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SystemVerilog

The language of choice

because it's a standard

supported by all tool vendors
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SystemVerilog

Large and complex
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SystemVerilog

Not simple, 
orthogonal, 
or consistent
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Several Languages in One?

• Includes features from

• Verilog

• VHDL

• PSL

• Superlog

• OpenVera

• C

• C++

• Java
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SystemVerilog

Differences between implementations

and don't blame the vendors
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Syntax Definition - VHDL
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Syntax Definition - VHDL

24 pages
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Syntax Definition - SystemVerilog
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Syntax Definition - SystemVerilog

43 pages
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Syntax Definition

24 pages
VHDL

43 pages

SystemVerilog

18 pages
C++ 1998
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Hard to Learn

Verilog

VHDL

SystemVerilog
(from scratch)

UVM
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Enter UVM

Taming 
the Beast
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UVM

• Enables verification IP reuse & captures best practice

• Supported by all major vendors

• Increased confidence to adopt SystemVerilog

• Implementations now mutually consistent

• Still need to avoid remaining pitfalls...

14



Copyright © 2012 by  Doulos. All rights reserved.

Easier SystemVerilog Approach

• Do use

• Verilog

• Concise RTL, for hardware synthesis

• Features used by UVM – OOP and C-like

• Features for constrained random verification

• Features for interfacing test bench to DUT

• Don't use

• Features which are not portable
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Used by the UVM BCL

• Packages

• All the class syntax (almost)

• typedef, 2-state types, enums, (some) structs in classes

• Strings, queues, associative and dynamic arrays

• C-like procedural statements  in methods

• fork-join  in methods

16



Copyright © 2012 by  Doulos. All rights reserved.

Idioms from the UVM BCL

class C #(type T = int) extends BASE #(T); 
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Idioms from the UVM BCL

begin

classname::typename::method();

classname #(typename)::method();

end
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Idioms from the UVM BCL

if ($cast(to_handle, from_handle))

... 
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Idioms from the UVM BCL

begin

static string blank = "";

...

end

begin 

classname q[$];

...

end 
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Idioms from the UVM BCL

void’( obj.method() ); 
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Idioms from the UVM BCL

typedef enum bit { lit1 = 0, lit2 = 1 } name; 
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Idioms from the UVM BCL

string S;

if (S == "")

S = {"pre", S.substr(expr1, expr2)}; 
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Idioms from the UVM BCL

for (int i = 0; i < n; i++)

... 
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Idioms from the UVM BCL

foreach (array[i])

...

25



Copyright © 2012 by  Doulos. All rights reserved.

Idioms from the UVM BCL

-> assoc_array[index].named_event;
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Idioms from the UVM BCL

function void f (

ref   uvm_component comps[$],

input uvm_component comp = null,

string arg = "");
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Used by UVM Applications

• assert

• covergroup

• rand member

• randomize() with { ... }

• constraint

Constrained random

• interface

• clocking

• modport

• virtual interface

• Handle in module scope

Module-class communication

• Array manipulation methods • Verilog!
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Pitfalls

Pitfalls
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Pitfalls

• Many features robust and portable

• Remaining pitfalls cannot be simply described

• UVM BCL side-steps some pitfalls

• List of pitfalls is now short and getting shorter!

• Areas where the vendors have not converged?
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Continuous Assignment to Handle

class C;
...

endclass

module top;

C handle1 = new;
C handle2;

assign handle2 = handle1;
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Handles as Ports

class C;
...

endclass

module child1 (input C p, output C q);
...

module child2 (ref C p,   ref C q);
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Hierarchical Reference to Handle
class C;
...

endclass

module top;

modu inst ();

initial
inst.handle = new;

endmodule

module modu;
C handle;

endmodule
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Hierarchical Reference to Parameter

interface iface;

parameter int p = 8;

endinterface

module top;

iface iinst();

bit [iinst.p-1:0] vec;
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Objects as Struct Members

struct {

byte a[];

} s1, s2; 

initial

begin

s1.a = '{1, 2, 3, 4};

s2 = s1;

s1.a[0] = 5;

$display(s2.a[0]);

end

1 or 5?
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Unpacked Unions

typedef struct
{
bit a;
byte b;

} T1;

typedef struct
{
byte c;
bit d;

} T2;

typedef union
{
T1 p;
T2 q;

} U;
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Bitstream Casting

typedef struct
{
bit a;
byte b;

} T1;

typedef struct
{
byte c;
bit d;

} T2;

module top;

T1 s1;
T2 s2;

initial
begin
s1 = '{1, 1};

s2 = T2'(s1);
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Type Parameter Substitution

class C #(type T = ...);

typedef T::T2 T3;

static const int d = T::c;

endclass

class D;

typedef C #(C1) T;

static const int e = T::d;
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Protected Constructor

class C;

protected function new;

...

endfunction
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Array-to-Queue Assignment
begin

int da[];

int q[$];

da = '{1, 2, 3, 4};

q = da;

`define UVM_DA_TO_QUEUE(Q,DA)\

foreach (DA[idx]) Q.push_back(DA[idx]);
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Iterator Index Query

int a[];

int q[$];

a = '{0, 3, 2, 1, 4, 5, 7, 8};

q = a.find with ( item == item.index );
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Statement Labels

initial

blk: begin

loop: repeat (8);

end: blk
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Assignment as Side Effect

int i;

if ((i = 99))

$display("i is 99");
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final

final

$display("The End at ", $time);
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wait fork
begin

fork

#44;

fork

#125;

#14;

join_none

#2;

join_none

wait fork;

$display($time);

end
44 or 125?
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$get_coverage

initial

$display( $get_coverage );
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Empty Coverpoint

rand longint data;

covergroup cg;

coverpoint data {}

endgroup
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std::randomize

begin

byte unsigned a, b, c;

assert( randomize(a, b, c) );

assert( std::randomize(a, b, c) );
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Prototype in modport

modport mp (import function void hello());

modport mp (import hello);
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Themes?

• Keep modules and classes separate?

• No need for unpacked structs, unions, or arrays

(other than Verilog memories)?

50



Copyright © 2012 by  Doulos. All rights reserved.

Conclusions

• Do use

• Verilog!

• Synthesis-friendly RTL features

• Classes (from UVM)

• C-like features: data types and statements (from UVM)

• Interfaces, virtual interfaces, clocking blocks

• Assertions, coverage, constraints
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Conclusions

UVM has tamed the beast!
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