
 1

Easier SystemVerilog with UVM: Taming the Beast

John Aynsley
Doulos

Church Hatch, 22 Market Place
Ringwood, United Kingdom

+44 1425 471223
john.aynsley@doulos.com

ABSTRACT

SystemVerilog has been widely adopted as a language for hardware

design and verification. At the same time, SystemVerilog is a very

large and complex language which can be daunting to learn and use,

and differences still remain between implementations.

SystemVerilog adoption has been given a new impetus in recent

years with the introduction of UVM, the Universal Verification

Methodology for SystemVerilog. The UVM codebase has provided a

convergence point for SystemVerilog implementations and

applications by creating a de facto SystemVerilog subset that all

implementations must support. UVM uses a compact set of object-

oriented programming features which are very general and

expressive, and which are well-supported by the major

implementations. When combined with other SystemVerilog features

to express constraints, functional coverage, and to abstract the

interface between the design-under-test and the class-based

verification environment, the resultant set of language features is

robust and sufficient for hardware verification.

Keywords

SystemVerilog, Verilog, UVM, functional verification, C,

programming language

1. INTRODUCTION

SystemVerilog is now established as a successful language for

hardware design and verification, and at the time of writing

SystemVerilog has become the language-of-choice for many

companies, particular those adopting constrained random verification

for the first time. One of the main reasons for SystemVerilog’s

commercial success has been support from all the major tool

vendors: at this time, SystemVerilog has come to dominate other

single-vendor solutions. However, the adoption of SystemVerilog

has been hampered over the years by it being a very large and

complex language specified by a somewhat ambiguous language

reference manual. These factors have made it a challenge for

simulator vendors to create complete and mutually consistent

implementations of the SystemVerilog standard, and differences

between implementations still exist to this day. It has proven

uneconomic to refine the SystemVerilog standard to the point where

we have a set of complete, consistent implementations: tool vendors

simply have other commercial priorities.

The designers of SystemVerilog did not appear to subscribe to the

principles of simplicity, orthogonality, and consistency amongst

language features. SystemVerilog is sometimes described as being

the union of several languages. As well as being a superset of

Verilog it incorporates features taken directly from Superlog and

OpenVera as well as being inspired by features from C, C++, Java,

VHDL, and PSL. The result is a set of language features with many

complex and unexpected interactions, which is a burden on

implementers and users alike. Further evidence of SystemVerilog’s

size and complexity is the length of its BNF formal syntax definition,

which covers 43 pages of the standard language reference manual,

and is 70-80% larger than that of VHDL.

The plurality of approaches offered by SystemVerilog makes

learning the language a particular challenge. Whereas an industrial

training class teaching the main features of Verilog or VHDL would

be typically 4 or 5 days in length, a hypothetical class teaching the

whole of SystemVerilog would be a lot longer than 5 days. In

practice there is little demand for such extended training classes,

with project teams preferring to focus on a more prescriptive

approach, that is, how to use SystemVerilog to perform particular

tasks. This typically means SystemVerilog for RTL design,

SystemVerilog Assertions, and SystemVerilog for constrained

random verification, also known as SystemVerilog Test Bench. In

practice, each of these training classes would select a limited set of

SystemVerilog features that represent best practice for the task at

hand and that have relatively robust implementations.

UVM, the Universal Verification Methodology for SystemVerilog,

represents the latest member of a family of methodologies (and their

associated base class libraries) for using SystemVerilog for

constrained random verification. SystemVerilog methodologies have

played a valuable role in capturing best practice and avoiding the

need for each user to reinvent the mechanisms needed to use

SystemVerilog classes to build verification environments. UVM is

the first standard verification methodology to be actively supported

and championed by all the major tool vendors, and has added a

significant impetus to SystemVerilog adoption. Potential

SystemVerilog users now have increased confidence to move

forward with the adoption of a new language knowing that they have

the support of the major tool vendors and a whole ecosystem of IP

and service providers. Having a single standard methodology

encourages the development of a market for verification IP re-use,

which promises to be highly significant.

UVM has achieved even more than capturing best practice and

enabling verification IP reuse. It has also provided a commercial

imperative for simulator vendors to complete the work of creating

mutually consistent SystemVerilog implementations, at least for the

parts of the languages used by UVM. Indeed, this is exactly what has

happened.

2. SYSTEMVERILOG CODING

GUIDELINES

Most SystemVerilog simulators now support all the major areas of

the SystemVerilog language, and areas of inconsistency between the

major implementations are by-and-large restricted to corner-case

interactions between the language features. A simulator that supports

feature A in most contexts and feature B in most contexts may have

mailto:john.aynsley@doulos.com

 2

compatibility issues where feature A is used in the context of feature

B.

Two significant issues remain for the user:

 How to avoid the remaining pitfalls of inconsistent language

support across the tools

 How to use a coding style in keeping with best practice across

the industry

The number of tool issues is now so small that it would be feasible to

address the first point above by building a black list of language

features to avoid. However, a prescriptive approach is more practical

for addressing the second point. There are still some areas of

SystemVerilog that are relatively unexplored, particularly the

interactions between some of the newer language features, so it is

best to keep with known coding idioms. We are all creatures of habit,

and in practice we tend to use only a subset of any given language

and to do so in a repetitive way. In the case of SystemVerilog, using

only known good coding idioms can be the best way to avoid pitfalls.

So, we propose the following approach:

 Start from the Verilog subset of SystemVerilog, which is well-

defined and stable due to its legacy

 Add the concise RTL features of SystemVerilog for hardware

synthesis, if required (outside the scope of this paper)

 Add the object-oriented programming and C-inspired features of

SystemVerilog from the UVM base class library

 Add further features necessary for constrained random

verification, in particular constraints, covergroups, and assertions

 Add features for interfacing between the class-based verification

environment and the module-based design-under-test, in

particular interfaces and clocking blocks

 Create a black list of language features to avoid based on

experience in your company and publicly available information

Creating a feature black list can be problematic because,

understandably, tool vendors do not advertise the shortcoming of

their wares and because any such list will go out-of-date as tools

improve. Nevertheless, it is possible to give some general guidance

on which language features to avoid for portability. Indeed, certain

issues can be inferred from studying the UVM source code itself and

other publicly available information.

The UVM base class library and the SystemVerilog codebase in

many companies are littered with conditional compilation directives

in order to avoid tool compatibility pitfalls. Fortunately such

directives tend to become redundant over time. We have seen the

number of corner-case issues reducing year-by-year, but some still

remain.

3. THE UVM BASE CLASS LIBARY

UVM uses a fairly compact subset of the SystemVerilog language.

Unsurprisingly, given that UVM is a base class library, UVM makes

heavy use of SystemVerilog classes, data types, and procedural

statements, but not much else. This could generally be described as

the object-oriented subset of SystemVerilog. The UVM base class

library looks much like a class library in any other object-oriented

programming language, apart from the obvious language differences

and the absence of features such as function and operator

overloading, multiple inheritance, and template meta-programming.

In the wider software context, the object-oriented programming

paradigm has proved itself to be very expressive, very powerful, and

very durable. The realization of OOP within SystemVerilog is

similarly expressive: using a combination of a relatively small

number of language features, class-based SystemVerilog is able to

address a wide range of problems with a small volume of code and a

small set of coding idioms. In fact, the UVM codebase makes use of

most of the OOP features from SystemVerilog, and exercises those

features very heavily and in many combinations. This is a sign of a

well-designed language and should help to ensure a robust

implementation (although a few pitfalls remain).

The UVM base class library uses the following list of language

features:

class and virtual class within package

class parameterized with a type

class ... extends

new

task and function methods

virtual and pure virtual methods

extern methods

local and protected members and methods

static members and methods

const and const static members

Inline member initialization

this and super

input, output, inout, and ref arguments to methods

Default values for method arguments

Class scope resolution :: to access methods, types, and enums

Handles as members, arguments, and block-scope variables

null, and dynamic cast

Variable declaration and initialization within methods and blocks

static variables within methods and blocks

typedef in package and in class

Forward typedef

bit, byte, int, integer, time, logic

enum, cast to enum

struct in class

event as member

string

Queue, associative array, dynamic array

foreach used with the above

if, case, for, while, do while, break, continue, return

@ -> # wait

begin end, fork join, join_any, disable fork

process, process::self, kill

package containing variable, parameter, typedef, task, function

$sformatf

The above list amounts to the all of the OOP features of

SystemVerilog with very few exceptions (described below), together

with the procedural statements and variables from Verilog and their

C-inspired enhancements from SystemVerilog. The OOP features

 3

include the class-based data types, that is, the string, queue,

associative array, and dynamic array. The C-inspired features include

the data types bit, byte, int, enum, and struct, and control

constructs foreach, do while, break, continue, and return.

There is not much more that needs saying about the above list

because by-and-large the features mentioned just work reliably

together as described in the LRM. Some notable coding idioms used

in the UVM BCL (Base Class Library) are listed below. The

significance of the items in the list below is that each of them could

very easily not have worked. They are non-trivial to implement, and

later in this paper we list many examples of similar or lesser

complexity that are not implemented consistently. The claim made in

this paper is that it is UVM (and VMM and OVM before it) which

has provided the commercial impetus for vendors to offer robust and

consistent implementation of these parts of the SystemVerilog

language.

 Having a type parameter to a class and passing that parameter to

a superclass, as in

class C #(type T = int) extends BASE #(T).

 The use of the class scope resolution operator :: to access static

methods, type names, and enum literals within other classes.

classname::typename::method();

 Inline instantiation of parameterized classes, as in

classname #(typename)::method();

 Performing a polymorphic dynamic cast on handles, as in

if ($cast(to_handle, from_handle))

 Testing for the null value of a handle, as in

if (handle == null)

 Declaring and initializing variables, including handles, at class

scope and block scope (within methods), as in

begin static string blank = “”; ... end

begin classname q[$]; ... end

 Using a void cast to throw away the value returned from a

function, as in

void’(obj.method());

 Enum types, including base types and initializers, as in

typedef enum bit { lit1 = 0, lit2 = 1 } name;

 Using strings, including the test for an empty string, the substr

and len methods, and string concatenation, as in

string S;

if (S == “”)

 S = {“pre”, S.substr(expr1, expr2)};

 Associative arrays of arbitrary type, including arrays-of-handles

and arrays-of-events, as in

-> assoc_array[index].named_event;

 Default argument values, ref arguments, handles and queues as

arguments to methods, as in

function void f (

 ref uvm_component comps[$],

 input uvm_component comp = null,

 string arg = "");

 C-style for loops, as in

for (int i = 0; i < n; i++)

 Use of foreach to iterate over arrays, associative arrays and

queues, as in

foreach (array[i])

4. APPLICATIONS THAT USE UVM

UVM applications can use a coding style similar to that of the base

class library, but must inevitably bring in other SystemVerilog

language features in order to create UVM tests and to interface to the

design-under-test, which will be module-based. There are many

reliable SystemVerilog features that are absent from the code of the

UVM BCL itself.

The SystemVerilog language features given in the following list have

proved useful and robust when using in conjunction with UVM (in

addition to the features listed above for the UVM BCL itself):

interface

Variable, task, function within interface

Port on interface

clocking block within interface

Clocking drive, sense, and synchronize

modport

virtual interface

import

Handles in module scope

rand members

randomize with

rand_mode and constraint_mode

pre_randomize and post_randomize

constraint

covergroup and coverpoint

assert and $error

Array manipulation methods

$bits

All of Verilog!

Interfaces, virtual interfaces, and class handles in module scope

permit communication between the module-based and classed-based

parts of SystemVerilog. This issue is discussed further toward the

end of this paper.

 4

Issues surrounding the use of clocking blocks and the SystemVerilog

scheduler regions have been well-documented elsewhere [7][8].

Suffice it to say that we would recommend (but not mandate) the use

of clocking blocks with #1step sampling to help isolate the

verification environment from the design-under-test with respect to

SystemVerilog scheduler issues, but would not recommend the

SystemVerilog program in general.

The use of randomization, constraints, covergroups, and assertions is

key to constrained random verification, so these features are

essential. There are just a small number of tool compatibility pitfalls

to avoid (described below).

The array manipulation methods are useful in the context of arrays,

associative arrays, and queues, and their implementations now seem

to be robust.

5. THINGS TO AVOID

The good news is that there are now great swathes of the

SystemVerilog language that are relatively robust and portable. The

bad news is that the set of problematic corner cases cannot be

reduced to any compact description or simple formula. So rather than

writing in general terms about problematic areas of the

SystemVerilog language, some of the corner cases are spelled out

one-by-one below.

In a sense, this list of corner cases is remarkably short considering

the size of the language, and it a tribute to the simulator vendors who

have worked to close the gap between their implementations since

the introduction of the SystemVerilog standard. In another sense this

list is quite alarming, since it highlights areas of the language where

simulator vendors have evidently not felt the pressure to converge on

a single interpretation of the standard.

The UVM source code identifies certain features as problematic with

respect to tool compatibility by the use of conditional compilation

directives. Other features are noticeable by their absence from the

UVM codebase. Several of the issues raised below are indicative of

the existence of complex or little-used language features, and as such

the avoidance of these features may be regarded as good practice

anyway regardless of tool compatibility issues.

The following list is not meant to be complete or definitive, and will

inevitably (and hopefully) go out-of-date very quickly. Nevertheless,

it is offered in the hope that it will be of some practical use in the

short term.

5.1. Separation of classes from modules

The UVM BCL is exclusively class-based. There are several tool

compatibility pitfalls at the intersection of the module-based and

class-based parts of SystemVerilog, so this needs to be coded

carefully. While the new SystemVerilog data types fit seamlessly

into class-based code, they do not always play so well with existing

Verilog features.

There are tool compatibility pitfalls around using user-defined types

for nets, including enum nets, for example:

typedef enum logic [1:0] {e1, e2, e3} et;

wire et w; // ???

Types defined using typedef and enums should be confined to

variables.

There are tool compatibility pitfalls around using class handles as

ports and making continuous assignments to class handles, for

example:

class C;

 ...

endclass

module top;

 C handle1 = new;

 C handle2;

 assign handle2 = handle1; // ???

Class handles and virtual interfaces can be declared in module scope

or within a procedure, and methods can be called using those

handles. Indeed, these features are necessary in order to instantiate

and run a class-based verification environment. However, there are

tool compatibility pitfalls around making hierarchical references to

handles (including dynamic arrays) declared in other modules or

interfaces, and making hierarchical references to virtual interfaces.

For example,

class C;

 ...

endclass

module top;

 modu inst ();

 initial

 inst.handle = new; // ???

endmodule

module modu;

 C handle;

endmodule

So references to handles and to virtual interfaces should not be made

through hierarchical names at present.

5.2. $unit

$unit is a mechanism to explicitly access identifiers declared at

compilation unit scope, that is, names (such as variables and types)

declared at the top level outside of any module [12]. Although such

declarations are permitted by the SystemVerilog language, it is

preferable to restrict declarations at compilation unit scope to

modules, interfaces, and packages, and to move all other declarations

into packages, thus avoiding any need to use $unit. UVM does not

use $unit.

5.3. Nested modules

The ability to nest modules within modules has not been widely

implemented, nor has the ability to nest interfaces within modules,

interfaces within interfaces, programs within programs, and so forth.

Hence nested modules, programs, and interfaces should be avoided.

5.4. Unpacked struct, union, and array

UVM confines the use of structs to those containing simple types and

strings. These are mostly unpacked structs defined within packages

and classes, although it is worth noting that simulator support for the

packed struct and packed union is robust in the context of RTL

coding. Handles, dynamic arrays, queues, and associative arrays

should be avoided as members of a struct, although they are robust

as members of a class. For example,

 5

struct {

 byte a[]; // ???

} s1, s2;

In general, packed structs are more robust than unpacked structs, and

unpacked unions should be avoided altogether. There are tool

compatibility issues around the use of unpacked structs and

unpacked arrays as nets and as ports of net type (variables and

variable ports are okay). There are tool compatibility issues around

the use of bit-stream casting between unpacked structs and unpacked

arrays, for example:

typedef struct // Unpacked struct

{

 bit a;

 byte b;

} T1;

typedef struct

{

 byte c;

 bit d;

} T2;

module top;

 T1 s1;

 T2 s2;

 initial

 begin

 s1 = '{1, 1};

 s2 = T2'(s1); // ???

There are tool compatibility issues around the use of unpacked

structs, unpacked arrays, and queues as arguments to $display and

related calls.

With respect to unpacked arrays, there are tool compatibility issues

around taking part selects of an unpacked dimension and calling

$unpacked_dimensions.

In general, it would seem safest to avoid unpacked structs and

unpacked unions altogether and restrict the use of unpacked arrays to

a Verilog-like subset, that is, Verilog memories.

5.5. Assignment patterns and %p

Assignment patterns provide a language mechanism to write values

of unpacked types, in particular allowing in-line initialization of

unpacked struct and array variables, for example:

struct { int a, b, c; } s = '{1, 2, 3}; // Okay

UVM makes very little use of assignment patterns, although a few

trivial examples are starting to creep into the register layer. The

implementation of the simpler cases of assignment patters seems to

be robust, although there have been tool incompatibility pitfalls

associated with assignment patterns, specifically with member tags

and the %p formatter, so these features are probably best avoided for

the present. In any case, it is simple to manipulate array-like objects

without using assignment patterns.

5.6. Type parameter substitution in classes

The UVM BCL makes limited use of type parameters to classes. It

would seem that implementers have probed this area of the language

to the depth necessary for UVM but no further. The implementation

of basic type parameter substitution appears robust, but cases deeper

than those appearing in the UVM BCL reveal many inconsistencies

between implementations.

One area of inconsistency involves accessing type parameters

through typedefs, as in

class C #(type T = int);

 typedef T::some_type T2;

 ...

Another area of inconsistency involves calculating static constants

that depend on type parameter substitution, such as

class C #(type T = int);

 static const int c = T::c;

 ...

class D;

 typedef C #(C1) T;

 static const int c = T::c;

 ...

5.7. Protected constructor

Protected constructors (protected new) are useful to help enforce the

singleton pattern whereby the instantiation of a class is restricted to

just a single object. The singleton pattern is used in UVM to

construct objects for the factory and for the built-in phases. However,

UVM contains a conditional compilation directive to exclude

protected constructors, so it may be wise to avoid using protected

constructors at present as a work-around for tool compatibility

pitfalls.

5.8. Array-to-queue assignment

UVM contains a conditional compilation directive to exclude direct

assignment from a dynamic array to a queue, so this operation should

be avoided for the present. For example,

int a[];

int q[$];

a = new[4];

q = a; // ???

5.9. Iterator index query

By-and-large the implementation of the array manipulation methods

(that is, array locator methods, ordering methods, and reduction

methods) is now very robust and consistent across implementations,

and there are a couple of examples in the UVM BCL, namely

find_index and sort. However, the use of the iterator index query

method (index) within the with clause of the array manipulation

methods still has some tool compatibility pitfalls, for example:

int a[];

int q[$];

a = '{0, 3, 2, 1, 4, 5, 7, 8};

q = a.find with (item == item.index); // ???

 6

5.10. Block identifiers

The SystemVerilog standard permits block identifiers (labels) before

procedural statement, but this feature is not widely supported. For

example,

blk: begin // ???

 loop: repeat(8) ; // ???

end: blk

5.11. Assignment as a side-effect

Although permitted by the standard, there are tool compatibility

issues around the use of the assignment operators within an

expression, where the evaluation of the expressions executes an

assignment as a side-effect. For example

int a, b = 1;

if ((a = b)) // ???

5.12. final

The SystemVerilog standard allows multiple final procedures which

can execute in any order and does not specify the precise

circumstances under which final is executed (it merely says “at the

end of simulation time”). final procedures are intended for the

display of statistical information, but aside from the ambiguity in

their definition, they are inadequate as a mechanism to execute

actions at the end of a test and have not been consistently

implemented or widely adopted. It is best to use the UVM phasing

mechanism rather than SystemVerilog final procedure.

5.13. wait fork

There are tool compatibility pitfalls concerning the interpretation of

the wait fork statement, which according to the SystemVerilog

standard blocks the calling process until its immediate child

subprocesses have completed. Some implementations interpret the

word immediate as excluding subprocesses created by nested fork-

joins, others do not. For example,

begin

 fork

 #44;

 fork

 #125;

 #14;

 join_none

 #2;

 join_none

 wait fork;

 $display($time); // 44 or 125 ?

end

Nevertheless, wait fork is used in a couple of places within the

UVM BCL, and aside from the ambiguity concerning nested fork-

joins, appears robust.

5.14. Method Prototype in Modport

While all implementations permit tasks and functions to be exported

through a modport, there are tool compatibility issues around the

use of task/function prototypes within a modport declaration. For

example,

modport mp (import function void f()); // ???

modport mp (import f); // Okay

5.15. Modport expressions

There are tool compatibility issues around the use of modport

expressions.

5.16. Functional coverage

SystemVerilog provides language features for functional coverage

collection, but the implementation of a coverage database in support

of those features is tool-specific. Unsurprisingly, there are some

significant differences of interpretation.

The $get_coverage system task, which is intended to return the

overall coverage of all covergroup types, is not consistently

implemented.

There are tool compatibility pitfalls around the use of the

get_coverage method for individual coverpoints.

The interpretation of option.weight and type_option.weight for

covergroup and coverpoint is inconsistent across tools.

option.at_least seems to be a more reliable reference point.

5.17. Minor syntax sensitivities

All implementations are occasionally sensitive to minor nuances of

the SystemVerilog syntax. For example, depending on context, only

some implementations disallow the std:: prefix before the keyword

process and only some implementations require the std:: prefix

before the keyword randomize, for example:

begin

 byte unsigned a, b, c;

 assert(randomize(a, b, c)); // ???

 assert(std::randomize(a, b, c)); // Okay

Only some implementations permit parentheses to be omitted after

calls to the num method of the mailbox, only some implementations

permit parentheses to be omitted after calls to randomize, and only

some implementations permit empty braces {} in the definition of a

coverpoint, for example,

rand longint data;

covergroup cg;

 coverpoint data {} // ???

endgroup

6. SYSTEMVERILOG AS A BETTER

VERILOG

Verilog was used for gate-level simulation, cell library modeling,

RTL design, and directed test benches, amongst other things. The

topic of SystemVerilog as a language for RTL design is largely

outside the scope of this paper on the impact of UVM. However, it is

worth remarking that many of the features of SystemVerilog for RTL

design have been robustly and consistently implemented, and have

been widely adopted by users. These include:

 7

 Consistent ANSI-style syntax for parameters and ports

(first introduced with Verilog 1995), extended in

SystemVerilog to include task and function arguments.

 Shorthand port connection syntax, that is, .name and .*

 Relaxed rules for using variables in contexts that

previously demanded the use of a net type.

 The synthesis-aware procedural constructs, namely

always_comb, always_ff, always_latch, unique, and

priority.

 timeunit and timeprecision for defining time units

without the need for compilation directives

These features combine to make SystemVerilog a more elegant and

user-friendly language for RTL design when compared to the

original Verilog language.

7. COMMON GROUND BETWEEN

SYSTEMVERILOG AND C

SystemVerilog has inherited several data types and control constructs

from the C language, adapted where necessary to fit with the syntax

of SystemVerilog. Even though the minor syntactic differences

between some features in C and SystemVerilog may be a cause for

annoyance, the commonality is a very positive thing from the point

of view of making SystemVerilog easy to learn and natural to use.

The common features introduced into SystemVerilog include:

 The 2-state types such as int, shortint, longint

 enum, struct, union, and typedef

 do-while, break, continue, and return

 Operators ++, --, and the assignment operators

In general, SystemVerilog users have been able to adopt these new

constructs with ease because they appear familiar and do not bring

too many surprises or quirky semantics. For example, it is now

possible to use well-known C coding idioms natively in

SystemVerilog, such as

for (int i = 0; i < 4; i++)

or even

for (int i = 0, j = 8; i < 4; i++, j--)

These features are heavily used in the UVM BCL, as identified

above. With a few exceptions as described earlier in this paper,

namely unpacked struct and union and assignments as side-effects

of expression evaluation, these features have been robustly and

consistently implemented.

8. THE INTERFACE BETWEEN

SYSTEMVERILOG AND UVM

Interfacing between the class-based UVM verification environment

and the module-based design-under-test (DUT) is typically

accomplished by having a virtual interface in the UVM verification

environment contain a reference to the SystemVerilog interface

instance. This is the approach recommended by the UVM User

Guide. Until recently, this approach was blighted by inconsistent

implementation support for access through a virtual interface to

certain kinds of declaration in the corresponding interface. In

particular, there were tool compatibility issues around access to

named events and handles through virtual interfaces. Fortunately

most of these issues now seem to have been resolved.

Several authors have suggested (see the paper [4] by Rich and

Bromley) the alternative approach of having an abstract class whose

methods are called from the verification environment and then

having a concrete instance of that class declared within the scope of

an interface or module and hence having access by hierarchical

reference to the variables and wires used to connect to the DUT. This

approach offers the advantage of further decoupling the verification

environment from the DUT environment in the sense that the

verification environment does not need to name a specific

SystemVerilog interface.

This latter polymorphic interface approach also helps address

fundamental language issues in SystemVerilog concerning access

through virtual interfaces to parameterized interfaces: SystemVerilog

requires the type of any virtual interface to reflect the

parameterization of the interface to which it refers. When using

virtual interfaces, this ties the verification environment to a specific

parameterization of the SystemVerilog interface, which could be a

significant obstacle to code reuse (see the paper [6] by Shashi

Bhutada). By using an abstract base class in the verification

environment, it is possible to re-use the same verification

environment unchanged with several different SystemVerilog

interfaces: all that is necessary is that each SystemVerilog interface

must contain a concrete implementation of the abstract interface

class.

On the face of it this polymorphic interface approach runs counter to

the advice given above regarding the separation of classes from

modules. It is arguable that in general it is better to keep modules and

classes distinct, as exemplified by the virtual interface approach

commonly used with UVM, rather than to embed classes within

modules or interfaces. However, the SystemVerilog language

features necessary to create abstract classes and to embed the

concrete implementations of those classes within SystemVerilog

interfaces and modules have been robustly and consistently

implemented, so both the virtual interface and the polymorphic

interface approaches are viable.

9. CONCLUSION

Despite much progress by tool vendors since the first introduction of

the SystemVerilog language standard, there remain some significant

inconsistencies between simulator implementations. There are areas

of the SystemVerilog language that have been implemented

comprehensively and consistently by tool vendors, and other areas of

the language that have not. It is evident that pressure from the user

community is one of the factors that sets the implementation

priorities for tool vendors, and this is particularly so for the class-

based verification methodologies. UVM seems to have had a very

positive influence in driving tool vendors to implement the core set

of features needed for class-based verification in a consistent

manner.

Aside from the class-based subset of SystemVerilog used by the

UVM BCL and features such as constraints and functional coverage

that are necessary for use alongside UVM, there are other areas of

SystemVerilog that have proved robust and natural to use, and hence

have become popular. These include the features that improve

Verilog as a language for RTL design and the features inspired by

the C programming language. With a few exceptions, many of the

 8

latter are used within the UVM BCL. While outside the scope of this

paper, SystemVerilog Assertions are generally robust and widely

used too.

What of the areas where inconsistencies remain? If any language

area has more than its fair share of inconsistencies, this could be

taken to suggest that tool vendors have not come under pressure from

users to solidify that area of the language. The many inconsistencies

at the intersection of classes with structural Verilog might suggest

that users are happy to keep class-based and module-based code

separate. The many issues surrounding the use of unpacked types

might suggest that the inclusion of such features within a hardware

design and verification language was a little misjudged in the first

place. However, there are still a few inconsistencies where tool

vendors just need to do better.

10. REFERENCES

[1] IEEE Std 1800-2009 “IEEE Standard for System Verilog-Unified

Hardware Design, Specification, and Verification Language”,

http://dx.doi.org/10.1109/IEEESTD.2009.5354441

[2] Universal Verification Methodology (UVM) 1.1 Class Reference, May 25

2011

[3] Universal Verification Methodology (UVM) 1.1 User’s Guide, May 18,
2011

[4] Rich D., Bromley, J. Abstract BFMs Outshine Virtual Interfaces for

SystemVerilog Testbenches. DVCon, 2008.

[5] Baird M, Coverage Driven Verification of an Unmodified DUT within an

OVM Testbench. DVCon, 2010.

[6] Shashi Bhutada, Polymorphic Interfaces: An Alternative for
SystemVerilog Interfaces, Mentor Graphics Verification Horizons, November

2011

[7] Rich D, Are SystemVerilog Program Blocks Needed,
http://www10.edacafe.com/blogs/daverich/2009/06/04/hello-world/

[8] Cummings CE, Salz A, SystemVerilog Event Regions, Race Avoidance &

Guidelines, http://www.sunburst-
design.com/papers/CummingsSNUG2006Boston_SystemVerilog_Events.pdf

[9] On-line resources from http://www.accellera.org/activities/vip

[10] On-line resources from http://www.uvmworld.org/

[11] On-line resources from

http://www.doulos.com/knowhow/sysverilog/uvm/

[12] Rich D, The finer details of $unit versus $root

http://blogs.mentor.com/nosimulation/

http://www10.edacafe.com/blogs/daverich/2009/06/04/hello-world/
http://www.accellera.org/activities/vip
http://www.uvmworld.org/
http://www.doulos.com/knowhow/sysverilog/uvm/
http://blogs.mentor.com/nosimulation/

