DV oz

Design & Verification Conference & Exhibition

Easier SystemVerilog with UVM:
Taming the Beast

John Aynsley, Doulos

SystemVerilog

The language of choice

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

SystemVerilog

Large and complex

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

SystemVerilog

Not simple,
orthogonal,
or consistent

Several Languages in One?

® Includes features from
® Verilog
® VHDL
® PSL
® Superlog
® OpenVera
°*C
® C++

® Java

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

SystemVerilog

Differences between implementations

and don't blame the vendors

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

Syntax Definition - VHDL

IEEE
|EEE STANDARD VHDL LANGUAGE REFERENCE MANUAL Std 1076-2008
Annex C
(informative)
Syntax summary

This annex provides a summary of the syntax for VHDL. Productions are ordered alphabetically by lft-
hand nonterminal name The number listed to the nght indicates the clmse or subclause where the
preduction is given

absolute_pathname = partial pathname [§ 87]
abstract_literal -:= decimal_liferal | based_literal [§1541]
aceess_type_definition = access subtype_mdication [§341]

acmal_designator == [§65.7.1]
[inertial] expression
| signal_name
| variable_name
| file_name
| subtype_indication
| subprogram_name
| instantiated_package name

| open
actual parameter part = parameter association list [§9.34]
actual_part -= [§6.57.1]
actual_designator
| fiinction_name (actual_designator)
| type_mark (actual_designator)
adding_operator =+ |=| & [§91]

aggregate o= [§9.3.11]
(element association |, element association })

aliss_declaration ;= [§6.6.1]
alins alias_designator [: subtype_mdication] is name [signature | ;

’ 20 alias_designator :-= identifier | character literal | operator_symbol [§6.4.1]

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 7

Syntax Definition - VHDL

DV o

Design & Verification Conference & Exhibitio Copyright © 2012 by Doulos. All rights reserved.

Syntax Definition - SystemVerilog

IEEE
Sid 1800-2009 |EEE STANDARD FOR SYSTEMVERILOG:

Annex A
(normative)

Formal syntax

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The syntax of System-
Vertlog source 15 derived from the starting symbel source_fext. The syntax of a hbrary map file 15 denved
from the starting symbol library _text. The conventions used are as follows:

Keywords and punctuation are in bold-red text.
Syntactic categones are named m nonbold fext.
A vertical bar (|) separates aliematives.

Square brackets ([]) enclose optional items.

Braces ({ |) enclose items that can be repeated zero or more fimes.

The full syntax and semantics of SystemVerilog are not described solely using BNF. The nomative text
description contamed within the clauses and annexes of this stndard provide additional details on the syntax
and semantics described in this BNF.

A qualified ferm i the syntax is a term such as array_identifier for which the “array”™ portion represents
some semantic imtent and the “identifier” term indicates that the qualified term reduces to the “identifier”
term in the syntax. The syntax does not completely define the semanties of such qualified terms; for example
while an identifier which would qualify semantically as an array_identifier is created by a declaration, such
declaration forms are not explicitly deseribed using avray_identifier in the syntax.

A1 Source text

A.1.1 Library source text

Iibrary_text ::= { library_description }
library_description ::=
library declaration
| inchude_statement
| config_deelaration
| 2

library_declaration ::=
2 07 library library identifier file path_spec | , file_path_spec |
2 [-incdir file path spee { , file path spec |]

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

‘Fa3 Whukdes Kdde SUOHOLSSH EI0IS SPIBPURIS TSI 8U) WOl | LOZ-08 S L0 UG PSPECIUMOG US| UMY 'O} PSILLI| 35N PSSUSN| PEZLIOUITY

Syntax Definition - SystemVerilog

Design & Verification Conference & Exhibition

Copyright © 2012 by Doulos. All rights reserved.

10

Syntax Definition

bg|

N
=

ilog| ||

Design & Verification Conference & Exhibition

Copyright © 2012 by Doulos. All rights reserved.

11

Hard to Learn

Verilog

VHDL

SystemVerilog
(from scratch)

UVM

BYERhE

Design & Verification Conference & Exhibition

Copyright © 2012 by Doulos. All rights reserved.

12

Enter ov

the Beast

UVM

® Enables verification IP reuse & captures best practice
® Supported by all major vendors

® Increased confidence to adopt SystemVerilog

® Implementations now mutually consistent

¢ Still need to avoid remaining pitfalls...

DvCori™

Design & Verification Conference & Exhibitio Copyright © 2012 by Doulos. All rights reserved.

14

Easier SystemVerilog Approach

® Do use
® Verilog
® Concise RTL, for hardware synthesis
® Features used by UVM — OOP and C-like
® Features for constrained random verification

® Features for interfacing test bench to DUT

® Don't use

® Features which are not portable

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 15

Used by the UVM BCL

® Packages

® All the class syntax (almost)

® typedef, 2-state types, enums, (some) structs in classes
® Strings, queues, associative and dynamic arrays

® C-like procedural statements in methods

® fork-join In methods

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 16

ldioms from the UVM BCL

class C #(type T = Int) extends BASE #(T);

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

17

ldioms from the UVM BCL

begin

classname: - typename: :method();

classname #(typename)::method();

end

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

18

ldioms from the UVM BCL

1T ($cast(to handle, from handle))

Design & Verification Conference & Exhibition

Copyright © 2012 by Doulos. All rights reserved.

19

ldioms from the UVM BCL

begin

static string blank = ;

end

begin
classname q[$];

end

Copyright © 2012 by Doulos. All rights reserved.

20

ldioms from the UVM BCL

Design & Verification Conference & Exhibition

void’(obj.method());

Copyright © 2012 by Doulos. All rights reserved.

21

ldioms from the UVM BCL

typedef enum bit { litl = O,

Design & Verification Conference & Exhibition

Copyright © 2012 by Doulos. All rights reserved.

I1t2 = 1 } name;

22

ldioms from the UVM BCL

string S;

if (S == ")

S = {"pre", S.substr(exprl, expr2)};

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

23

ldioms from the UVM BCL

Design & Verification Conference

for (int i = 0; i < n; i++)

Copyright © 2012 by Doulos. All rights reserved.

24

ldioms from the UVM BCL

Design & Verification Conference

foreach (array[i])

Copyright © 2012 by Doulos. All rights reserved.

25

ldioms from the UVM BCL

-> assoc_array[i1ndex].named_ event;

DvCori™

Design & Verification Conference & Exhibitio Copyright © 2012 by Doulos. All rights reserved. 26

ldioms from the UVM BCL

function void T (
ref uvm_component comps[$].,
iInput uvm _component comp = null,

string arg = "'");

DvCori™

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 27

Used by UVM Applications

Interface
clocking
modport
virtual interface

Handle in module scope

Module-class communication

Array manipulation methods

DvCori™

Design & Verification Conference & Exhibition

assert

covergroup

rand member

randomize() with { ...

constraint

Constrained random

Verilog!

Copyright © 2012 by Doulos. All rights reserved.

28

Pitfalls

® Many features robust and portable

® Remaining pitfalls cannot be simply described

® UVM BCL side-steps some pitfalls

® List of pitfalls is now short and getting shorter!

® Areas where the vendors have not converged?

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

30

Continuous Assignment to Handle

class C;
endclass
module top;

C handlel = new;
C handle2;

assign handle2 = handlel;

jj “' e

Design & Verification Conference & Exhibitio Copyright © 2012 by Doulos. All rights reserved. 31

Handles as Ports

class C;
endclass
module childl (input C p, output C Q);

modulle child2 (ref C p, ref C q);

DvC 0T

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 32

Hierarchical Reference to Handle

class C;
endclass
modulle top;

modu Inst ();

initial
inst_handle = new;

endmodule

modulle modu;
C handle;
endmodule

DV o

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 33

Hierarchical Reference to Parameter

interface i1face;
parameter Int p = 8;

endinterface

modulle top;

iface 1inst();

bit [1inst.p-1:0] vec;

1 & —
D\/ <or2 =

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 34

Objects as Struct Members

struct { initial
byte al[]; begin
} s1, s2; sl.a = “{1, 2, 3, 4};

sl.a[0] = 5;
$display(s2.a[0]);
end

DvCori™

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

1or5?

35

Unpacked Unions

typedef struct

{

bit a;

byte b; 5
} T1; e Mo
typedef struct <[]7
{

byte c; typedef union

bit d; {
3T Tl p;

T2 (q;
} U;

DV o

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 36

Bitstream Casting

typedef struct modulle top;
{
bit a; T1 s1;
byte b; T2 s2;
} T1;
initial
typedef struct begin
{ sl = {1, 1};
byte c;
bit d; s2 = T2°(sl);
} T2;

:}/ ‘\, e

D\/ <075 T

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 37

Type Parameter Substitution

class C #(type T = ...);

typedef T::T2 T3; <:

T::cC;

static const Int d

endclass

class D;
typedef C #(C1l) T;

static const Int e

T

DV o

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 38

Protected Constructor

class C;

> protected function

endfunction

DV o

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved.

new,;

39

Array-to-Queue Assignment

“define UVM_DA_TO_QUEUE(Q,DA)\
W 20, foreach (DA[1dx]) Q.push_back(DA[1dx]);
2

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 40

lterator Index Query

int a[];
int q[$];
a="{0,3,2,1, 4,5,7, 8}

g = a.find with (1tem == 1tem.index);

DV o

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 41

Statement Labels

»j _k: e > loop: repeat (8);

end: blk

DV o

Design & Verification Conference & Exhibitio Copyright © 2012 by Doulos. All rights reserved. 42

Assignment as Side Effect

int i; T T

it ((i = 99))
$Sdisplay("'i is 99");

DvCori™

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 43

DvCori™

Design & Verification Conference & Exhibition

final
$display("'The End at ", $time);

Copyright © 2012 by Doulos. All rights reserved.

44

begin
fork
#44
fork
#125;
#14;
join_none
#H2;
join_none

wait fork; e

$display($time); 44 or 1257
end

DV o

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 45

$get_coverage

DV o

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 46

Empty Coverpoint

rand longint data;

covergroup cg;
coverpoint data {} é; ,,*__zi?gj

endgroup

DvCori™

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 47

std::randomize

begin

byte unsigned a, b, c;

assert(randomize(a, b, c)); <i::

assert(std::randomize(a, b, c));

DvCori™

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 48

Prototype in modport

modport mp (import function void hello());

modport mp (import hello);

Dy o=

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 49

® Keep modules and classes separate?

® No need for unpacked structs, unions, or arrays

(other than Verilog memories)?

DvCori™

Design & Verification Conference & Exhibitio Copyright © 2012 by Doulos. All rights reserved. 50

Conclusions

® Do use
® Verilog!
® Synthesis-friendly RTL features
® Classes (from UVM)
® C-like features: data types and statements (from UVM)
® Interfaces, virtual interfaces, clocking blocks

® Assertions, coverage, constraints

Design & Verification Conference & Exhibition Copyright © 2012 by Doulos. All rights reserved. 51

UVM has tamed the beast!

: J
' . 52
S

	Slide Number 1
	SystemVerilog
	SystemVerilog
	SystemVerilog
	Several Languages in One?
	SystemVerilog
	Syntax Definition - VHDL
	Syntax Definition - VHDL
	Syntax Definition - SystemVerilog
	Syntax Definition - SystemVerilog
	Syntax Definition
	Hard to Learn
	Enter UVM
	UVM
	Easier SystemVerilog Approach
	Used by the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Idioms from the UVM BCL
	Used by UVM Applications
	Pitfalls
	Pitfalls
	Continuous Assignment to Handle
	Handles as Ports
	Hierarchical Reference to Handle
	Hierarchical Reference to Parameter
	Objects as Struct Members
	Unpacked Unions
	Bitstream Casting
	Type Parameter Substitution
	Protected Constructor
	Array-to-Queue Assignment
	Iterator Index Query
	Statement Labels
	Assignment as Side Effect
	final
	wait fork
	$get_coverage
	Empty Coverpoint
	std::randomize
	Prototype in modport
	Themes?
	Conclusions
	Conclusions

