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ABSTRACT  

This paper describes an approach to using Accellera's UVM, the 

Universal Verification Methodology, for functional verification by 

mainstream users. The goal is to identify a minimal set of concepts 

sufficient for constrained random coverage-driven verification in 

order to ease the learning experience for engineers coming from a 

hardware design background who do not have extensive object-

oriented programming skills. We describe coding guidelines to 

address the canonical structure of a UVM component and a UVM 

transaction, the construction of the UVM component hierarchy, the 

interface with the design-under-test, the use of UVM sequences, and 

the use of the factory and configuration mechanisms. 
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1. INTRODUCTION 

This paper describes an approach to using Accellera's UVM, the 

Universal Verification Methodology, for functional verification by 

mainstream users as opposed to highly skilled verification 

specialists. It arises from experience at Doulos in teaching 

SystemVerilog and functional verification methodology to engineers 

from a broad cross-section of the hardware design and verification 

community. While much of the research and development in 

functional verification methodology is rightly focussed on the needs 

of power users as they solve the hardest verification problems, we 

find that the majority of mainstream users have a somewhat different 

focus, namely, how to become productive with SystemVerilog with a 

minimum of delay and specialist programming expertise. 

SystemVerilog and UVM provide mechanisms to create verification 

components for checking, coverage collection, and stimulus 

generation, and to modify the behavior of those components for 

specific tests. But SystemVerilog and UVM provide more than this, 

so much more in fact that the learning curve can be daunting for non-

specialists. 

The goal of this paper is to enable engineers with experience in 

Verilog or VHDL to become productive in UVM by learning a small 

number of new coding idioms, selected to minimize the conceptual 

clutter they have to deal with. As users become fluent with this set of 

basic idioms, they can then branch out to embrace the full feature set 

of UVM as and when they need. 

We describe coding guidelines to address the canonical structure of a 

UVM component and a UVM transaction, the construction of the 

UVM component hierarchy, the interface with the design-under-test, 

the use of UVM sequences, and the use of the factory and 

configuration mechanisms. Starting from these simple guidelines, 

engineers can create constrained random verification environments 

in an object-oriented coding style that are fully compliant with the 

UVM standard, and hence are interoperable with UVM verification 

IP from other sources. 

2. EASIER UVM? 

Easier UVM is not yet another verification methodology. It is UVM. 

The point is to somewhat restrict the range of features being used in 

order to make life easier for the novice. This exercise is primarily a 

pedagogical one. The aim is to ease the task of learning UVM, not to 

deny users the ability to exploit the full power of the UVM class 

library. The coding guidelines we give here are not the only ways of 

using UVM, nor are they necessarily the best approach for 

experienced verification engineers. 

Easier UVM does not mean easy UVM. The set of concepts 

presented below is still quite extensive and very rich. It is being 

increasingly recognized that both system modeling and functional 

verification require a high level of software programming skill, and 

on top of that, UVM also requires a deep understanding of coverage-

driven verification and transaction-level modeling. 

This paper does not explicitly list every UVM feature. Many useful 

features have not been mentioned, some of them essential for 

advanced UVM usage, significant examples being report handling 

and the end-of-test mechanisms. Easier UVM merely provides a 

conceptual foundation on which to build a deeper knowledge of 

UVM.  

The version of UVM current at the time of writing was the UVM 1.0 

Early Adopter release. 

3. SYSTEMVERILOG AND UVM 

Over the past few years, constrained random coverage-driven 

verification has been increasingly adopted as the methodology-of-

choice for simulation-based functional verification to the point where 

it is widely used on the largest ASIC projects. SystemVerilog, as the 

only industry standard hardware verification language supported 

every one of the three largest EDA vendors, has displaced its rival 

single-vendor solutions in many companies. 

But SystemVerilog is not without its problems. Although current 

SystemVerilog implementations are in many ways both mature and 

robust, SystemVerilog remains under-specified as a language. 

SystemVerilog was an extremely ambitious standardization project 

that was undertaken prior to the development of any complete proof-

of-concept implementation, and as a result the IEEE 1800 

SystemVerilog Language Reference Manual still has many areas of 

ambiguity, and more than one of the major implementations has 

significant gaps. The simulation tool vendors themselves are in the 

unenviable position of having to invest significant engineering 

resources in trying to pin down and implement a very complex 

language against an ambiguous definition, and so take the very 



reasonable position of prioritizing their implementation choices 

according to customer demand. 

Nevertheless, certain areas of the SystemVerilog language do stand 

out as being well-defined and consistently implemented across all the 

major simulators. These include: 

 The concise RTL features such as ANSI-style port and parameter 

declarations, always_comb, always_ff, unique, priority, and the 

abbreviated port connection syntax 

 C-like control constructs such as for, foreach, do-while, break, 

continue, return 

 C-like data type features such as typedef, enum, struct, and the 2-

valued integer types 

 VHDL-like package and import features 

 Classes and the features for constraints and functional coverage 

based thereon 

 The class-based data types, namely strings, queues, dynamic 

arrays and associative arrays 

 Interfaces and virtual interfaces sufficient for communication 

between classes and modules 

One reason that the features from the above list have been 

implemented so thoroughly and consistently is that, with the 

exception of the concise RTL features, they have been widely used to 

create the libraries of base classes that underpin the functional 

verification methodologies AVM, URM, VMM, OVM, and now 

UVM. Customer demand has pushed the EDA vendors to support 

each others' methodology class libraries, which in turn has driven the 

implementations to converge on a common understanding of the 

features and semantics of class-based SystemVerilog. 

SystemVerilog and UVM now form a virtuous circle. The class-

based SystemVerilog features that support constrained random 

verification are sufficiently well-defined and well-implemented to 

allow the development of robust and portable verification class 

libraries, and the widespread use of those libraries ensures the 

ongoing support of the necessary language features by the tool 

vendors. 

In addition to the Verilog-like and C-like features of SystemVerilog, 

we make use of classes, constraints, covergroups, packages, 

interfaces and virtual interfaces. UVM makes heavy use of type 

parameterization to classes, and fortunately all of the major simulator 

implementations now agree on the semantics in this area. 

4. OBJECT ORIENTED CONCEPTS 

Object-oriented (OO) or aspect-oriented programming concepts are 

key to contemporary constrained random verification methodology 

because they enable reuse, yet these techniques are amongst the 

hardest to learn. OO techniques allow verification components to be 

specialized to the needs of a specific test bench or test without 

modifying their source code and enables well-structured 

communication between those components using function calls. We 

wanted to provide some of the expressive power of the OO paradigm 

without getting drawn into the full set of issues involved in OO 

programming.  

In UVM, the class is used as a container to represent components, 

transactions, sequences, tests, and configurations. Let's take the 

component. Unlike the VHDL design entity or the SystemVerilog 

module, a component represents an abstraction across a whole family 

of possible structural building blocks. A component picks out what is 

common across several such building blocks, but a component is not 

concrete, meaning that it is not the final once-and-for-all definition 

of the thing. A VHDL design entity or a SystemVerilog module can 

describe a family of related components, but only if the variants are 

anticipated in advance and are explicitly captured in the source code 

by means of language features such as generic parameters and 

generate statements. Because it is a class, a UVM component can be 

extended after-the-fact in arbitrary ways. An extension can add new 

features or can modify existing features. In particular, we require this 

extension capability so that a test can extend a transaction or a 

sequence in order to add constraints, and then use the factory 

mechanism to override the generation of those transactions or 

sequences. 

5. UVM CONCEPTS 

The goal of this paper is to identify a minimal set of concepts 

sufficient for constrained random coverage-driven verification in 

order to ease the learning experience for engineers coming from a 

hardware design background who do not have extensive object-

oriented programming skills. At the same time, we did not want to 

strip down the conceptual framework to the point where it lost all the 

expressive power of the object-oriented paradigm. Some other 

attempts to present verification class libraries to hardware designers 

have ended up doing little more than re-present the semantics of 

VHDL or Verilog using classes, which was a pitfall we wished to 

avoid. In our experience, hardware designers moving to a new 

language for verification, SystemVerilog in this case, do indeed want 

to benefit from the increased expressive power and flexibility 

afforded by a new paradigm. 

Our conceptual vocabulary is listed below. These terms are 

elaborated later in the paper, and expanded definitions can be found 

in the documentation accompanying the UVM distribution. 

 Component – a structural building block, conceptually equivalent 

to a Verilog module 

 Transaction – a bundle of data items, which may be distributed 

over time and space in the system, and which form a 

communication abstraction such as a handshake, bus cycle, or 

data packet 

 Sequence – an ordered collection of transactions or of other 

sequences 

 Phase – execution is subdivided into various predefined phases 

that permit components to agree on when to build components, 

connect ports, run simulation, and so forth 

 Factory – a function call that returns a component, transaction, or 

sequence, the type of which may be overridden from a test 

 Port and export – connection points for transaction-level 

communication between components 

 Generation – the creation of components, transactions, or 

sequences, where the properties of each may be set 

deterministically or at random under the control of constraints 

 Test – a top-level component, which drives generation 

 Configuration – an object associated with a component which 

may be set or randomized by a test and which it is used to 

configure that component as the component hierarchy is built 



 Sequencer – a component that runs sequences and that sends 

transactions generated by those sequences downstream to another 

sequencer or to a driver 

 Driver – a component that receives transactions from a sequencer 

and that drives the signal-level interface of the Design Under 

Test (DUT) 

 Monitor – a component that senses the signal-level interface of 

the DUT and that sends transactions to the verification 

environment 

 Coverage – functional coverage information can be collected 

using SystemVerilog covergroups within a component 

 Checking – functional correctness of the DUT can be checked 

using either procedural code within a component or 

SystemVerilog assertions within an interface 

5.1. Components 

Components are used to build a component hierarchy, conceptually 

very similar to the design hierarchy in VHDL or the module 

hierarchy in Verilog. In this case the component hierarchy is part of 

the verification environment rather than the design, and components 

represent stimulus generators, drivers, monitors, coverage collectors, 

and checkers. The component represents the reusable unit of the 

verification environment, so has a standard structure and conventions 

for how it can be customized. Components are created quasi-

statically at the start of simulation. 

Here is a skeleton component. The uvm_component_utils macro and 

the function new should be treated as boilerplate code and written 

exactly as shown. 
 

class my_comp extends uvm_component; 

  `uvm_component_utils(my_comp) 

 

  function new(string name, uvm_component parent); 

    super.new(name, parent); 

  endfunction 

 

  ... 

endclass 

 

5.2. Transactions 

Transactions are the basic data objects that are passed between 

components. In contrast to VHDL signals and Verilog wires, 

transactions represent communication at an abstract level. In order to 

drive stimulus into the DUT, a so-called driver component converts 

transactions into pin wiggles, while a so-called monitor component 

performs the reverse operation, converting pin wiggles into 

transactions. 

Here is a skeleton transaction. Again, the uvm_object_utils macro 

and function new should be treated as boilerplates. 
 

class my_tx extends uvm_sequence_item; 

  `uvm_object_utils(my_tx) 

   

  function new (string name = ""); 

    super.new(name); 

  endfunction 

 

  ... 

endclass 

 

In the case of transactions and sequences, the one-and-only 

constructor argument needs a default value because it can be called 

from contexts that do not pass in a name. 

5.3. Sequences 

Sequences are assembled from transactions and are used to build 

realistic sets of stimuli. A sequence could generate a specific pre-

determined set of transactions, a set of randomized transactions, or 

anything in between. Sequences can run other sequences, possibly 

selecting which sequence to run at random. Sequences can be layered 

such that higher-level sequences send transactions to lower-level 

sequences in a protocol stack. 

Here is a skeleton sequence. It is similar to a transaction in outline, 

but the base class uvm_sequence is parameterized with the type of 

the transaction of which the sequence is composed. Also every 

sequence contains a body task, which when it executes generates 

those transactions or runs other sequences. 
 

class my_seq extends uvm_sequence #(my_tx); 

  `uvm_object_utils(my_seq) 

 

  function new (string name = ""); 

    super.new(name); 

  endfunction 

 

  task body; 

    ... 

  endtask 

  ... 

endclass 

 

Transactions and sequences together represent the domain of 

dynamic data within the verification environment.  

5.4. Phase 

Every component implements the same set of phases, which are run 

in a predefined order during simulation in order to synchronize the 

behavior of the components. When compared with VHDL or 

Verilog, UVM provides rather more temporal structure within a 

simulation run. The standard phases are as follows: 

   1. build – create child component instances 

   2. connect – connect ports to exports on the child components 

   3. end_of_elaboration – housekeeping 

   4. start_of_simulation – housekeeping 

   5. run – runs simulation 

   6. extract – post-processing 

   7. check – post-processing 

   8. report – post-processing 

Each phase is represented by a function within the component, 

except for run, which is a task because it alone consumes simulation 

time. If a function is absent, that component will be inactive in the 

given phase. 

As you can infer from the above list, the primary distinction amongst 

the phases is between the phases for building the component 

hierarchy, connecting the ports, and running simulation, with 

additional housekeeping phases pre-pended and appended to the 

simulation phase. 



5.5. Factory 

The UVM factory mechanism is an implementation of the so-called 

factory pattern described in the OO literature. The UVM factory can 

make components, transactions, and sequences. Use of the factory 

enables the choice of object type to be overridden from the test, 

although a given component, transaction or sequence can only be 

overridden with one that extends the class of the original. This is one 

of the main mechanisms by which a reusable verification component 

can be customized to the current environment. 

Here is an example of a component creating child components during 

the build phase: 
 

class A extends uvm_component; 

  `uvm_component_utils(A) 

   

  B b;  // Child component 

  C c;  // Child component 

   

  function new(string name, uvm_component parent); 

    super.new(name, parent); 

  endfunction 

   

  function void build;  // Build phase 

    super.build(); 

    // Factory calls to create child components 

    b = B::type_id::create("b", this); 

    c = C::type_id::create("c", this); 

  endfunction 

 

  ...   

endclass 

 

In order to instantiate the complete component hierarchy the build 

functions themselves are called top-down. You call create within the 

build function of each individual component to instantiate its 

children. 

The same factory mechanism is also used within a sequence to create 

transactions: 
       

my_tx tx; 

tx = my_tx::type_id::create("tx"); 

 

The other aspect of factories is overriding the behavior of the factory 

from a specific test. For example: 
  

my_tx::type_id::set_type_override(alt::get_type()); 

 

The above statement would cause all instance of transaction type 

my_tx created by the factory to be replaced with instances of the 

transaction alt. Overrides can also be made per-instance: 
 

my_tx::type_id::set_inst_override(alt::get_type(), 

                                   "inst", this); 

 

5.6.   Port and export 

Ports and exports are analogous to ports in VHDL or Verilog, but are 

used for transaction-level communication rather than signal-level 

communication. A component can send out a transaction out through 

a port, or receive an incoming transaction through an export. 

Transactions are passed as arguments to function calls, which may be 

non-blocking (return immediately) or blocking (suspend and wait for 

some event before returning), which is sufficient for basic 

synchronization within the verification environment. All detailed 

timing information should be pushed down into the driver and 

monitor components that connect to the DUT so that the timing can 

be determined by the DUT interface, which is typically locked to 

low-level clocks and other synchronization signals. Within the 

verification environment, control flow radiates outward from the 

DUT, with drivers calling get to request transactions from 

sequencers when they are ready for further stimulus, and monitors 

calling write to distribute transactions around the verification 

environment for analysis. A call to get from a driver may block if the 

stimulus generator is coordinating its activities with some other part 

of the verification environment. A call to write from a monitor is not 

permitted to block, because the DUT cannot be stalled waiting for 

analysis activity.  

The example below shows a component A containing two child 

components B and C. The connect function connects p_port of 

component B to q_export of component C. 
 

class A extends uvm_component; 

  `uvm_component_utils(A) 

   

  B b;  // Child component having p_port 

  C c;  // Child component having q_export 

   

  function new(string name, uvm_component parent); 

    super.new(name, parent); 

  endfunction 

   

  function void build;  // Build phase 

    super.build(); 

    b = B::type_id::create("b", this); 

    c = C::type_id::create("c", this); 

  endfunction 

   

  function void connect;  // Connect phase 

    b.p_port.connect( c.q_export ); 

  endfunction 

   

endclass 

 

One of the most common kind of port is the so-called analysis port, 

which serves as a broadcast mechanism used to send transactions to 

multiple passive verification components. An analysis port may be 

connected to any number of analysis exports, including none at all. 

Transactions are actually sent through ports using OO function calls, 

for example: 
 

class my_comp extends uvm_component; 

  `uvm_component_utils(my_comp) 

 

  uvm_analysis_port #(my_tx) aport; 

  ... 

  function void build; 

    super.build(); 

    aport = new("aport", this); 

  endfunction 

 

  task run; 

    my_tx tx; 

    tx = my_tx::type_id::create("tx"); 

    ... 

    aport.write(tx); 

  endtask 

endclass 

 

You may notice from the above that the type of the analysis port is 

parameterized using the type of the transaction #(my_tx), the 

analysis port has to be built explicitly during the build phase, and the 



transaction sent through the analysis port by the call to write is itself 

built using the factory. 

5.7. Generation 

Generation exploits SystemVerilog randomization and constraints. 

Component generation occurs quasi-statically during the so-called 

build phase of UVM, when a component is able to access its 

configuration object (if there is one) in order to control the 

generation of lower-level components. This is analogous to the 

elaboration phase in VHDL or Verilog. Sequence generation occurs 

dynamically. Control over the precise sequence of transaction that 

finally arrives at the DUT can be distributed across pre-defined 

sequence generation components and the test, which is able to extend 

and constrain existing sequences. 

Here is an example showing transaction generation within the body 

task of a sequence: 
     

class my_seq extends uvm_sequence #(my_tx); 

  ...   

  task body; 

    my_tx tx; 

 

    tx = my_tx::type_id::create("tx"); 

    start_item(tx); 

    assert( tx.randomize() with { cmd == 0; } ); 

    finish_item(tx); 

    ... 

  endtask 

endclass 

 

In the example above, the transaction is being constrained as it is 

randomized in order to set the value of the command field to a 

specific value before sending the transaction downstream. The 

start_item and finish_item functions synchronize with the component 

that is pulling transactions from the sequencer, which could be a 

driver or another sequencer. start_item waits for the downstream 

component to request the transaction, finish_item waits for the 

downstream component to indicate that it has finished with the 

transaction. For its part, the downstream component calls get to fetch 

the transaction and may call put if it needs to send back a response. 

The same mechanisms can be used to generate sequences themselves 

and hence to nest sequences within sequences: 
 

task body; 

  repeat(n) 

  begin 

    my_seq seq; 

    seq = my_seq::type_id::create("seq"); 

    start_item(seq); 

    assert( seq.randomize() ); 

    finish_item(seq); 

  end 

endtask 

 

The body function of a sequence is just a regular function that 

executes procedural code. It is often useful to have the sequence read 

variables declared in the sequence class (e.g. n in the example 

above), which can be set or randomized externally. 

5.8. Tests 

A test is a top-level component used to control generation, that is, to 

customize the quasi-static behavior of the components that comprise 

the verification environment and the dynamic behavior of the 

transactions and sequences that pass amongst those components. A 

test can: 

 Set the contents of configurations, which are then used to control 

the generation of the component hierarchy from the build 

function 

 Override components with extended components in order to 

modify some aspect of their structure or functionality 

 Override transactions and sequences with extended transactions 

and sequences that typically add constraints 

 Start sequences on specific components called sequencers 

A transaction or sequence can be customized in two ways: by using 

an in-line constraint when calling the randomize function (as shown 

above), or by declaring an extended class that adds or overrides 

constraints or functions from the original class. For example, an 

extended transaction: 
 

class alt_tx extends my_tx; 

  `uvm_object_utils(alt_tx) 

 

  function new(string name = ""); 

    super.new(name); 

  endfunction 

 

  constraint my_constraint { data < 128; } 

endclass 

 

A user-defined test is created by extending a specific class uvm_test, 

as shown below: 
 

class my_test extends uvm_test; 

  `uvm_component_utils(my_test) 

  ...   

  my_env env;    

  ... 

  function void build; 

    super.build(); 

    // Factory override replaces my_tx with alt_tx 

    my_tx::type_id::set_type_override( 

                           alt_tx::get_type() ); 

    env = my_env::type_id::create("env", this); 

  endfunction 

     

  task run; 

    my_seq seq; 

    seq = my_seq::type_id::create("seq"); 

    assert( seq.randomize() with { n = 22; } ); 

    seq.start( env.sequencer ); 

  endtask 

endclass 

 

Class uvm_test itself extends class uvm_component. This is one 

amongst several examples of built-in classes that are themselves 

components, including uvm_sequencer, uvm_driver, uvm_monitor, 

uvm_subscriber and uvm_env. It is a good idea to use these so-called 

methodology base classes rather than using raw uvm_components, 

because doing so makes the user's intent clearer. 

Note how the test uses the factory to create a component instance 

containing the fixed part of the verification environment env, which 

is not itself test-specific but will be customized from the my_test 

class. Each test only need contain the few specific modifications to 

the verification environment that distinguish this test from the default 

situation. This particular test uses the factory to create an instance of 

the sequence my_seq and starts that sequence on a specific 



component within the verification environment named 

env.sequencer. 

A particular test is run from a process within the top-level module: 
 

initial 

  run_test("my_test"); 

 

The test name can be set as shown or can be passed as a command 

line argument in order to select a test without any need for 

recompilation. 

5.9. Configuration 

A configuration is an object or descriptor associated with a specific 

component instance. The configuration is populated by the test 

during generation, and is then inspected by components in the 

component hierarchy during the build phase. Components in the 

hierarchy can also create local configurations for use by their 

children alone. A single configuration class type may be common to 

many component instances, or each component instance could have 

its own unique configuration instance if required. Every component 

instance need not have its own unique configuration object; a 

component can inspect the configuration object of one of its 

ancestors. 

The definition of a configuration has some commonality with a 

transaction: 
 

class my_config extends uvm_object; 

  `uvm_object_utils(my_config) 

     

  rand bit param1; 

  rand int param2; 

  string   param3; 

  // Other configuration parameters 

   

  function new (string name = ""); 

    super.new(name); 

  endfunction 

endclass 

 

A configuration object would typically be populated from a test: 
 

class my_test extends uvm_test; 

  `uvm_component_utils(my_test) 

  ... 

  my_env env; 

  ... 

  function void build; 

    super.build(); 

    begin 

      my_config config = new; 

      // Can randomize the configuration 

      assert( config.randomize() ); 

      // Can set individual members 

      config.param2 = 3; 

      config.param3 = "filename"; 

      set_config_object("*.*producer*", "config", 

                         config, 0); 

    end 

    env = top::type_id::create("env", this); 

  endfunction 

endclass 

 

In the example above, the configuration object is instantiated and 

populated during the build phase of the test before using the factory 

to create the remainder of the verification environment, which is thus 

able to be generated according to the values set in the configuration 

object. The configuration is associated with specific verification 

component instances using the call to set_config_object. The 

argument "*.*producer*" identifies the instances to which this 

configuration applies using an instance name pattern containing 

wildcards. 

The configured component should inspect the configuration object 

during the build phase: 
 

class producer extends uvm_component; 

  `uvm_component_utils(producer) 

  ... 

  my_config config; 

 

  // Configuration parameters 

  bit    param1 = 0; 

  int    param2 = 0; 

  string param3; 

  ... 

  function void build; 

    super.build(); 

    begin 

      uvm_object obj; 

      if ( get_config_object("config", obj) ) 

      begin 

        $cast(config, obj); 

        param1 = config.param1; 

        param2 = config.param2; 

        param3 = config.param3; 

      end 

      ... 

    end 

  endfunction 

  ... 

endclass 

 

In the example above, a component calls get_config_object to 

retrieve the configuration object identified by the string "config" (as 

set by the call to set_config_object) and extracts the parameter values 

from the configuration. These parameters can be used to control 

generation locally within that component. 

This configuration mechanism plays a similar role to generics in 

VHDL and parameters in Verilog, but it afford a lot more flexibility 

because firstly the configuration can be randomized using 

constraints, secondly a single configuration can be shared by many 

different component instances (rather than having to be set explicitly 

for each individual insance), and thirdly a component can use the 

values from a parent configuration to set the configuration for its 

own children.  

5.10. Sequencer 

A sequencer is a variety of component that runs sequences and sends 

them downstream to drivers or to other sequencers. At its simplest a 

sequencer looks like any other component, except that it has an 

implicit transaction-level export for connection to a driver. 

We can now get a little more ambitious and show an example 

including sequence, sequencer, and launching the sequence from the 

test: 
 

// A SEQUENCER is a component 

class my_sqr extends uvm_sequencer #(my_tx); 

  `uvm_component_utils(my_sqr) 

   

  function new(string name, uvm_component parent); 

    super.new(name, parent); 

  endfunction 

endclass 



 

// A SEQUENCE is generated dynamically 

class my_seq extends uvm_sequence #(my_tx); 

  `uvm_object_utils(my_seq) 

 

  function new (string name = ""); 

    super.new(name); 

  endfunction 

 

  task body; 

    my_tx tx; 

    tx = my_tx::type_id::create("tx"); 

    start_item(tx); 

    assert( tx.randomize() ); 

    finish_item(tx);       

  endtask 

endclass 

 

class my_test extends uvm_test; 

  `uvm_component_utils(my_test) 

  ... 

  my_env env; 

  ...     

  task run; 

    my_seq seq; 

    // Create the sequence 

    seq = my_seq::type_id::create("seq"); 

    // randomize it 

    assert( seq.randomize() ); 

    // and start it on the sequencer 

    seq.start( env.agent.sqr ); 

  endtask 

endclass 

 

A sequencer can also receive transactions from other sequencers. 

Here is an example of one that does just that: 
 

class ano_sqr extends uvm_sequencer #(ano_tx); 

  `uvm_component_utils(ano_sqr) 

   

  uvm_seq_item_pull_port #(my_tx) seq_item_port; 

  ... 

  function void build; 

    seq_item_port = new("seq_item_port", this); 

  endfunction 

endclass 

 

This sequencer can be connected to the previous sequencer, which 

sends it transactions of type my_tx through a port-export pair. 
 

class my_env extends uvm_env; 

  `uvm_component_utils(my_env) 

     

  my_sqr  sqr1; 

  ano_sqr sqr2; 

  ... 

  function void build; 

    super.build(); 

    sqr1 =  my_sqr::type_id::create("sqr1", this); 

    sqr2 = ano_sqr::type_id::create("sqr2", this); 

    ... 

  endfunction 

     

  function void connect; 

    sqr2.seq_item_port.connect( 

                            sqr1.seq_item_export ); 

    ... 

  endfunction 

endclass 

 

As discussed earlier, communication between the two sequencers 

will be accomplished by making transaction-level calls between the 

two sequencers, in the case with sqr2 pulling transactions from sqr1. 

The actual sequence to be run on sqr2 is shown below: 
 

class ano_seq extends uvm_sequence #(ano_tx); 

  `uvm_object_utils(ano_seq) 

  `uvm_declare_p_sequencer(ano_sqr) 

  ...     

  task body; 

    ... 

    my_tx tx_from_1; 

    p_sequencer.seq_item_port.get(tx_from_1); 

    ... 

Conceptually, all that is happening here is that a sequence, running 

on a sequencer, is pulling in transactions through a port on that 

sequencer. In order to do so, it needs direct access to the sequencer 

object that it is running on, which is provided by the predefined 

variable p_sequencer. Through p_sequencer, a sequence can refer to 

variables declared within the sequencer class, including ports and 

references to other external components. It turns out that this coding 

trick is all that is needed in order to have a sequence start child 

sequences on another sequencer, that is, on a sequencer other than 

the one it is itself running on. Such a sequence is called a virtual 

sequence because it does not itself generate transactions but instead 

controls the execution of other sequences, running on other 

sequencers. 

5.11. Driver 

A driver is a variety of component that always sits downstream of a 

sequencer. The driver pulls transactions from its sequencer and 

controls the signal-level interface to the DUT. The transaction-level 

interface between the sequencer and the driver is a fixed feature of 

UVM, and is unusual in the sense that both the port and the export 

required for TL- communication are implicit. 
 

class my_driver extends uvm_driver #(my_tx); 

  `uvm_component_utils(my_driver) 

 

  virtual dut_if dut_vi; 

 

  function new(string name, uvm_component parent); 

    super.new(name, parent); 

  endfunction 

     

  function void build; 

    super.build(); 

    begin 

      uvm_object obj; 

      my_config config; 

      get_config_object("config", obj, 0); 

      assert( $cast(config, obj) ); 

      dut_vi = config.dut_vi; 

    end 

  endfunction 

    

  task run; 

    forever 

    begin 

      my_tx tx; 

      seq_item_port.get(tx); 

         

      // Wiggle pins of DUT 

      dut_vi.cmd  = tx.cmd; 

      dut_vi.addr = tx.addr; 

      dut_vi.data = tx.data; 

    end 

  endtask 

endclass 



 

In the example above, the driver communicates with the sequencer 

by means of the call get(tx) through the implicit seq_item_port. 

Having got a transaction, it then drives the signal-level interface to 

the DUT by making assignments to the members of a SystemVerilog 

interface, which is done through the virtual interface dut_vi. The 

virtual interface is the SystemVerilog language mechanism that is 

used to pass data between structural Verilog modules and the class-

based verification environment. 

The example above all shows how a configuration object can be used 

to pass the virtual interface down to the driver during the build 

phase. 

5.12. Monitor 

A monitor is a variety of component that is confined to having 

passive access to the signal-level interface of the DUT. The monitor 

monitors traffic going to and from the DUT from which it assembles 

transactions which are distributed to the rest of the verification 

environment through one or more analysis ports. 

All of the necessary concepts have already been discussed above. 

Here is an example: 
 

class my_monitor extends uvm_monitor; 

  `uvm_component_utils(my_monitor) 

 

  uvm_analysis_port #(my_tx) aport; 

     

  virtual dut_if dut_vi; 

  ... 

  task run; 

    forever 

    begin 

      my_tx tx; 

 

      // Sense the DUT pins on a clock edge       

      @(posedge dut_vi.clock); 

      tx = my_tx::type_id::create("tx"); 

      tx.cmd  = dut_vi.cmd; 

      tx.addr = dut_vi.addr; 

      tx.data = dut_vi.data; 

         

      aport.write(tx); 

    end 

  endtask 

endclass 

 

5.13. Coverage and checking 

SystemVerilog itself has many language features in support of the 

collection of functional coverage data and checking for functional 

correctness. In UVM, such code would typically be placed in a 

verification component that receives transactions from a monitor. 

The coverage and checking are best kept separate from the monitor 

in order that each may be reused more easily; monitor components 

are usually specific to particular protocols but are independent of the 

application. In contrast, functional coverage and checking code is 

usually highly application-specific but may in some cases be 

independent of the protocols used to communicate with the DUT. 

An analysis port can be unconnected or can be connected to one or 

more analysis exports. A subscriber is a variety of component that 

has one built-in analysis export ready-for-use: 
 

class my_subscriber extends uvm_subscriber #(my_tx); 

  `uvm_component_utils(my_subscriber) 

     

  // Coverage registers 

  bit cmd; 

  int addr; 

  int data; 

         

  covergroup cover_bus; 

    coverpoint cmd; 

    coverpoint addr; 

    coverpoint data; 

  endgroup 

  ... 

  // Function called through analysis port 

  function void write(my_tx t); 

    cmd  = t.cmd; 

    addr = t.addr; 

    data = t.data; 

    cover_bus.sample(); 

  endfunction 

endclass 

 

The monitor and the subscriber can be generated at the next level up 

in the component hierarchy using the factory and the port-export 

connection made in the connect phase: 
 

class my_env extends uvm_env; 

 `uvm_component_utils(my_env) 

     

  my_monitor    monitor; 

  my_subscriber subscriber; 

  ... 

  function void build; 

    super.build(); 

    monitor    = my_monitor::type_id::create( 

                               "monitorh" , this); 

    subscriber = my_subscriber::type_id::create( 

                               "subscriber", this); 

  endfunction 

     

  function void connect; 

    monitor.aport.connect( 

                      subscriber.analysis_export ); 

  endfunction 

endclass 

Note the reference to the implicit analysis_export of the subscriber. 

Sometimes a checking component may need to receive two or more 

incoming transactions streams, in which case the single implicit 

analysis export of the uvm_subscriber is insufficient, and it is 

necessary to declare analysis_exports explicitly: 
 

class A extends uvm_component; 

  ... 

  uvm_analysis_imp #(tx1, A) analysis_export; 

  ... 

  function void write(tx1 t); 

    ... 

 

class B extends uvm_component; 

  ... 

  uvm_analysis_imp #(tx2, B) analysis_export; 

  ... 

  function void write(tx2 t); 

    ... 

 

class my_checker extends uvm_component; 

  ... 

  // Two incoming transaction streams 

  uvm_analysis_export #(tx1) tx1_export; 

  uvm_analysis_export #(tx2) tx2_export; 

  ... 

  A a; 



  B b; 

  ... 

  function void connect; 

    // Bind exports to two separate children 

    tx1_export.connect( a.analysis_export ); 

    tx2_export.connect( b.analysis_export ); 

  endfunction 

 

SystemVerilog does not support function overloading so it is only 

possible for a class to have a single write function. Hence ultimately 

each analysis export needs to be associated with its write function in 

a separate class, classes A and B in the example above. 

5.14. Transaction operations 

It is common to need to perform operations on transactions, 

operations such as printing out the contents of a transaction, making 

a copy of a transaction, or comparing two transactions for 

equivalence. For example, the subscriber described above may wish 

to log the data from a transaction or compare a transaction from the 

DUT with another transaction representing the expected behavior. 

UVM provides a standard set of functions for purposes such as these, 

as illustrated below: 
 

function void write(my_tx t); 

  ... 

  my_tx tx; 

  tx.copy(t) 

  history.push_back(tx); 

  if ( !t.compare(expected)) 

    uvm_report_error("mismatch",  

                  $sformatf("Bad transaction = %s", 

                  t.convert2string())); 

endfunction 

 

Firstly, the copy function takes a complete copy of the transaction 

passed as an argument, in this case storing the copy in a queue of 

past transactions. Secondly, the compare function compares two 

different transactions for equivalence. Finally, the convert2string 

function returns a string representing the contents of the transaction 

in printable format. The uvm_report_error function is one of several 

standard utility for message reporting. 

There is more to a transaction than meets the eye. As well as 

containing data fields representing properties of the protocol being 

modeled, a transaction object may contain housekeeping information 

such as timestamps, logs, and diagnostics. This secondary 

information typically needs to be treated differently when performing 

copy, compare, or convert2string operations, and such differences 

need to be accounted for by the user when declaring transaction 

classes. For example: 
 

class my_tx extends uvm_sequence_item; 

  `uvm_object_utils(my_tx) 

  rand bit cmd; 

  rand int addr; 

  rand int data; 

  ...   

  function string convert2string; 

    return $sformatf(...); 

  endfunction 

     

  function void do_copy(uvm_object rhs); 

    my_tx rhs_; 

    super.do_copy(rhs); 

    $cast(rhs_, rhs); 

    cmd  = rhs_.cmd; 

    addr = rhs_.addr; 

    data = rhs_.data; 

  endfunction 

     

  function bit do_compare(uvm_object rhs, 

                           uvm_comparer comparer); 

    my_tx rhs_; 

    bit status = 1; 

    status &= super.do_compare(rhs, comparer); 

    $cast(rhs_, rhs); 

    status &= comparer.compare_field("cmd",  cmd, 

                       rhs_.cmd,  $bits(cmd)); 

    status &= comparer.compare_field("addr", addr, 

                       rhs_.addr, $bits(addr)); 

    status &= comparer.compare_field("data", data, 

                       rhs_.data, $bits(data)); 

    return(status); 

  endfunction 

endclass 

 

Note that the behavior of copy and compare are overridden by 

providing functions named do_copy and do_compare, respectively, 

as part of the transaction class. Each function should exclude any 

housekeeping or diagnostic fields. 

6. CONCLUSION 

UVM is a rich and capable class library that has evolved over several 

years from much experience with real verification projects large and 

small, and SystemVerilog itself is a large and complex language. As 

a result, although UVM offers a lot of powerful features for 

verification experts, it can present a daunting challenge to Verilog 

and VHDL designers who want to start benefitting from test bench 

reuse. The guidelines presented in this paper aim to ease the 

transition from HDL to UVM. 
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