Additionally, this paper will explain mechanisms for transaction-level communication

between hardware and software using a UVM testbench. It will demonstrate software

transactions on the C side that are converted into sequences of bus cycles represented by calls

to the UVM register abstraction layer. This makes the hardware verification environment

considerably reusable with the virtual platform environment.

I. INTRODUCTION

By definition, a System-on-Chip (SoC) device is the
blending of software and hardware domains. The
architecture of an SoC is a compromise of trade-offs between
implementation of tasks in hardware or software based on a
number of performance goals. Verification of an SoC is
usually divided independently into their respective domains
before full system-level verification begins on the actual
platform, or a representative prototype such as a hardware
FPGA or emulation system implementation. Unfortunately,
the availability of a full system usually comes too late in the
project cycle to get the desired amount of verification
completed in time. Virtual prototyping is a methodology that
addresses this problem by getting earlier access to a full
system using a variety of software emulation and simulation
techniques.

If you look at the typical components that make up an SoC,
you may see what is shown in Figure 1 [1].

Figure 1 Typical SoC Block Diagram

1. An embedded processing unit, or units, and its sub-
system for executing instructions, the core.

2. A bus or fabric that connects all the processing units
and devices together; AHB and APB, as in this
example.

3. A set of instructions in software/firmware that
manage the entire SoC, executing each processing
unit, represented by data in the RAM/ROM

4. A set of hardware devices that communicate
through standard protocol interfaces with devices
external to the SoC.

5. A set of hardware devices that manipulate data
external to the processing units; other master or
slave bus devices, a DMA controller as in this
example.

In most cases, the processing units as well as some of the
hardware devices are acquired Intellectual Property (IP) and
are considered pre-verified by the organization that
developed them. Some of the software is also acquired, such
as the embedded OS and the drivers that go along with the
acquired hardware devices. That leaves the critical task of
verifying the application software, the application hardware,
and all the communication mechanisms that connect the SoC
together.

II. VERIFICATION ARCHITECTURE

The methodologies for verifying hardware and software
separately are fairly well understood. Each methodology has
a set of practices that require some intimate knowledge of
their respective domains. Since an SoC uses a fairly standard
protocol for communication across the system, it is relatively
easy to verify each individual component in isolation.
However, the task of verifying the communication between
those domains becomes a struggle without having the
complete platform available.

A virtual prototype addresses a portion of this problem by
providing high performance models for the missing hardware
components. The software components may be cross
compiled onto the same host processor running the virtual
prototype, which is typically referred to as native code or
there may be a software emulation of the target processer
running on the host.

On the actual platform, an embedded processor
communicates with other components of the SoC using
address mapped memory references. Taking advantage of
standard protocols, a virtual prototype represents
communication between components in terms of an
application-specific procedural interface (API). The memory
references generated by the embedded processor need to be
converted into API calls in simpler prototypes, or intercepted
by the virtual prototyping system, and routed by a software
backplane, in Figure 2, to call the appropriate software
model.

ARM

core/CPU

DMA

controller

on-chip

RAM

or

ROM

UART

timer

parallel i/f

bridge

test i/f

external

bus

interface AHB

APB

other

master/slave devices

Figure 2 Virtual Prototype Backplane

The virtual prototype achieves high performance by having a
host processor running nearly as fast as the target processor,
and bus cycles abstracted into simple, transactional function
calls. Performance of a virtual platform may be within one or
two orders of magnitude of the actual system, which may be
enough to run the full embedded OS. Understandably,
introducing hardware-level description models into this
virtual platform will have a tremendous impact on
performance, limiting simulations to smaller portions of the
OS or stripped down segments of code.

Verification of hardware can usually begin for each
component individually without waiting for a significant
amount of the system to be in place. One or more
components can be connected to a physical bus for sub-
system simulation. Traffic on each bus may be generated by
drivers provided by Verification IP (VIP) in place of the
actual target processor.

Figure 3 Block Level Verification Environment

Performance of this hardware verification environment is
reasonable because the processor has been replaced by a
simplified bus functional equivalent, and only the necessary
hardware is in place. There is no need to verify the complete
hardware design as a full system if certain components have
been verified individually, such as the processor itself.
Ideally, only the communication between components need
be verified at the hardware level.

Correspondingly, there is no need to verify the hardware by
running software on the processor. Doing so would be
prohibitive in terms of performance because of the extreme
number of redundant hardware bus cycles. The only
remaining need is to verify that the software can properly
access the hardware components.

Traditionally, the most efficient way of executing software
that accesses hardware models has been to drive the physical
bus with a high-level processor model, like an instruction set
simulator (ISS). However, the ISS model is burdened with
the task of driving bus signals with pin-level or cycle level
accuracy.

If we can combine the most efficient methodologies from the
virtual platform environment with the most efficient
methodologies from the hardware verification environment,
we can achieve our desired performance target.

Figure 4 Mixed Software/Hardware Simulation

The SystemVerilog Direct Programming Interface DPI was
designed to integrate the C language with the hardware
description language at the software level of procedural calls.
In contrast, the programming language interface (PLI) was
designed for pin-level transactions and other tool
interfaces.[2] This DPI link allows us to keep the
communication between the virtual bus handler and the bus
agent at the software abstraction level of procedure call
transactions. The fact that the virtual platform can be run at
one level of abstraction while the hardware environment is
using another level of abstraction has a significant impact on
performance as well.

III. MODELLING ABSTRACTION LEVELS

The choice of abstractions levels is very dependent on the

particular application. A key point to remember is that the

goal of creating this mixed verification platform is to verify

communication between software and hardware, not all the

software and hardware in total.

UART

timer

parallel i/f

external

bus

interface

other

master/slave devices
Virtual

Backplane

Virtual

CPU

or native

code

RAM

Direct Memory

References

Memory Mapped

References

UART

timer

parallel i/f

APB

APB VIP
USB VIP

Virtual

CPU

or native

code

RAM

Direct Memory

References

Memory Mapped

References

UART

timer

parallel i/f
Virtual

Backplane

external

bus

interface

APB

Virtual Bus

handler

Bus

agent

DPI link

In the simplest terms, levels of abstraction are characterized

by timing accuracy. The OSCI
1
 SystemC TLM 2.0

standard[4] introduces terminology for coding styles that we

can refer to here:

 Untimed (UT) – limited or unspecified timing

accuracy. At this level, only ordering of operations

matters and there may be no bookkeeping of

elapsed simulated time.

 Loosely-timed (LT) – time is broken into slices or

some quantum unit. An SoC virtual platform is

likely to choose the execution of an instruction as

its quantum time unit.

 Approximately-timed (AT) – Quantum units are

broken down into phases and the tracking of

elapsed simulated time is enough to gather relative

performance statistics.

 Cycle-accurate/cycle-callable (CC) Timing is

accurate enough to run in lock-step to match the

hardware models at a pin-level, clock or bus-cycle

boundaries.

On the software side any one of these abstraction levels may
be attained. When you cross-compile code written for your
target processor to run natively on your current host, you
may not care about the timing, only the functionality of the
code. There might not even be a way to represent the target
processor’s timing. If you compile your code to run on an
ISS model of your target processor, that model may have
statistics for the instruction execution times for each
instruction and simply provide a summation of the results.
That would be loosely timed. To model the effects of a
pipelined system may require that you use an approximately-
timed model.

The hardware modeling side has fewer choices. Most
synthesizable designs require cycle-accurate or lower level
abstractions than what has been described here. However,
the testbench verification modeling can be at a much higher
level.

Methodologies such as the UVM let you treat the verification
architecture more like software. The UVM’s register
abstraction layer is designed so that you can write hardware
verification tests by providing memory address maps that
either generate or intercept memory references from simple
procedural calls written in your testbench.

IV. SYNCHRONIZATION BETWEEN ABSTRACTION LEVELS

At the simplest level, let us think of our software as native

C/C++ code running on a host processor, where our host

processor is also where the simulation of hardware in

SystemVerilog is running. We can use the SystemVerilog

DPI to blend the two languages by having the software call

a function that represents a bus transaction. In more

sophisticated virtual prototyping systems, memory

1
 OSCI is now the Accellera Systems Initiative

references are intercepted and routed via a table to the

appropriate handler, but the end result is the same: a

memory reference becomes a procedural call.

The key feature of the SystemVerilog DPI is that it lets a

SystemVerilog function or task appear as a simple routine

on the C side, and a C routine appears as a task or function

on the SystemVerilog side. A subset of compatible

argument types may be accessed transparently without any

knowledge of the language used to call the routine.

Compatible types are those with the same semantic meaning

and representation in memory without any need of

conversion.

Figure 5 Software to Hardware DPI link

In the code fragment shown in Figure 5, the C code has no

notion of timing except when it calls the DPI exported tasks

which are both cycle accurate on the SystemVerilog side.

The C_routine calls and is blocked until the APB_read and

APB_write tasks have completed. While the C code is

blocked, simulated hardware time advances on the

SystemVerilog side waiting for each clock cycle. This is

explained further in Figure 11 Inter-process

Communication.

void C_routine() {

 if (address==0xFFA) {

 APB_read(address,&data);

 } else {

 data = MemRead[address];

 }

 APB_write(address,data+1);

task APB_read(input int address,

 output int data);

 @(posedge clock)

 bus <= address;

 cmd <= read;

 @(posedge clock)

 cmd <= ack;

 data = bus;

endtask

export “DPI-C” task APB_read;

export “DPI-C” task APB_write;

function call

transactions

pin-level

transactions

Figure 6 Compressed Hardware Simulation Timing

In the situation shown in Figure 6, hardware simulation time

only advances during the bus cycles chosen by the virtual

prototype to model in hardware. There may be thousands of

consecutive idle hardware bus cycles between active bus

cycles. The hardware design might require additional

simulation time during idle bus cycles to execute other

activity accurately. The virtual prototype may also have its

own concept of time by counting the number of instructions

executed. We can provide an idle task that advances time to

gain some extra level of timing accuracy that represents

some percentage of idle bus activity. For optimal

performance, there is no need to account for every idle bus

cycle.

Figure 7 Approximated Hardware Simulation Timing

Instead of injecting a separate idle bus operation, you could

add the instruction count to each bus operation and have

SystemVerilog inject some constrained random number of

bus cycles.

Some designs have interrupts that need to be accounted for.
The idle task (as well as any bus cycle task) may be modified
to report back that an interrupt was requested.

Figure 8 Interrupt Monitor

A completion model between the hardware and software

prototypes needs to be agreed upon. Depending on the

application, the hardware side can either just report that the

interrupt was requested during the bus operation just

task APB_idle(

input int requestedCycles,

output int iRequested,

output int actualCycles);

int i;

fork

 for(i=0;i<requestedCycles;i++)

 @(posedge clock);

 @(IRQ!=0);

join_any

disable fork;

actualCycles = i;

iRequested = IRQ;

endtask

Read

Write

Read

Read

Write

Write

Read

APB_read

op1

op2

APB_write

MemRead

op3

APB_read

APB_read

op4

…

op1001

APB_write

MemWrite

APB_write

op1002

op1003

APB_read

Simulation

time

task APB_idle(input int cycles);

repeat (cycles)

 @(posedge clock);

endtask

Read

Write

idle

Read

Write

idle

Read

APB_read

op1

op2

APB_write

MemRead

op3

APB_idle(3);

APB_read

APB_write

op4

…

op1004

APB_idle(50)

APB_read;

completed, or abort the operation and return immediately

stating the operation was incomplete.

V. FLOW OF TRANSACTIONS

For easier maintenance and reusability, define a standard

transaction instead of creating individual routines and

various numbers of argument lists. A transaction is simply a

structure of data that that represents a common set of

arguments that are typically passed to a method. They can

be packed and unpacked into a simple array of bytes making

data transfers across the inter-language boundary much

simpler. The design of a transaction is show in Figure 9:

Field Type Description
Operation Enum Read, write,idle,burst
Address 32-bit Physical starting address
ReqStart Time Time of Request
ReqDuration Time Time allocated for operation
TrStart Time Actual start time
TrEnd Time Actual end time
InterruptMode Enum Ignore, Complete, Abort
InterruptReq Enum None,Requested
InterruptTime Time Time of Interrupt
Length Int Size of data
Payload nBytes Transaction data

Figure 9 Transaction Specification

Depending on the operation, only some of these fields may

be populated at the start of the transaction, others will be

filled in at the time of completion.

One important consideration in a mixed language

environment is that each side of the language boundary is

responsible for allocation and management of the memory

used by a transaction. In the earlier examples, we just

passed a compatible data type, like an int, as an argument

that was copied as the call was made. This is fine as long as

the size of the argument is a known fixed size to both

languages; passing a pointer to a block of memory of

unknown size is not allowed. Memory for transactions with

dynamic sizes must be allocated on both sides before

making the call. Some methods for dealing with this issue

are:

 Allocate a fixed maximum size for your transaction

and use the Length field to trim the Payload.

 Send the Payload in fixed sized blocks over

multiple operations. So if your block size was 2K

and you need to send a 5K payload, you would

need to send the payload over 3 transactions.

 Split the transaction into two calls. The first call

would specify the length of the payload to allocate,

and the second call would use the allocated space

from the first call.

VI. THE NEED TO BE THE MASTER

So far, we have not considered how to get the
communication between the virtual prototype and the
hardware simulation started. Software running on a
processor runs in a limited number of threads; whereas
hardware is by its nature represented by a prolific number of
threads. In practice, hardware simulators do not represent
threads the same way that software does, so there will need
to be some kind of mapping.

Going back to the simplest environment where the software

is just C code natively compiled on a simulation host and

hardware, the C code can be started from the SystemVerilog

side by calling a DPI-C routine that has been imported as a

task. In this case, the SystemVerilog side is the master

thread.

In the following example, the routine c_code has been

imported as a task as opposed to a function which allows it

to consume time. The way c_code consumes time is by

calling an exported task, v_code.

Figure 10 Starting a C thread

However, most realistic virtual prototyping systems want to

be the master starting their own threads and just have the

API calls act as a slave to their threads. The most common

way to make this happen is to use an inter-process

communication socket (IPC)[6]. An IPC socket is a host OS

mechanism for message passing. A server thread sends a

message to a client and receives a response from a client

thread. Both threads can be started independently of each

int c_code() { /* C task */

 while(1) { /* C thread */

 v_code(args);

 ...

 }

}

module top;

 import “DPI-C” task c_code();

 initial

 c_code; // start C thread

 bit clk; always #10 clk++;

 export “DPI-C” task v_code;

 task v_code(args);

 addr <= args;

 @(posedge clk);

 args = result;

 endtask

endmodule

other as a master thread, but will block waiting to receive

the message or response.

The only significant difference between the master and

slave is the master process initiates the socket and the slave

process connects to the socket. After that negotiation, the

two processes can be completely independent of each other,

using the IPC messages to synchronize with each other.

Figure 11 Inter-process Communication

The two loops in Figure 11 represent two independent

processes. The software virtual prototype may have many

processes, one of which the virtual backplane intercepts and

calls a software bus model. The software model sends an

IPC message to the C thread started by the hardware

simulation client, and waits for a response message. The C

thread is the other process, waiting to receive an IPC

message, and then executes the transaction by calling the

SystemVerilog bus functional models exported through the

DPI.

VII. INTEGRATION WITH UVM

Reuse of the existing testbench from the hardware-only

based verification environment is always encouraged. The

sequence mechanism in the UVM provides a convenient

mechanism to convert the bus transaction into a ready set of

pin wiggles to the DUT for any particular hardware

protocol. The SystemVerilog DPI enables the C code to start

sequences to send transactions through the testbench that

eventually reaches the interface to the DUT. The UVM’s

register package provides an additional layer that directs the

appropriate memory addresses to the appropriate interface

use a register map.

Figure 12 UVM Testbench Re-Use

In the environment shown above, UVM sequences are

generated by either a pure UVM test, the virtual prototype

process, or a combination of both.

VIII. SUMMARY

The techniques shown in this paper have been deployed on
several projects where the virtual prototype has been
modeled in a variety of environments from internally
developed platforms, open source Python based stimulus
generators, and commercially available systems such as
Wind River Simics.

There are a number of other issues that time did not permit
going into detail in this paper, but have been address in some
of these projects. These issues include dealing with multiple
interface threads and controlling the interactive debugging
environments of two processes communicating through IPC
sockets

C Thread

Software
Master

Initiate
Socket

Wait for
message

Hardware
Client

Connect
to Socket

System
Verilog
Threads

Execute
transaction

Wait for
response

Send
message

Virtual
Proto
type

Threads
Single bus
transaction

Software
Bus

Model

Send
message

Wait for
message

IPC
Communication

DPI
Communication

DUT Bus
Agent

Register
Model

Virtual Prototype

Bus
Model

IPC
channel

IPC
channel

Sequence

DPI C
Thread

UVM Test

regA.read()

regA.write()

IX. REFERENCES

[1] Furber, Stephen B. ARM System-on-chip Architecture. Harlow,
England: Addison-Wesley, 2000.

[2] "IEEE Standard for SystemVerilog- Unified Hardware Design,
Specification, and Verification Language," IEEE Std 1800-2009,
2009.

[3] "Accellera UVM Reference Manual”

[4] TLM-2.0 Standard." SystemC TLM (Transaction-level Modeling).
<http://www.accellera.org/downloads/standards/systemc/tlm>.

[5] Peryer, Mark. C Based Stimulus for UVM. Mentor Graphics, n.d.
Web. 06 Feb. 2013. <http://www.mentor.com/products/fv/events/c-
based-stimulus-for-uvm>.

[6] Spear, Chris. SystemVerilog for Verification: A Guide to Learning the
Testbench Language Features. New York, NY: Springer, 2008. 229+

[7] Edelman, Rich. Using SystemVerilog Now with DPI. Proc. of DVCon
2005, San Jose

[8] Intel,. Full System Simulation with Wind River Simics. Web. 06 Feb.
2013. <http://www.windriver.com/products/simics/>.

