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ABSTRACT  

SystemVerilog has been widely adopted as a language for hardware 

design and verification. At the same time, SystemVerilog is a very 

large and complex language which can be daunting to learn and use, 

and differences still remain between implementations. 

SystemVerilog adoption has been given a new impetus in recent 

years with the introduction of UVM, the Universal Verification 

Methodology for SystemVerilog. The UVM codebase has provided a 

convergence point for SystemVerilog implementations and 

applications by creating a de facto SystemVerilog subset that all 

implementations must support. UVM uses a compact set of object-

oriented programming features which are very general and 

expressive, and which are well-supported by the major 

implementations. When combined with other SystemVerilog features 

to express constraints, functional coverage, and to abstract the 

interface between the design-under-test and the class-based 

verification environment, the resultant set of language features is 

robust and sufficient for hardware verification. 
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1. INTRODUCTION 

SystemVerilog is now established as a successful language for 

hardware design and verification, and at the time of writing 

SystemVerilog has become the language-of-choice for many 

companies, particular those adopting constrained random verification 

for the first time. One of the main reasons for SystemVerilog’s 

commercial success has been support from all the major tool 

vendors: at this time, SystemVerilog has come to dominate other 

single-vendor solutions. However, the adoption of SystemVerilog 

has been hampered over the years by it being a very large and 

complex language specified by a somewhat ambiguous language 

reference manual. These factors have made it a challenge for 

simulator vendors to create complete and mutually consistent 

implementations of the SystemVerilog standard, and differences 

between implementations still exist to this day. It has proven 

uneconomic to refine the SystemVerilog standard to the point where 

we have a set of complete, consistent implementations: tool vendors 

simply have other commercial priorities. 

The designers of SystemVerilog did not appear to subscribe to the 

principles of simplicity, orthogonality, and consistency amongst 

language features. SystemVerilog is sometimes described as being 

the union of several languages. As well as being a superset of 

Verilog it incorporates features taken directly from Superlog and 

OpenVera as well as being inspired by features from C, C++, Java, 

VHDL, and PSL. The result is a set of language features with many 

complex and unexpected interactions, which is a burden on 

implementers and users alike. Further evidence of SystemVerilog’s 

size and complexity is the length of its BNF formal syntax definition, 

which covers 43 pages of the standard language reference manual, 

and is 70-80% larger than that of VHDL. 

The plurality of approaches offered by SystemVerilog makes 

learning the language a particular challenge. Whereas an industrial 

training class teaching the main features of Verilog or VHDL would 

be typically 4 or 5 days in length, a hypothetical class teaching the 

whole of SystemVerilog would be a lot longer than 5 days. In 

practice there is little demand for such extended training classes, 

with project teams preferring to focus on a more prescriptive 

approach, that is, how to use SystemVerilog to perform particular 

tasks. This typically means SystemVerilog for RTL design, 

SystemVerilog Assertions, and SystemVerilog for constrained 

random verification, also known as SystemVerilog Test Bench. In 

practice, each of these training classes would select a limited set of 

SystemVerilog features that represent best practice for the task at 

hand and that have relatively robust implementations. 

UVM, the Universal Verification Methodology for SystemVerilog, 

represents the latest member of a family of methodologies (and their 

associated base class libraries) for using SystemVerilog for 

constrained random verification. SystemVerilog methodologies have 

played a valuable role in capturing best practice and avoiding the 

need for each user to reinvent the mechanisms needed to use 

SystemVerilog classes to build verification environments. UVM is 

the first standard verification methodology to be actively supported 

and championed by all the major tool vendors, and has added a 

significant impetus to SystemVerilog adoption. Potential 

SystemVerilog users now have increased confidence to move 

forward with the adoption of a new language knowing that they have 

the support of the major tool vendors and a whole ecosystem of IP 

and service providers. Having a single standard methodology 

encourages the development of a market for verification IP re-use, 

which promises to be highly significant. 

UVM has achieved even more than capturing best practice and 

enabling verification IP reuse. It has also provided a commercial 

imperative for simulator vendors to complete the work of creating 

mutually consistent SystemVerilog implementations, at least for the 

parts of the languages used by UVM. Indeed, this is exactly what has 

happened. 

2. SYSTEMVERILOG CODING 

GUIDELINES 

Most SystemVerilog simulators now support all the major areas of 

the SystemVerilog language, and areas of inconsistency between the 

major implementations are by-and-large restricted to corner-case 

interactions between the language features. A simulator that supports 

feature A in most contexts and feature B in most contexts may have 
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compatibility issues where feature A is used in the context of feature 

B. 

Two significant issues remain for the user: 

 How to avoid the remaining pitfalls of inconsistent language 

support across the tools 

 How to use a coding style in keeping with best practice across 

the industry 

The number of tool issues is now so small that it would be feasible to 

address the first point above by building a black list of language 

features to avoid. However, a prescriptive approach is more practical 

for addressing the second point. There are still some areas of 

SystemVerilog that are relatively unexplored, particularly the 

interactions between some of the newer language features, so it is 

best to keep with known coding idioms. We are all creatures of habit, 

and in practice we tend to use only a subset of any given language 

and to do so in a repetitive way. In the case of SystemVerilog, using 

only known good coding idioms can be the best way to avoid pitfalls. 

So, we propose the following approach: 

 Start from the Verilog subset of SystemVerilog, which is well-

defined and stable due to its legacy 

 Add the concise RTL features of SystemVerilog for hardware 

synthesis, if required (outside the scope of this paper) 

 Add the object-oriented programming and C-inspired features of 

SystemVerilog from the UVM base class library 

 Add further features necessary for constrained random 

verification, in particular constraints, covergroups, and assertions 

 Add features for interfacing between the class-based verification 

environment and the module-based design-under-test, in 

particular interfaces and clocking blocks 

 Create a black list of language features to avoid based on 

experience in your company and publicly available information 

Creating a feature black list can be problematic because, 

understandably, tool vendors do not advertise the shortcoming of 

their wares and because any such list will go out-of-date as tools 

improve. Nevertheless, it is possible to give some general guidance 

on which language features to avoid for portability. Indeed, certain 

issues can be inferred from studying the UVM source code itself and 

other publicly available information. 

The UVM base class library and the SystemVerilog codebase in 

many companies are littered with conditional compilation directives 

in order to avoid tool compatibility pitfalls. Fortunately such 

directives tend to become redundant over time. We have seen the 

number of corner-case issues reducing year-by-year, but some still 

remain. 

3. THE UVM BASE CLASS LIBARY 

UVM uses a fairly compact subset of the SystemVerilog language. 

Unsurprisingly, given that UVM is a base class library, UVM makes 

heavy use of SystemVerilog classes, data types, and procedural 

statements, but not much else. This could generally be described as 

the object-oriented subset of SystemVerilog. The UVM base class 

library looks much like a class library in any other object-oriented 

programming language, apart from the obvious language differences 

and the absence of features such as function and operator 

overloading, multiple inheritance, and template meta-programming. 

In the wider software context, the object-oriented programming 

paradigm has proved itself to be very expressive, very powerful, and 

very durable. The realization of OOP within SystemVerilog is 

similarly expressive: using a combination of a relatively small 

number of language features, class-based SystemVerilog is able to 

address a wide range of problems with a small volume of code and a 

small set of coding idioms. In fact, the UVM codebase makes use of 

most of the OOP features from SystemVerilog, and exercises those 

features very heavily and in many combinations. This is a sign of a 

well-designed language and should help to ensure a robust 

implementation (although a few pitfalls remain). 

The UVM base class library uses the following list of language 

features: 

 

class and virtual class within package 

class parameterized with a type 

class ... extends 

new 

task and function methods 

virtual and pure virtual methods 

extern methods 

local and protected members and methods 

static members and methods 

const and const static members 

Inline member initialization 

this and super 

input, output, inout, and ref arguments to methods 

Default values for method arguments 

Class scope resolution :: to access methods, types, and enums 

Handles as members, arguments, and block-scope variables 

null, and dynamic cast 

Variable declaration and initialization within methods and blocks 

static variables within methods and blocks 

typedef in package and in class 

Forward typedef 

bit, byte, int, integer, time, logic 

enum, cast to enum 

struct in class 

event as member 

string 

Queue, associative array, dynamic array 

foreach used with the above 

if, case, for, while, do while, break, continue, return 

@  ->  #  wait 

begin end, fork join, join_any, disable fork 

process, process::self, kill 

package containing variable, parameter, typedef, task, function 

$sformatf  

The above list amounts to the all of the OOP features of 

SystemVerilog with very few exceptions (described below), together 

with the procedural statements and variables from Verilog and their 

C-inspired enhancements from SystemVerilog. The OOP features 
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include the class-based data types, that is, the string, queue, 

associative array, and dynamic array. The C-inspired features include 

the data types bit, byte, int, enum, and struct, and control 

constructs foreach, do while, break, continue, and return. 

There is not much more that needs saying about the above list 

because by-and-large the features mentioned just work reliably 

together as described in the LRM. Some notable coding idioms used 

in the UVM BCL (Base Class Library) are listed below. The 

significance of the items in the list below is that each of them could 

very easily not have worked. They are non-trivial to implement, and 

later in this paper we list many examples of similar or lesser 

complexity that are not implemented consistently. The claim made in 

this paper is that it is UVM (and VMM and OVM before it) which 

has provided the commercial impetus for vendors to offer robust and 

consistent implementation of these parts of the SystemVerilog 

language. 

 Having a type parameter to a class and passing that parameter to 

a superclass, as in 

class C #(type T = int) extends BASE #(T). 

 The use of the class scope resolution operator :: to access static 

methods, type names, and enum literals within other classes. 

classname::typename::method(); 

 Inline instantiation of parameterized classes, as in 

classname #(typename)::method(); 

 Performing a polymorphic dynamic cast on handles, as in 

if ($cast(to_handle, from_handle)) 

 Testing for the null value of a handle, as in 

if (handle == null) 

 Declaring and initializing variables, including handles, at class 

scope and block scope (within methods), as in 

begin static string blank = “”; ... end 

begin classname q[$]; ... end 

 Using a void cast to throw away the value returned from a 

function, as in 

void’(obj.method()); 

 Enum types, including base types and initializers, as in 

typedef enum bit { lit1 = 0, lit2 = 1 } name; 

 Using strings, including the test for an empty string, the substr 

and len methods, and string concatenation, as in 

string S; 

if (S == “”)  

  S = {“pre”, S.substr(expr1, expr2)}; 

 Associative arrays of arbitrary type, including arrays-of-handles 

and arrays-of-events, as in 

-> assoc_array[index].named_event; 

 Default argument values, ref arguments, handles and queues as 

arguments to methods, as in 

function void f ( 

      ref   uvm_component comps[$], 

      input uvm_component comp = null, 

      string arg = ""); 

 C-style for loops, as in 

for (int i = 0; i < n; i++) 

 Use of foreach to iterate over arrays, associative arrays and 

queues, as in 
 

foreach (array[i]) 

4. APPLICATIONS THAT USE UVM 

UVM applications can use a coding style similar to that of the base 

class library, but must inevitably bring in other SystemVerilog 

language features in order to create UVM tests and to interface to the 

design-under-test, which will be module-based. There are many 

reliable SystemVerilog features that are absent from the code of the 

UVM BCL itself. 

The SystemVerilog language features given in the following list have 

proved useful and robust when using in conjunction with UVM (in 

addition to the features listed above for the UVM BCL itself): 

 

interface 

Variable, task, function within interface 

Port on interface 

clocking block within interface 

Clocking drive, sense, and synchronize 

modport 

virtual interface 

import 

Handles in module scope 

 

rand members 

randomize with 

rand_mode and constraint_mode 

pre_randomize and post_randomize 

constraint 

covergroup and coverpoint 

assert and $error 

 

Array manipulation methods 

$bits 

All of Verilog! 

Interfaces, virtual interfaces, and class handles in module scope 

permit communication between the module-based and classed-based 

parts of SystemVerilog. This issue is discussed further toward the 

end of this paper. 
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Issues surrounding the use of clocking blocks and the SystemVerilog 

scheduler regions have been well-documented elsewhere [7][8]. 

Suffice it to say that we would recommend (but not mandate) the use 

of clocking blocks with #1step sampling to help isolate the 

verification environment from the design-under-test with respect to 

SystemVerilog scheduler issues, but would not recommend the 

SystemVerilog program in general. 

The use of randomization, constraints, covergroups, and assertions is 

key to constrained random verification, so these features are 

essential. There are just a small number of tool compatibility pitfalls 

to avoid (described below). 

The array manipulation methods are useful in the context of arrays, 

associative arrays, and queues, and their implementations now seem 

to be robust.  

5. THINGS TO AVOID 

The good news is that there are now great swathes of the 

SystemVerilog language that are relatively robust and portable. The 

bad news is that the set of problematic corner cases cannot be 

reduced to any compact description or simple formula. So rather than 

writing in general terms about problematic areas of the 

SystemVerilog language, some of the corner cases are spelled out 

one-by-one below. 

In a sense, this list of corner cases is remarkably short considering 

the size of the language, and it a tribute to the simulator vendors who 

have worked to close the gap between their implementations since 

the introduction of the SystemVerilog standard. In another sense this 

list is quite alarming, since it highlights areas of the language where 

simulator vendors have evidently not felt the pressure to converge on 

a single interpretation of the standard. 

The UVM source code identifies certain features as problematic with 

respect to tool compatibility by the use of conditional compilation 

directives. Other features are noticeable by their absence from the 

UVM codebase. Several of the issues raised below are indicative of 

the existence of complex or little-used language features, and as such 

the avoidance of these features may be regarded as good practice 

anyway regardless of tool compatibility issues. 

The following list is not meant to be complete or definitive, and will 

inevitably (and hopefully) go out-of-date very quickly. Nevertheless, 

it is offered in the hope that it will be of some practical use in the 

short term.  

5.1. Separation of classes from modules 

The UVM BCL is exclusively class-based. There are several tool 

compatibility pitfalls at the intersection of the module-based and 

class-based parts of SystemVerilog, so this needs to be coded 

carefully. While the new SystemVerilog data types fit seamlessly 

into class-based code, they do not always play so well with existing 

Verilog features. 

There are tool compatibility pitfalls around using user-defined types 

for nets, including enum nets, for example: 

typedef enum logic [1:0] {e1, e2, e3} et; 

wire et w;  // ??? 

Types defined using typedef and enums should be confined to 

variables. 

There are tool compatibility pitfalls around using class handles as 

ports and making continuous assignments to class handles, for 

example: 

class C; 

  ... 

endclass 

 

module top; 

  C handle1 = new; 

  C handle2; 

  assign handle2 = handle1; // ??? 

Class handles and virtual interfaces can be declared in module scope 

or within a procedure, and methods can be called using those 

handles. Indeed, these features are necessary in order to instantiate 

and run a class-based verification environment. However, there are 

tool compatibility pitfalls around making hierarchical references to 

handles (including dynamic arrays) declared in other modules or 

interfaces, and making hierarchical references to virtual interfaces. 

For example, 

class C; 

  ... 

endclass 

 

module top; 

  modu inst (); 

  initial 

    inst.handle = new; // ??? 

endmodule 

 

module modu; 

  C handle; 

endmodule 

So references to handles and to virtual interfaces should not be made 

through hierarchical names at present. 

5.2. $unit 

$unit is a mechanism to explicitly access identifiers declared at 

compilation unit scope, that is, names (such as variables and types) 

declared at the top level outside of any module [12]. Although such 

declarations are permitted by the SystemVerilog language, it is 

preferable to restrict declarations at compilation unit scope to 

modules, interfaces, and packages, and to move all other declarations 

into packages, thus avoiding any need to use $unit. UVM does not 

use $unit. 

5.3. Nested modules 

The ability to nest modules within modules has not been widely 

implemented, nor has the ability to nest interfaces within modules, 

interfaces within interfaces, programs within programs, and so forth. 

Hence nested modules, programs, and interfaces should be avoided.  

5.4. Unpacked struct, union, and array 

UVM confines the use of structs to those containing simple types and 

strings. These are mostly unpacked structs defined within packages 

and classes, although it is worth noting that simulator support for the 

packed struct and packed union is robust in the context of RTL 

coding. Handles, dynamic arrays, queues, and associative arrays 

should be avoided as members of a struct, although they are robust 

as members of a class. For example, 
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struct { 

  byte a[];  // ??? 

} s1, s2; 

In general, packed structs are more robust than unpacked structs, and 

unpacked unions should be avoided altogether. There are tool 

compatibility issues around the use of unpacked structs and 

unpacked arrays as nets and as ports of net type (variables and 

variable ports are okay). There are tool compatibility issues around 

the use of bit-stream casting between unpacked structs and unpacked 

arrays, for example: 

typedef struct    // Unpacked struct 

{ 

  bit a; 

  byte b; 

} T1; 

 

typedef struct 

{ 

  byte c; 

  bit d; 

} T2; 

 

module top; 

  T1 s1; 

  T2 s2; 

 

  initial 

  begin 

    s1 = '{1, 1}; 

    s2 = T2'(s1);  // ??? 

There are tool compatibility issues around the use of unpacked 

structs, unpacked arrays, and queues as arguments to $display and 

related calls. 

With respect to unpacked arrays, there are tool compatibility issues 

around taking part selects of an unpacked dimension and calling 

$unpacked_dimensions. 

In general, it would seem safest to avoid unpacked structs and 

unpacked unions altogether and restrict the use of unpacked arrays to 

a Verilog-like subset, that is, Verilog memories.  

5.5. Assignment patterns and %p 

Assignment patterns provide a language mechanism to write values 

of unpacked types, in particular allowing in-line initialization of 

unpacked struct and array variables, for example: 

struct { int a, b, c; } s = '{1, 2, 3};  // Okay 

UVM makes very little use of assignment patterns, although a few 

trivial examples are starting to creep into the register layer. The 

implementation of the simpler cases of assignment patters seems to 

be robust, although there have been tool incompatibility pitfalls 

associated with assignment patterns, specifically with member tags 

and the %p formatter, so these features are probably best avoided for 

the present. In any case, it is simple to manipulate array-like objects 

without using assignment patterns. 

5.6. Type parameter substitution in classes 

The UVM BCL makes limited use of type parameters to classes. It 

would seem that implementers have probed this area of the language 

to the depth necessary for UVM but no further. The implementation 

of basic type parameter substitution appears robust, but cases deeper 

than those appearing in the UVM BCL reveal many inconsistencies 

between implementations. 

One area of inconsistency involves accessing type parameters 

through typedefs, as in 

class C #(type T = int); 

  typedef T::some_type T2; 

  ... 

Another area of inconsistency involves calculating static constants 

that depend on type parameter substitution, such as 

class C #(type T = int); 

  static const int c = T::c; 

  ... 

 

class D; 

  typedef C #(C1) T; 

  static const int c = T::c; 

  ... 

5.7. Protected constructor 

Protected constructors (protected new) are useful to help enforce the 

singleton pattern whereby the instantiation of a class is restricted to 

just a single object. The singleton pattern is used in UVM to 

construct objects for the factory and for the built-in phases. However, 

UVM contains a conditional compilation directive to exclude 

protected constructors, so it may be wise to avoid using protected 

constructors at present as a work-around for tool compatibility 

pitfalls. 

5.8. Array-to-queue assignment 

UVM contains a conditional compilation directive to exclude direct 

assignment from a dynamic array to a queue, so this operation should 

be avoided for the present. For example, 

int a[]; 

int q[$]; 

a = new[4]; 

q = a;     // ??? 

5.9. Iterator index query 

By-and-large the implementation of the array manipulation methods 

(that is, array locator methods, ordering methods, and reduction 

methods) is now very robust and consistent across implementations, 

and there are a couple of examples in the UVM BCL, namely 

find_index and sort. However, the use of the iterator index query 

method (index) within the with clause of the array manipulation 

methods still has some tool compatibility pitfalls, for example: 

int a[]; 

int q[$]; 

a = '{0, 3, 2, 1, 4, 5, 7, 8}; 

q = a.find with ( item == item.index ); // ??? 
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5.10. Block identifiers 

The SystemVerilog standard permits block identifiers (labels) before 

procedural statement, but this feature is not widely supported. For 

example, 

blk: begin          // ??? 

  loop: repeat(8) ; // ??? 

end: blk 

5.11. Assignment as a side-effect 

Although permitted by the standard, there are tool compatibility 

issues around the use of the assignment operators within an 

expression, where the evaluation of the expressions executes an 

assignment as a side-effect. For example 

int a, b = 1; 

if ((a = b))    // ??? 

5.12. final 

The SystemVerilog standard allows multiple final procedures which 

can execute in any order and does not specify the precise 

circumstances under which final is executed (it merely says “at the 

end of simulation time”). final procedures are intended for the 

display of statistical information, but aside from the ambiguity in 

their definition, they are inadequate as a mechanism to execute 

actions at the end of a test and have not been consistently 

implemented or widely adopted. It is best to use the UVM phasing 

mechanism rather than SystemVerilog final procedure.  

5.13. wait fork 

There are tool compatibility pitfalls concerning the interpretation of 

the wait fork statement, which according to the SystemVerilog 

standard blocks the calling process until its immediate child 

subprocesses have completed. Some implementations interpret the 

word immediate as excluding subprocesses created by nested fork-

joins, others do not. For example, 

begin 

  fork 

    #44; 

    fork 

      #125; 

      #14; 

    join_none 

    #2; 

  join_none 

 

  wait fork; 

 

  $display($time); // 44 or 125 ? 

end 

Nevertheless, wait fork is used in a couple of places within the 

UVM BCL, and aside from the ambiguity concerning nested fork-

joins, appears robust. 

5.14. Method Prototype in Modport 

While all implementations permit tasks and functions to be exported 

through a modport, there are tool compatibility issues around the 

use of task/function prototypes within a modport declaration. For 

example,  

modport mp (import function void f()); // ??? 

modport mp (import f);                 // Okay 

5.15. Modport expressions 

There are tool compatibility issues around the use of modport 

expressions.  

5.16. Functional coverage 

SystemVerilog provides language features for functional coverage 

collection, but the implementation of a coverage database in support 

of those features is tool-specific. Unsurprisingly, there are some 

significant differences of interpretation. 

The $get_coverage system task, which is intended to return the 

overall coverage of all covergroup types, is not consistently 

implemented. 

There are tool compatibility pitfalls around the use of the 

get_coverage method for individual coverpoints. 

The interpretation of option.weight and type_option.weight for 

covergroup and coverpoint is inconsistent across tools. 

option.at_least seems to be a more reliable reference point. 

5.17. Minor syntax sensitivities 

All implementations are occasionally sensitive to minor nuances of 

the SystemVerilog syntax. For example, depending on context, only 

some implementations disallow the std:: prefix before the keyword 

process and only some implementations require the std:: prefix 

before the keyword randomize, for example: 

begin 

  byte unsigned a, b, c; 

  assert( randomize(a, b, c) );      // ??? 

  assert( std::randomize(a, b, c) ); // Okay 

Only some implementations permit parentheses to be omitted after 

calls to the num method of the mailbox, only some implementations 

permit parentheses to be omitted after calls to randomize, and only 

some implementations permit empty braces {} in the definition of a 

coverpoint, for example, 

rand longint data; 

covergroup cg; 

  coverpoint data {}  // ??? 

endgroup 

6. SYSTEMVERILOG AS A BETTER 

VERILOG 

Verilog was used for gate-level simulation, cell library modeling, 

RTL design, and directed test benches, amongst other things. The 

topic of SystemVerilog as a language for RTL design is largely 

outside the scope of this paper on the impact of UVM. However, it is 

worth remarking that many of the features of SystemVerilog for RTL 

design have been robustly and consistently implemented, and have 

been widely adopted by users. These include: 
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 Consistent ANSI-style syntax for parameters and ports 

(first introduced with Verilog 1995), extended in 

SystemVerilog to include task and function arguments. 

 Shorthand port connection syntax, that is, .name and .* 

 Relaxed rules for using variables in contexts that 

previously demanded the use of a net type. 

 The synthesis-aware procedural constructs, namely 

always_comb, always_ff, always_latch, unique, and 

priority. 

 timeunit and timeprecision for defining time units 

without the need for compilation directives 

These features combine to make SystemVerilog a more elegant and 

user-friendly language for RTL design when compared to the 

original Verilog language. 

7. COMMON GROUND BETWEEN 

SYSTEMVERILOG AND C 

SystemVerilog has inherited several data types and control constructs 

from the C language, adapted where necessary to fit with the syntax 

of SystemVerilog. Even though the minor syntactic differences 

between some features in C and SystemVerilog may be a cause for 

annoyance, the commonality is a very positive thing from the point 

of view of making SystemVerilog easy to learn and natural to use.  

The common features introduced into SystemVerilog include: 

 The 2-state types such as int, shortint, longint 

 enum, struct, union, and typedef 

 do-while, break, continue, and return 

 Operators ++, --, and the assignment operators 

In general, SystemVerilog users have been able to adopt these new 

constructs with ease because they appear familiar and do not bring 

too many surprises or quirky semantics. For example, it is now 

possible to use well-known C coding idioms natively in 

SystemVerilog, such as  

for (int i = 0; i < 4; i++) 

or even 

for (int i = 0, j = 8; i < 4; i++, j--) 

These features are heavily used in the UVM BCL, as identified 

above. With a few exceptions as described earlier in this paper, 

namely unpacked struct and union and assignments as side-effects 

of expression evaluation, these features have been robustly and 

consistently implemented. 

8. THE INTERFACE BETWEEN 

SYSTEMVERILOG AND UVM 

Interfacing between the class-based UVM verification environment 

and the module-based design-under-test (DUT) is typically 

accomplished by having a virtual interface in the UVM verification 

environment contain a reference to the SystemVerilog interface 

instance. This is the approach recommended by the UVM User 

Guide. Until recently, this approach was blighted by inconsistent 

implementation support for access through a virtual interface to 

certain kinds of declaration in the corresponding interface. In 

particular, there were tool compatibility issues around access to 

named events and handles through virtual interfaces. Fortunately 

most of these issues now seem to have been resolved. 

Several authors have suggested (see the paper [4] by Rich and 

Bromley) the alternative approach of having an abstract class whose 

methods are called from the verification environment and then 

having a concrete instance of that class declared within the scope of 

an interface or module and hence having access by hierarchical 

reference to the variables and wires used to connect to the DUT. This 

approach offers the advantage of further decoupling the verification 

environment from the DUT environment in the sense that the 

verification environment does not need to name a specific 

SystemVerilog interface. 

This latter polymorphic interface approach also helps address 

fundamental language issues in SystemVerilog concerning access 

through virtual interfaces to parameterized interfaces: SystemVerilog 

requires the type of any virtual interface to reflect the 

parameterization of the interface to which it refers. When using 

virtual interfaces, this ties the verification environment to a specific 

parameterization of the SystemVerilog interface, which could be a 

significant obstacle to code reuse (see the paper [6] by Shashi 

Bhutada). By using an abstract base class in the verification 

environment, it is possible to re-use the same verification 

environment unchanged with several different SystemVerilog 

interfaces: all that is necessary is that each SystemVerilog interface 

must contain a concrete implementation of the abstract interface 

class. 

On the face of it this polymorphic interface approach runs counter to 

the advice given above regarding the separation of classes from 

modules. It is arguable that in general it is better to keep modules and 

classes distinct, as exemplified by the virtual interface approach 

commonly used with UVM, rather than to embed classes within 

modules or interfaces. However, the SystemVerilog language 

features necessary to create abstract classes and to embed the 

concrete implementations of those classes within SystemVerilog 

interfaces and modules have been robustly and consistently 

implemented, so both the virtual interface and the polymorphic 

interface approaches are viable. 

9. CONCLUSION 

Despite much progress by tool vendors since the first introduction of 

the SystemVerilog language standard, there remain some significant 

inconsistencies between simulator implementations. There are areas 

of the SystemVerilog language that have been implemented 

comprehensively and consistently by tool vendors, and other areas of 

the language that have not. It is evident that pressure from the user 

community is one of the factors that sets the implementation 

priorities for tool vendors, and this is particularly so for the class-

based verification methodologies. UVM seems to have had a very 

positive influence in driving tool vendors to implement the core set 

of features needed for class-based verification in a consistent 

manner. 

Aside from the class-based subset of SystemVerilog used by the 

UVM BCL and features such as constraints and functional coverage 

that are necessary for use alongside UVM, there are other areas of 

SystemVerilog that have proved robust and natural to use, and hence 

have become popular. These include the features that improve 

Verilog as a language for RTL design and the features inspired by 

the C programming language. With a few exceptions, many of the 
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latter are used within the UVM BCL. While outside the scope of this 

paper, SystemVerilog Assertions are generally robust and widely 

used too. 

What of the areas where inconsistencies remain? If any language 

area has more than its fair share of inconsistencies, this could be 

taken to suggest that tool vendors have not come under pressure from 

users to solidify that area of the language. The many inconsistencies 

at the intersection of classes with structural Verilog might suggest 

that users are happy to keep class-based and module-based code 

separate. The many issues surrounding the use of unpacked types 

might suggest that the inclusion of such features within a hardware 

design and verification language was a little misjudged in the first 

place. However, there are still a few inconsistencies where tool 

vendors just need to do better. 

10. REFERENCES  

[1] IEEE Std 1800-2009 “IEEE Standard for System Verilog-Unified 

Hardware Design, Specification, and Verification Language”, 

http://dx.doi.org/10.1109/IEEESTD.2009.5354441 

[2] Universal Verification Methodology (UVM) 1.1 Class Reference, May 25 

2011 

[3] Universal Verification Methodology (UVM) 1.1 User’s Guide, May 18, 
2011 

[4] Rich D., Bromley, J. Abstract BFMs Outshine Virtual Interfaces for 

SystemVerilog Testbenches. DVCon, 2008. 

[5] Baird M, Coverage Driven Verification of an Unmodified DUT within an 

OVM Testbench. DVCon, 2010. 

[6] Shashi Bhutada, Polymorphic Interfaces: An Alternative for 
SystemVerilog Interfaces, Mentor Graphics Verification Horizons, November 

2011 

[7] Rich D, Are SystemVerilog Program Blocks Needed, 
http://www10.edacafe.com/blogs/daverich/2009/06/04/hello-world/ 

[8] Cummings CE, Salz A, SystemVerilog Event Regions, Race Avoidance & 

Guidelines, http://www.sunburst-
design.com/papers/CummingsSNUG2006Boston_SystemVerilog_Events.pdf 

[9] On-line resources from http://www.accellera.org/activities/vip 

[10] On-line resources from http://www.uvmworld.org/ 

[11] On-line resources from 

http://www.doulos.com/knowhow/sysverilog/uvm/  

[12] Rich D, The finer details of $unit versus $root 

http://blogs.mentor.com/nosimulation/ 

 

 
 

http://www10.edacafe.com/blogs/daverich/2009/06/04/hello-world/
http://www.accellera.org/activities/vip
http://www.uvmworld.org/
http://www.doulos.com/knowhow/sysverilog/uvm/
http://blogs.mentor.com/nosimulation/

