
Copyright © 2012 by Doulos. All rights reserved.

John Aynsley, Doulos

Easier SystemVerilog with UVM:
Taming the Beast

Copyright © 2012 by Doulos. All rights reserved.

SystemVerilog

The language of choice

because it's a standard

supported by all tool vendors

2

Copyright © 2012 by Doulos. All rights reserved.

SystemVerilog

Large and complex

3

Copyright © 2012 by Doulos. All rights reserved.

SystemVerilog

Not simple,
orthogonal,
or consistent

4

Copyright © 2012 by Doulos. All rights reserved.

Several Languages in One?

• Includes features from

• Verilog

• VHDL

• PSL

• Superlog

• OpenVera

• C

• C++

• Java

5

Copyright © 2012 by Doulos. All rights reserved.

SystemVerilog

Differences between implementations

and don't blame the vendors

6

Copyright © 2012 by Doulos. All rights reserved.

Syntax Definition - VHDL

7

Copyright © 2012 by Doulos. All rights reserved.

Syntax Definition - VHDL

24 pages

8

Copyright © 2012 by Doulos. All rights reserved.

Syntax Definition - SystemVerilog

9

Copyright © 2012 by Doulos. All rights reserved.

Syntax Definition - SystemVerilog

43 pages

10

Copyright © 2012 by Doulos. All rights reserved.

Syntax Definition

24 pages
VHDL

43 pages

SystemVerilog

18 pages
C++ 1998

11

Copyright © 2012 by Doulos. All rights reserved.

Hard to Learn

Verilog

VHDL

SystemVerilog
(from scratch)

UVM

12

Copyright © 2012 by Doulos. All rights reserved.

Enter UVM

Taming
the Beast

Copyright © 2012 by Doulos. All rights reserved.

UVM

• Enables verification IP reuse & captures best practice

• Supported by all major vendors

• Increased confidence to adopt SystemVerilog

• Implementations now mutually consistent

• Still need to avoid remaining pitfalls...

14

Copyright © 2012 by Doulos. All rights reserved.

Easier SystemVerilog Approach

• Do use

• Verilog

• Concise RTL, for hardware synthesis

• Features used by UVM – OOP and C-like

• Features for constrained random verification

• Features for interfacing test bench to DUT

• Don't use

• Features which are not portable

15

Copyright © 2012 by Doulos. All rights reserved.

Used by the UVM BCL

• Packages

• All the class syntax (almost)

• typedef, 2-state types, enums, (some) structs in classes

• Strings, queues, associative and dynamic arrays

• C-like procedural statements in methods

• fork-join in methods

16

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

class C #(type T = int) extends BASE #(T);

17

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

begin

classname::typename::method();

classname #(typename)::method();

end

18

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

if ($cast(to_handle, from_handle))

...

19

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

begin

static string blank = "";

...

end

begin

classname q[$];

...

end

20

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

void’(obj.method());

21

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

typedef enum bit { lit1 = 0, lit2 = 1 } name;

22

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

string S;

if (S == "")

S = {"pre", S.substr(expr1, expr2)};

23

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

for (int i = 0; i < n; i++)

...

24

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

foreach (array[i])

...

25

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

-> assoc_array[index].named_event;

26

Copyright © 2012 by Doulos. All rights reserved.

Idioms from the UVM BCL

function void f (

ref uvm_component comps[$],

input uvm_component comp = null,

string arg = "");

27

Copyright © 2012 by Doulos. All rights reserved.

Used by UVM Applications

• assert

• covergroup

• rand member

• randomize() with { ... }

• constraint

Constrained random

• interface

• clocking

• modport

• virtual interface

• Handle in module scope

Module-class communication

• Array manipulation methods • Verilog!

28

Copyright © 2012 by Doulos. All rights reserved.

Pitfalls

Pitfalls

29

Copyright © 2012 by Doulos. All rights reserved.

Pitfalls

• Many features robust and portable

• Remaining pitfalls cannot be simply described

• UVM BCL side-steps some pitfalls

• List of pitfalls is now short and getting shorter!

• Areas where the vendors have not converged?

30

Copyright © 2012 by Doulos. All rights reserved.

Continuous Assignment to Handle

class C;
...

endclass

module top;

C handle1 = new;
C handle2;

assign handle2 = handle1;

31

Copyright © 2012 by Doulos. All rights reserved.

Handles as Ports

class C;
...

endclass

module child1 (input C p, output C q);
...

module child2 (ref C p, ref C q);

32

Copyright © 2012 by Doulos. All rights reserved.

Hierarchical Reference to Handle
class C;
...

endclass

module top;

modu inst ();

initial
inst.handle = new;

endmodule

module modu;
C handle;

endmodule

33

Copyright © 2012 by Doulos. All rights reserved.

Hierarchical Reference to Parameter

interface iface;

parameter int p = 8;

endinterface

module top;

iface iinst();

bit [iinst.p-1:0] vec;

34

Copyright © 2012 by Doulos. All rights reserved.

Objects as Struct Members

struct {

byte a[];

} s1, s2;

initial

begin

s1.a = '{1, 2, 3, 4};

s2 = s1;

s1.a[0] = 5;

$display(s2.a[0]);

end

1 or 5?

35

Copyright © 2012 by Doulos. All rights reserved.

Unpacked Unions

typedef struct
{
bit a;
byte b;

} T1;

typedef struct
{
byte c;
bit d;

} T2;

typedef union
{
T1 p;
T2 q;

} U;

36

Copyright © 2012 by Doulos. All rights reserved.

Bitstream Casting

typedef struct
{
bit a;
byte b;

} T1;

typedef struct
{
byte c;
bit d;

} T2;

module top;

T1 s1;
T2 s2;

initial
begin
s1 = '{1, 1};

s2 = T2'(s1);

37

Copyright © 2012 by Doulos. All rights reserved.

Type Parameter Substitution

class C #(type T = ...);

typedef T::T2 T3;

static const int d = T::c;

endclass

class D;

typedef C #(C1) T;

static const int e = T::d;

38

Copyright © 2012 by Doulos. All rights reserved.

Protected Constructor

class C;

protected function new;

...

endfunction

39

Copyright © 2012 by Doulos. All rights reserved.

Array-to-Queue Assignment
begin

int da[];

int q[$];

da = '{1, 2, 3, 4};

q = da;

`define UVM_DA_TO_QUEUE(Q,DA)\

foreach (DA[idx]) Q.push_back(DA[idx]);

40

Copyright © 2012 by Doulos. All rights reserved.

Iterator Index Query

int a[];

int q[$];

a = '{0, 3, 2, 1, 4, 5, 7, 8};

q = a.find with (item == item.index);

41

Copyright © 2012 by Doulos. All rights reserved.

Statement Labels

initial

blk: begin

loop: repeat (8);

end: blk

42

Copyright © 2012 by Doulos. All rights reserved.

Assignment as Side Effect

int i;

if ((i = 99))

$display("i is 99");

43

Copyright © 2012 by Doulos. All rights reserved.

final

final

$display("The End at ", $time);

44

Copyright © 2012 by Doulos. All rights reserved.

wait fork
begin

fork

#44;

fork

#125;

#14;

join_none

#2;

join_none

wait fork;

$display($time);

end
44 or 125?

45

Copyright © 2012 by Doulos. All rights reserved.

$get_coverage

initial

$display($get_coverage);

46

Copyright © 2012 by Doulos. All rights reserved.

Empty Coverpoint

rand longint data;

covergroup cg;

coverpoint data {}

endgroup

47

Copyright © 2012 by Doulos. All rights reserved.

std::randomize

begin

byte unsigned a, b, c;

assert(randomize(a, b, c));

assert(std::randomize(a, b, c));

48

Copyright © 2012 by Doulos. All rights reserved.

Prototype in modport

modport mp (import function void hello());

modport mp (import hello);

49

Copyright © 2012 by Doulos. All rights reserved.

Themes?

• Keep modules and classes separate?

• No need for unpacked structs, unions, or arrays

(other than Verilog memories)?

50

Copyright © 2012 by Doulos. All rights reserved.

Conclusions

• Do use

• Verilog!

• Synthesis-friendly RTL features

• Classes (from UVM)

• C-like features: data types and statements (from UVM)

• Interfaces, virtual interfaces, clocking blocks

• Assertions, coverage, constraints

51

Copyright © 2012 by Doulos. All rights reserved.

Conclusions

UVM has tamed the beast!

52

	Slide Number 1
	SystemVerilog
	SystemVerilog
	SystemVerilog
	Several Languages in One?
	SystemVerilog
	Syntax Definition - VHDL
	Syntax Definition - VHDL
	Syntax Definition - SystemVerilog
	Syntax Definition - SystemVerilog
	Syntax Definition
	Hard to Learn
	Enter UVM
	UVM
	Easier SystemVerilog Approach
	Used by the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Used by UVM Applications
	Pitfalls
	Pitfalls
	Continuous Assignment to Handle
	Handles as Ports
	Hierarchical Reference to Handle
	Hierarchical Reference to Parameter
	Objects as Struct Members
	Unpacked Unions
	Bitstream Casting
	Type Parameter Substitution
	Protected Constructor
	Array-to-Queue Assignment
	Iterator Index Query
	Statement Labels
	Assignment as Side Effect
	final
	wait fork
	$get_coverage
	Empty Coverpoint
	std::randomize
	Prototype in modport
	Themes?
	Conclusions
	Conclusions

