
Easier UVM for Functional Verification by Mainstream Users

John Aynsley
Doulos

Church Hatch, 22 Market Place
Ringwood, United Kingdom

+44 1425 471223
john.aynsley@doulos.com

ABSTRACT

This paper describes an approach to using Accellera's UVM, the

Universal Verification Methodology, for functional verification by

mainstream users. The goal is to identify a minimal set of concepts

sufficient for constrained random coverage-driven verification in

order to ease the learning experience for engineers coming from a

hardware design background who do not have extensive object-

oriented programming skills. We describe coding guidelines to

address the canonical structure of a UVM component and a UVM

transaction, the construction of the UVM component hierarchy, the

interface with the design-under-test, the use of UVM sequences, and

the use of the factory and configuration mechanisms.

Keywords

SystemVerilog, UVM, functional verification

1. INTRODUCTION

This paper describes an approach to using Accellera's UVM, the

Universal Verification Methodology, for functional verification by

mainstream users as opposed to highly skilled verification

specialists. It arises from experience at Doulos in teaching

SystemVerilog and functional verification methodology to engineers

from a broad cross-section of the hardware design and verification

community. While much of the research and development in

functional verification methodology is rightly focussed on the needs

of power users as they solve the hardest verification problems, we

find that the majority of mainstream users have a somewhat different

focus, namely, how to become productive with SystemVerilog with a

minimum of delay and specialist programming expertise.

SystemVerilog and UVM provide mechanisms to create verification

components for checking, coverage collection, and stimulus

generation, and to modify the behavior of those components for

specific tests. But SystemVerilog and UVM provide more than this,

so much more in fact that the learning curve can be daunting for non-

specialists.

The goal of this paper is to enable engineers with experience in

Verilog or VHDL to become productive in UVM by learning a small

number of new coding idioms, selected to minimize the conceptual

clutter they have to deal with. As users become fluent with this set of

basic idioms, they can then branch out to embrace the full feature set

of UVM as and when they need.

We describe coding guidelines to address the canonical structure of a

UVM component and a UVM transaction, the construction of the

UVM component hierarchy, the interface with the design-under-test,

the use of UVM sequences, and the use of the factory and

configuration mechanisms. Starting from these simple guidelines,

engineers can create constrained random verification environments

in an object-oriented coding style that are fully compliant with the

UVM standard, and hence are interoperable with UVM verification

IP from other sources.

2. EASIER UVM?

Easier UVM is not yet another verification methodology. It is UVM.

The point is to somewhat restrict the range of features being used in

order to make life easier for the novice. This exercise is primarily a

pedagogical one. The aim is to ease the task of learning UVM, not to

deny users the ability to exploit the full power of the UVM class

library. The coding guidelines we give here are not the only ways of

using UVM, nor are they necessarily the best approach for

experienced verification engineers.

Easier UVM does not mean easy UVM. The set of concepts

presented below is still quite extensive and very rich. It is being

increasingly recognized that both system modeling and functional

verification require a high level of software programming skill, and

on top of that, UVM also requires a deep understanding of coverage-

driven verification and transaction-level modeling.

This paper does not explicitly list every UVM feature. Many useful

features have not been mentioned, some of them essential for

advanced UVM usage, significant examples being report handling

and the end-of-test mechanisms. Easier UVM merely provides a

conceptual foundation on which to build a deeper knowledge of

UVM.

The version of UVM current at the time of writing was the UVM 1.0

Early Adopter release.

3. SYSTEMVERILOG AND UVM

Over the past few years, constrained random coverage-driven

verification has been increasingly adopted as the methodology-of-

choice for simulation-based functional verification to the point where

it is widely used on the largest ASIC projects. SystemVerilog, as the

only industry standard hardware verification language supported

every one of the three largest EDA vendors, has displaced its rival

single-vendor solutions in many companies.

But SystemVerilog is not without its problems. Although current

SystemVerilog implementations are in many ways both mature and

robust, SystemVerilog remains under-specified as a language.

SystemVerilog was an extremely ambitious standardization project

that was undertaken prior to the development of any complete proof-

of-concept implementation, and as a result the IEEE 1800

SystemVerilog Language Reference Manual still has many areas of

ambiguity, and more than one of the major implementations has

significant gaps. The simulation tool vendors themselves are in the

unenviable position of having to invest significant engineering

resources in trying to pin down and implement a very complex

language against an ambiguous definition, and so take the very

reasonable position of prioritizing their implementation choices

according to customer demand.

Nevertheless, certain areas of the SystemVerilog language do stand

out as being well-defined and consistently implemented across all the

major simulators. These include:

 The concise RTL features such as ANSI-style port and parameter

declarations, always_comb, always_ff, unique, priority, and the

abbreviated port connection syntax

 C-like control constructs such as for, foreach, do-while, break,

continue, return

 C-like data type features such as typedef, enum, struct, and the 2-

valued integer types

 VHDL-like package and import features

 Classes and the features for constraints and functional coverage

based thereon

 The class-based data types, namely strings, queues, dynamic

arrays and associative arrays

 Interfaces and virtual interfaces sufficient for communication

between classes and modules

One reason that the features from the above list have been

implemented so thoroughly and consistently is that, with the

exception of the concise RTL features, they have been widely used to

create the libraries of base classes that underpin the functional

verification methodologies AVM, URM, VMM, OVM, and now

UVM. Customer demand has pushed the EDA vendors to support

each others' methodology class libraries, which in turn has driven the

implementations to converge on a common understanding of the

features and semantics of class-based SystemVerilog.

SystemVerilog and UVM now form a virtuous circle. The class-

based SystemVerilog features that support constrained random

verification are sufficiently well-defined and well-implemented to

allow the development of robust and portable verification class

libraries, and the widespread use of those libraries ensures the

ongoing support of the necessary language features by the tool

vendors.

In addition to the Verilog-like and C-like features of SystemVerilog,

we make use of classes, constraints, covergroups, packages,

interfaces and virtual interfaces. UVM makes heavy use of type

parameterization to classes, and fortunately all of the major simulator

implementations now agree on the semantics in this area.

4. OBJECT ORIENTED CONCEPTS

Object-oriented (OO) or aspect-oriented programming concepts are

key to contemporary constrained random verification methodology

because they enable reuse, yet these techniques are amongst the

hardest to learn. OO techniques allow verification components to be

specialized to the needs of a specific test bench or test without

modifying their source code and enables well-structured

communication between those components using function calls. We

wanted to provide some of the expressive power of the OO paradigm

without getting drawn into the full set of issues involved in OO

programming.

In UVM, the class is used as a container to represent components,

transactions, sequences, tests, and configurations. Let's take the

component. Unlike the VHDL design entity or the SystemVerilog

module, a component represents an abstraction across a whole family

of possible structural building blocks. A component picks out what is

common across several such building blocks, but a component is not

concrete, meaning that it is not the final once-and-for-all definition

of the thing. A VHDL design entity or a SystemVerilog module can

describe a family of related components, but only if the variants are

anticipated in advance and are explicitly captured in the source code

by means of language features such as generic parameters and

generate statements. Because it is a class, a UVM component can be

extended after-the-fact in arbitrary ways. An extension can add new

features or can modify existing features. In particular, we require this

extension capability so that a test can extend a transaction or a

sequence in order to add constraints, and then use the factory

mechanism to override the generation of those transactions or

sequences.

5. UVM CONCEPTS

The goal of this paper is to identify a minimal set of concepts

sufficient for constrained random coverage-driven verification in

order to ease the learning experience for engineers coming from a

hardware design background who do not have extensive object-

oriented programming skills. At the same time, we did not want to

strip down the conceptual framework to the point where it lost all the

expressive power of the object-oriented paradigm. Some other

attempts to present verification class libraries to hardware designers

have ended up doing little more than re-present the semantics of

VHDL or Verilog using classes, which was a pitfall we wished to

avoid. In our experience, hardware designers moving to a new

language for verification, SystemVerilog in this case, do indeed want

to benefit from the increased expressive power and flexibility

afforded by a new paradigm.

Our conceptual vocabulary is listed below. These terms are

elaborated later in the paper, and expanded definitions can be found

in the documentation accompanying the UVM distribution.

 Component – a structural building block, conceptually equivalent

to a Verilog module

 Transaction – a bundle of data items, which may be distributed

over time and space in the system, and which form a

communication abstraction such as a handshake, bus cycle, or

data packet

 Sequence – an ordered collection of transactions or of other

sequences

 Phase – execution is subdivided into various predefined phases

that permit components to agree on when to build components,

connect ports, run simulation, and so forth

 Factory – a function call that returns a component, transaction, or

sequence, the type of which may be overridden from a test

 Port and export – connection points for transaction-level

communication between components

 Generation – the creation of components, transactions, or

sequences, where the properties of each may be set

deterministically or at random under the control of constraints

 Test – a top-level component, which drives generation

 Configuration – an object associated with a component which

may be set or randomized by a test and which it is used to

configure that component as the component hierarchy is built

 Sequencer – a component that runs sequences and that sends

transactions generated by those sequences downstream to another

sequencer or to a driver

 Driver – a component that receives transactions from a sequencer

and that drives the signal-level interface of the Design Under

Test (DUT)

 Monitor – a component that senses the signal-level interface of

the DUT and that sends transactions to the verification

environment

 Coverage – functional coverage information can be collected

using SystemVerilog covergroups within a component

 Checking – functional correctness of the DUT can be checked

using either procedural code within a component or

SystemVerilog assertions within an interface

5.1. Components

Components are used to build a component hierarchy, conceptually

very similar to the design hierarchy in VHDL or the module

hierarchy in Verilog. In this case the component hierarchy is part of

the verification environment rather than the design, and components

represent stimulus generators, drivers, monitors, coverage collectors,

and checkers. The component represents the reusable unit of the

verification environment, so has a standard structure and conventions

for how it can be customized. Components are created quasi-

statically at the start of simulation.

Here is a skeleton component. The uvm_component_utils macro and

the function new should be treated as boilerplate code and written

exactly as shown.

class my_comp extends uvm_component;

 `uvm_component_utils(my_comp)

 function new(string name, uvm_component parent);

 super.new(name, parent);

 endfunction

 ...

endclass

5.2. Transactions

Transactions are the basic data objects that are passed between

components. In contrast to VHDL signals and Verilog wires,

transactions represent communication at an abstract level. In order to

drive stimulus into the DUT, a so-called driver component converts

transactions into pin wiggles, while a so-called monitor component

performs the reverse operation, converting pin wiggles into

transactions.

Here is a skeleton transaction. Again, the uvm_object_utils macro

and function new should be treated as boilerplates.

class my_tx extends uvm_sequence_item;

 `uvm_object_utils(my_tx)

 function new (string name = "");

 super.new(name);

 endfunction

 ...

endclass

In the case of transactions and sequences, the one-and-only

constructor argument needs a default value because it can be called

from contexts that do not pass in a name.

5.3. Sequences

Sequences are assembled from transactions and are used to build

realistic sets of stimuli. A sequence could generate a specific pre-

determined set of transactions, a set of randomized transactions, or

anything in between. Sequences can run other sequences, possibly

selecting which sequence to run at random. Sequences can be layered

such that higher-level sequences send transactions to lower-level

sequences in a protocol stack.

Here is a skeleton sequence. It is similar to a transaction in outline,

but the base class uvm_sequence is parameterized with the type of

the transaction of which the sequence is composed. Also every

sequence contains a body task, which when it executes generates

those transactions or runs other sequences.

class my_seq extends uvm_sequence #(my_tx);

 `uvm_object_utils(my_seq)

 function new (string name = "");

 super.new(name);

 endfunction

 task body;

 ...

 endtask

 ...

endclass

Transactions and sequences together represent the domain of

dynamic data within the verification environment.

5.4. Phase

Every component implements the same set of phases, which are run

in a predefined order during simulation in order to synchronize the

behavior of the components. When compared with VHDL or

Verilog, UVM provides rather more temporal structure within a

simulation run. The standard phases are as follows:

 1. build – create child component instances

 2. connect – connect ports to exports on the child components

 3. end_of_elaboration – housekeeping

 4. start_of_simulation – housekeeping

 5. run – runs simulation

 6. extract – post-processing

 7. check – post-processing

 8. report – post-processing

Each phase is represented by a function within the component,

except for run, which is a task because it alone consumes simulation

time. If a function is absent, that component will be inactive in the

given phase.

As you can infer from the above list, the primary distinction amongst

the phases is between the phases for building the component

hierarchy, connecting the ports, and running simulation, with

additional housekeeping phases pre-pended and appended to the

simulation phase.

5.5. Factory

The UVM factory mechanism is an implementation of the so-called

factory pattern described in the OO literature. The UVM factory can

make components, transactions, and sequences. Use of the factory

enables the choice of object type to be overridden from the test,

although a given component, transaction or sequence can only be

overridden with one that extends the class of the original. This is one

of the main mechanisms by which a reusable verification component

can be customized to the current environment.

Here is an example of a component creating child components during

the build phase:

class A extends uvm_component;

 `uvm_component_utils(A)

 B b; // Child component

 C c; // Child component

 function new(string name, uvm_component parent);

 super.new(name, parent);

 endfunction

 function void build; // Build phase

 super.build();

 // Factory calls to create child components

 b = B::type_id::create("b", this);

 c = C::type_id::create("c", this);

 endfunction

 ...

endclass

In order to instantiate the complete component hierarchy the build

functions themselves are called top-down. You call create within the

build function of each individual component to instantiate its

children.

The same factory mechanism is also used within a sequence to create

transactions:

my_tx tx;

tx = my_tx::type_id::create("tx");

The other aspect of factories is overriding the behavior of the factory

from a specific test. For example:

my_tx::type_id::set_type_override(alt::get_type());

The above statement would cause all instance of transaction type

my_tx created by the factory to be replaced with instances of the

transaction alt. Overrides can also be made per-instance:

my_tx::type_id::set_inst_override(alt::get_type(),

 "inst", this);

5.6. Port and export

Ports and exports are analogous to ports in VHDL or Verilog, but are

used for transaction-level communication rather than signal-level

communication. A component can send out a transaction out through

a port, or receive an incoming transaction through an export.

Transactions are passed as arguments to function calls, which may be

non-blocking (return immediately) or blocking (suspend and wait for

some event before returning), which is sufficient for basic

synchronization within the verification environment. All detailed

timing information should be pushed down into the driver and

monitor components that connect to the DUT so that the timing can

be determined by the DUT interface, which is typically locked to

low-level clocks and other synchronization signals. Within the

verification environment, control flow radiates outward from the

DUT, with drivers calling get to request transactions from

sequencers when they are ready for further stimulus, and monitors

calling write to distribute transactions around the verification

environment for analysis. A call to get from a driver may block if the

stimulus generator is coordinating its activities with some other part

of the verification environment. A call to write from a monitor is not

permitted to block, because the DUT cannot be stalled waiting for

analysis activity.

The example below shows a component A containing two child

components B and C. The connect function connects p_port of

component B to q_export of component C.

class A extends uvm_component;

 `uvm_component_utils(A)

 B b; // Child component having p_port

 C c; // Child component having q_export

 function new(string name, uvm_component parent);

 super.new(name, parent);

 endfunction

 function void build; // Build phase

 super.build();

 b = B::type_id::create("b", this);

 c = C::type_id::create("c", this);

 endfunction

 function void connect; // Connect phase

 b.p_port.connect(c.q_export);

 endfunction

endclass

One of the most common kind of port is the so-called analysis port,

which serves as a broadcast mechanism used to send transactions to

multiple passive verification components. An analysis port may be

connected to any number of analysis exports, including none at all.

Transactions are actually sent through ports using OO function calls,

for example:

class my_comp extends uvm_component;

 `uvm_component_utils(my_comp)

 uvm_analysis_port #(my_tx) aport;

 ...

 function void build;

 super.build();

 aport = new("aport", this);

 endfunction

 task run;

 my_tx tx;

 tx = my_tx::type_id::create("tx");

 ...

 aport.write(tx);

 endtask

endclass

You may notice from the above that the type of the analysis port is

parameterized using the type of the transaction #(my_tx), the

analysis port has to be built explicitly during the build phase, and the

transaction sent through the analysis port by the call to write is itself

built using the factory.

5.7. Generation

Generation exploits SystemVerilog randomization and constraints.

Component generation occurs quasi-statically during the so-called

build phase of UVM, when a component is able to access its

configuration object (if there is one) in order to control the

generation of lower-level components. This is analogous to the

elaboration phase in VHDL or Verilog. Sequence generation occurs

dynamically. Control over the precise sequence of transaction that

finally arrives at the DUT can be distributed across pre-defined

sequence generation components and the test, which is able to extend

and constrain existing sequences.

Here is an example showing transaction generation within the body

task of a sequence:

class my_seq extends uvm_sequence #(my_tx);

 ...

 task body;

 my_tx tx;

 tx = my_tx::type_id::create("tx");

 start_item(tx);

 assert(tx.randomize() with { cmd == 0; });

 finish_item(tx);

 ...

 endtask

endclass

In the example above, the transaction is being constrained as it is

randomized in order to set the value of the command field to a

specific value before sending the transaction downstream. The

start_item and finish_item functions synchronize with the component

that is pulling transactions from the sequencer, which could be a

driver or another sequencer. start_item waits for the downstream

component to request the transaction, finish_item waits for the

downstream component to indicate that it has finished with the

transaction. For its part, the downstream component calls get to fetch

the transaction and may call put if it needs to send back a response.

The same mechanisms can be used to generate sequences themselves

and hence to nest sequences within sequences:

task body;

 repeat(n)

 begin

 my_seq seq;

 seq = my_seq::type_id::create("seq");

 start_item(seq);

 assert(seq.randomize());

 finish_item(seq);

 end

endtask

The body function of a sequence is just a regular function that

executes procedural code. It is often useful to have the sequence read

variables declared in the sequence class (e.g. n in the example

above), which can be set or randomized externally.

5.8. Tests

A test is a top-level component used to control generation, that is, to

customize the quasi-static behavior of the components that comprise

the verification environment and the dynamic behavior of the

transactions and sequences that pass amongst those components. A

test can:

 Set the contents of configurations, which are then used to control

the generation of the component hierarchy from the build

function

 Override components with extended components in order to

modify some aspect of their structure or functionality

 Override transactions and sequences with extended transactions

and sequences that typically add constraints

 Start sequences on specific components called sequencers

A transaction or sequence can be customized in two ways: by using

an in-line constraint when calling the randomize function (as shown

above), or by declaring an extended class that adds or overrides

constraints or functions from the original class. For example, an

extended transaction:

class alt_tx extends my_tx;

 `uvm_object_utils(alt_tx)

 function new(string name = "");

 super.new(name);

 endfunction

 constraint my_constraint { data < 128; }

endclass

A user-defined test is created by extending a specific class uvm_test,

as shown below:

class my_test extends uvm_test;

 `uvm_component_utils(my_test)

 ...

 my_env env;

 ...

 function void build;

 super.build();

 // Factory override replaces my_tx with alt_tx

 my_tx::type_id::set_type_override(

 alt_tx::get_type());

 env = my_env::type_id::create("env", this);

 endfunction

 task run;

 my_seq seq;

 seq = my_seq::type_id::create("seq");

 assert(seq.randomize() with { n = 22; });

 seq.start(env.sequencer);

 endtask

endclass

Class uvm_test itself extends class uvm_component. This is one

amongst several examples of built-in classes that are themselves

components, including uvm_sequencer, uvm_driver, uvm_monitor,

uvm_subscriber and uvm_env. It is a good idea to use these so-called

methodology base classes rather than using raw uvm_components,

because doing so makes the user's intent clearer.

Note how the test uses the factory to create a component instance

containing the fixed part of the verification environment env, which

is not itself test-specific but will be customized from the my_test

class. Each test only need contain the few specific modifications to

the verification environment that distinguish this test from the default

situation. This particular test uses the factory to create an instance of

the sequence my_seq and starts that sequence on a specific

component within the verification environment named

env.sequencer.

A particular test is run from a process within the top-level module:

initial

 run_test("my_test");

The test name can be set as shown or can be passed as a command

line argument in order to select a test without any need for

recompilation.

5.9. Configuration

A configuration is an object or descriptor associated with a specific

component instance. The configuration is populated by the test

during generation, and is then inspected by components in the

component hierarchy during the build phase. Components in the

hierarchy can also create local configurations for use by their

children alone. A single configuration class type may be common to

many component instances, or each component instance could have

its own unique configuration instance if required. Every component

instance need not have its own unique configuration object; a

component can inspect the configuration object of one of its

ancestors.

The definition of a configuration has some commonality with a

transaction:

class my_config extends uvm_object;

 `uvm_object_utils(my_config)

 rand bit param1;

 rand int param2;

 string param3;

 // Other configuration parameters

 function new (string name = "");

 super.new(name);

 endfunction

endclass

A configuration object would typically be populated from a test:

class my_test extends uvm_test;

 `uvm_component_utils(my_test)

 ...

 my_env env;

 ...

 function void build;

 super.build();

 begin

 my_config config = new;

 // Can randomize the configuration

 assert(config.randomize());

 // Can set individual members

 config.param2 = 3;

 config.param3 = "filename";

 set_config_object("*.*producer*", "config",

 config, 0);

 end

 env = top::type_id::create("env", this);

 endfunction

endclass

In the example above, the configuration object is instantiated and

populated during the build phase of the test before using the factory

to create the remainder of the verification environment, which is thus

able to be generated according to the values set in the configuration

object. The configuration is associated with specific verification

component instances using the call to set_config_object. The

argument "*.*producer*" identifies the instances to which this

configuration applies using an instance name pattern containing

wildcards.

The configured component should inspect the configuration object

during the build phase:

class producer extends uvm_component;

 `uvm_component_utils(producer)

 ...

 my_config config;

 // Configuration parameters

 bit param1 = 0;

 int param2 = 0;

 string param3;

 ...

 function void build;

 super.build();

 begin

 uvm_object obj;

 if (get_config_object("config", obj))

 begin

 $cast(config, obj);

 param1 = config.param1;

 param2 = config.param2;

 param3 = config.param3;

 end

 ...

 end

 endfunction

 ...

endclass

In the example above, a component calls get_config_object to

retrieve the configuration object identified by the string "config" (as

set by the call to set_config_object) and extracts the parameter values

from the configuration. These parameters can be used to control

generation locally within that component.

This configuration mechanism plays a similar role to generics in

VHDL and parameters in Verilog, but it afford a lot more flexibility

because firstly the configuration can be randomized using

constraints, secondly a single configuration can be shared by many

different component instances (rather than having to be set explicitly

for each individual insance), and thirdly a component can use the

values from a parent configuration to set the configuration for its

own children.

5.10. Sequencer

A sequencer is a variety of component that runs sequences and sends

them downstream to drivers or to other sequencers. At its simplest a

sequencer looks like any other component, except that it has an

implicit transaction-level export for connection to a driver.

We can now get a little more ambitious and show an example

including sequence, sequencer, and launching the sequence from the

test:

// A SEQUENCER is a component

class my_sqr extends uvm_sequencer #(my_tx);

 `uvm_component_utils(my_sqr)

 function new(string name, uvm_component parent);

 super.new(name, parent);

 endfunction

endclass

// A SEQUENCE is generated dynamically

class my_seq extends uvm_sequence #(my_tx);

 `uvm_object_utils(my_seq)

 function new (string name = "");

 super.new(name);

 endfunction

 task body;

 my_tx tx;

 tx = my_tx::type_id::create("tx");

 start_item(tx);

 assert(tx.randomize());

 finish_item(tx);

 endtask

endclass

class my_test extends uvm_test;

 `uvm_component_utils(my_test)

 ...

 my_env env;

 ...

 task run;

 my_seq seq;

 // Create the sequence

 seq = my_seq::type_id::create("seq");

 // randomize it

 assert(seq.randomize());

 // and start it on the sequencer

 seq.start(env.agent.sqr);

 endtask

endclass

A sequencer can also receive transactions from other sequencers.

Here is an example of one that does just that:

class ano_sqr extends uvm_sequencer #(ano_tx);

 `uvm_component_utils(ano_sqr)

 uvm_seq_item_pull_port #(my_tx) seq_item_port;

 ...

 function void build;

 seq_item_port = new("seq_item_port", this);

 endfunction

endclass

This sequencer can be connected to the previous sequencer, which

sends it transactions of type my_tx through a port-export pair.

class my_env extends uvm_env;

 `uvm_component_utils(my_env)

 my_sqr sqr1;

 ano_sqr sqr2;

 ...

 function void build;

 super.build();

 sqr1 = my_sqr::type_id::create("sqr1", this);

 sqr2 = ano_sqr::type_id::create("sqr2", this);

 ...

 endfunction

 function void connect;

 sqr2.seq_item_port.connect(

 sqr1.seq_item_export);

 ...

 endfunction

endclass

As discussed earlier, communication between the two sequencers

will be accomplished by making transaction-level calls between the

two sequencers, in the case with sqr2 pulling transactions from sqr1.

The actual sequence to be run on sqr2 is shown below:

class ano_seq extends uvm_sequence #(ano_tx);

 `uvm_object_utils(ano_seq)

 `uvm_declare_p_sequencer(ano_sqr)

 ...

 task body;

 ...

 my_tx tx_from_1;

 p_sequencer.seq_item_port.get(tx_from_1);

 ...

Conceptually, all that is happening here is that a sequence, running

on a sequencer, is pulling in transactions through a port on that

sequencer. In order to do so, it needs direct access to the sequencer

object that it is running on, which is provided by the predefined

variable p_sequencer. Through p_sequencer, a sequence can refer to

variables declared within the sequencer class, including ports and

references to other external components. It turns out that this coding

trick is all that is needed in order to have a sequence start child

sequences on another sequencer, that is, on a sequencer other than

the one it is itself running on. Such a sequence is called a virtual

sequence because it does not itself generate transactions but instead

controls the execution of other sequences, running on other

sequencers.

5.11. Driver

A driver is a variety of component that always sits downstream of a

sequencer. The driver pulls transactions from its sequencer and

controls the signal-level interface to the DUT. The transaction-level

interface between the sequencer and the driver is a fixed feature of

UVM, and is unusual in the sense that both the port and the export

required for TL- communication are implicit.

class my_driver extends uvm_driver #(my_tx);

 `uvm_component_utils(my_driver)

 virtual dut_if dut_vi;

 function new(string name, uvm_component parent);

 super.new(name, parent);

 endfunction

 function void build;

 super.build();

 begin

 uvm_object obj;

 my_config config;

 get_config_object("config", obj, 0);

 assert($cast(config, obj));

 dut_vi = config.dut_vi;

 end

 endfunction

 task run;

 forever

 begin

 my_tx tx;

 seq_item_port.get(tx);

 // Wiggle pins of DUT

 dut_vi.cmd = tx.cmd;

 dut_vi.addr = tx.addr;

 dut_vi.data = tx.data;

 end

 endtask

endclass

In the example above, the driver communicates with the sequencer

by means of the call get(tx) through the implicit seq_item_port.

Having got a transaction, it then drives the signal-level interface to

the DUT by making assignments to the members of a SystemVerilog

interface, which is done through the virtual interface dut_vi. The

virtual interface is the SystemVerilog language mechanism that is

used to pass data between structural Verilog modules and the class-

based verification environment.

The example above all shows how a configuration object can be used

to pass the virtual interface down to the driver during the build

phase.

5.12. Monitor

A monitor is a variety of component that is confined to having

passive access to the signal-level interface of the DUT. The monitor

monitors traffic going to and from the DUT from which it assembles

transactions which are distributed to the rest of the verification

environment through one or more analysis ports.

All of the necessary concepts have already been discussed above.

Here is an example:

class my_monitor extends uvm_monitor;

 `uvm_component_utils(my_monitor)

 uvm_analysis_port #(my_tx) aport;

 virtual dut_if dut_vi;

 ...

 task run;

 forever

 begin

 my_tx tx;

 // Sense the DUT pins on a clock edge

 @(posedge dut_vi.clock);

 tx = my_tx::type_id::create("tx");

 tx.cmd = dut_vi.cmd;

 tx.addr = dut_vi.addr;

 tx.data = dut_vi.data;

 aport.write(tx);

 end

 endtask

endclass

5.13. Coverage and checking

SystemVerilog itself has many language features in support of the

collection of functional coverage data and checking for functional

correctness. In UVM, such code would typically be placed in a

verification component that receives transactions from a monitor.

The coverage and checking are best kept separate from the monitor

in order that each may be reused more easily; monitor components

are usually specific to particular protocols but are independent of the

application. In contrast, functional coverage and checking code is

usually highly application-specific but may in some cases be

independent of the protocols used to communicate with the DUT.

An analysis port can be unconnected or can be connected to one or

more analysis exports. A subscriber is a variety of component that

has one built-in analysis export ready-for-use:

class my_subscriber extends uvm_subscriber #(my_tx);

 `uvm_component_utils(my_subscriber)

 // Coverage registers

 bit cmd;

 int addr;

 int data;

 covergroup cover_bus;

 coverpoint cmd;

 coverpoint addr;

 coverpoint data;

 endgroup

 ...

 // Function called through analysis port

 function void write(my_tx t);

 cmd = t.cmd;

 addr = t.addr;

 data = t.data;

 cover_bus.sample();

 endfunction

endclass

The monitor and the subscriber can be generated at the next level up

in the component hierarchy using the factory and the port-export

connection made in the connect phase:

class my_env extends uvm_env;

 `uvm_component_utils(my_env)

 my_monitor monitor;

 my_subscriber subscriber;

 ...

 function void build;

 super.build();

 monitor = my_monitor::type_id::create(

 "monitorh" , this);

 subscriber = my_subscriber::type_id::create(

 "subscriber", this);

 endfunction

 function void connect;

 monitor.aport.connect(

 subscriber.analysis_export);

 endfunction

endclass

Note the reference to the implicit analysis_export of the subscriber.

Sometimes a checking component may need to receive two or more

incoming transactions streams, in which case the single implicit

analysis export of the uvm_subscriber is insufficient, and it is

necessary to declare analysis_exports explicitly:

class A extends uvm_component;

 ...

 uvm_analysis_imp #(tx1, A) analysis_export;

 ...

 function void write(tx1 t);

 ...

class B extends uvm_component;

 ...

 uvm_analysis_imp #(tx2, B) analysis_export;

 ...

 function void write(tx2 t);

 ...

class my_checker extends uvm_component;

 ...

 // Two incoming transaction streams

 uvm_analysis_export #(tx1) tx1_export;

 uvm_analysis_export #(tx2) tx2_export;

 ...

 A a;

 B b;

 ...

 function void connect;

 // Bind exports to two separate children

 tx1_export.connect(a.analysis_export);

 tx2_export.connect(b.analysis_export);

 endfunction

SystemVerilog does not support function overloading so it is only

possible for a class to have a single write function. Hence ultimately

each analysis export needs to be associated with its write function in

a separate class, classes A and B in the example above.

5.14. Transaction operations

It is common to need to perform operations on transactions,

operations such as printing out the contents of a transaction, making

a copy of a transaction, or comparing two transactions for

equivalence. For example, the subscriber described above may wish

to log the data from a transaction or compare a transaction from the

DUT with another transaction representing the expected behavior.

UVM provides a standard set of functions for purposes such as these,

as illustrated below:

function void write(my_tx t);

 ...

 my_tx tx;

 tx.copy(t)

 history.push_back(tx);

 if (!t.compare(expected))

 uvm_report_error("mismatch",

 $sformatf("Bad transaction = %s",

 t.convert2string()));

endfunction

Firstly, the copy function takes a complete copy of the transaction

passed as an argument, in this case storing the copy in a queue of

past transactions. Secondly, the compare function compares two

different transactions for equivalence. Finally, the convert2string

function returns a string representing the contents of the transaction

in printable format. The uvm_report_error function is one of several

standard utility for message reporting.

There is more to a transaction than meets the eye. As well as

containing data fields representing properties of the protocol being

modeled, a transaction object may contain housekeeping information

such as timestamps, logs, and diagnostics. This secondary

information typically needs to be treated differently when performing

copy, compare, or convert2string operations, and such differences

need to be accounted for by the user when declaring transaction

classes. For example:

class my_tx extends uvm_sequence_item;

 `uvm_object_utils(my_tx)

 rand bit cmd;

 rand int addr;

 rand int data;

 ...

 function string convert2string;

 return $sformatf(...);

 endfunction

 function void do_copy(uvm_object rhs);

 my_tx rhs_;

 super.do_copy(rhs);

 $cast(rhs_, rhs);

 cmd = rhs_.cmd;

 addr = rhs_.addr;

 data = rhs_.data;

 endfunction

 function bit do_compare(uvm_object rhs,

 uvm_comparer comparer);

 my_tx rhs_;

 bit status = 1;

 status &= super.do_compare(rhs, comparer);

 $cast(rhs_, rhs);

 status &= comparer.compare_field("cmd", cmd,

 rhs_.cmd, $bits(cmd));

 status &= comparer.compare_field("addr", addr,

 rhs_.addr, $bits(addr));

 status &= comparer.compare_field("data", data,

 rhs_.data, $bits(data));

 return(status);

 endfunction

endclass

Note that the behavior of copy and compare are overridden by

providing functions named do_copy and do_compare, respectively,

as part of the transaction class. Each function should exclude any

housekeeping or diagnostic fields.

6. CONCLUSION

UVM is a rich and capable class library that has evolved over several

years from much experience with real verification projects large and

small, and SystemVerilog itself is a large and complex language. As

a result, although UVM offers a lot of powerful features for

verification experts, it can present a daunting challenge to Verilog

and VHDL designers who want to start benefitting from test bench

reuse. The guidelines presented in this paper aim to ease the

transition from HDL to UVM.

7. REFERENCES

[1] IEEE Std 1800-2009 “IEEE Standard for System Verilog-Unified

Hardware Design, Specification, and Verification Language”,

http://dx.doi.org/10.1109/IEEESTD.2009.5354441

[2] UVM 1.0 EA Class Reference, http://www.accellera.org/activities/vip

[3] Universal Verification Methodology (UVM) draft 1.0 User’s Guide

[Beta/D6], January 15, 2011

[3] On-line resources from http://www.uvmworld.org/

[4] On-line resources from

http://www.doulos.com/knowhow/sysverilog/uvm/

http://www.accellera.org/activities/vip
http://www.uvmworld.org/
http://www.doulos.com/knowhow/sysverilog/uvm/

