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Disclaimer

• Subject to changes and errors. The information given in this document 
only contains general descriptions and/or performance features which 
may not always specifically reflect those described, or which may 
undergo modification in the course of further development of the 
products. The requested performance features are binding only when 
they are expressly agreed upon in the concluded contract.

• All product designations, product names, etc. may contain trademarks 
or other rights of Siemens AG, its affiliated companies or third parties. 
Their unauthorized use may infringe the rights of the respective owner.
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Code Samples Disclaimer

• Code samples in this presentation are for illustrative purposes only and 
are not to be considered complete and compilable.  Simplifications have 
been made for the sake of clarity and brevity.  For example, type casts, 
declarations, and irrelevant parameters have been removed to allow for 
a clearer presentation of the underlying concepts and algorithms.  Not 
all code samples will be presented at DVCon Europe on October 29, 
2019 due to time constraints.  The complete code set is intended to be 
made available as an example with the “Catapult” high-level synthesis 
product at some time after the presentation at DVCon. 
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Agenda

• The need for early performance verification

• What is MatchLib?

• Communication channels in MatchLib

• Modeling AXI in MatchLib

• A real-world example, the “wake word”
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YOLO1 v3 as a low-complexity use case for a High-
level Synthesis flow to HW-accelerate AI workloads 

HLS-ready C++ library for Mentor Catapult

• Systolic array based NN inference accelerator

• Optimization for max-pooling

• Flexible reduced precision fixed-point data format

• Supporting FPGA and ASIC/SoC

AI optimization and exploration framework

• Graph optimization 

• Retraining to recover reduced precision losses

• Exploration of optimized accelerator configuration for defined 
performance and resource constraints
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1- ‘You only look once: Unified, real-time object detection’, CVPR 2016, Redmon et al
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Output-stationary Systolic Array micro-architecture 
for CNN acceleration
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Systolic Array 

• implements fine-grained mix of arithmetic, memory and logic resources

• keeps routing quite local

• is highly scalable
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System performance depends on more 
than just the Systolic Array kernel performance

Pre-processing

• Interfacing with the camera 

and frame format

• Extracting frames to 

process with CNN

• Scaling resolution of 

camera to CNN

Processing the CNN

• Tiling the layers

• Managing the data to be 

transferred back and forth

• Non-convolution layers

Post-processing

• Map bounding-boxed into 

frames

• Scale resolution to be 

displayed
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A complex architecture embeds the Systolic Array Kernel
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SCVerify automates verification of implementation 
and performance analysis

Functional Verification 

• to verify functional correctness of accelerator kernel algorithm 

• at high simulation performance

SCVerify

C++ Model

RTL Model

==

Verification of Implementation

• to verify non-functional correctness on top of 

functional correctness

• verification of “kernel-performance”

© Accellera Systems Initiative 12



System-level models integrating the Systolic Array 
kernel uncover potential parallelism and bottlenecks 

Linux

App SW

+ UVM Connect

TLM-2-AXI

C++ Model

or

RTL Model
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Performance of individual paths vary to some extent 
depending on layer configuration of CNN

Detailed analysis of performance of individual paths

• Clock cycle accurate for RTL

• Full visibility into all details of “HLS-part” in RTL

• Final performance of implementation only available 
after Place&Route

• Approximate timing for compute subsystem modeled 
in QEMU

Identification and optimization of parallel paths

• Considering modeling uncertainties of high-level 
models

• Extending with layer-based scaling approach for all 
configurations

• Reduced order model as input for automated 
architecture exploration (design space exploration)

Tfin

Tfout

Tcalc

Tsort

Feature in n+1 n+2 n+3

Sort features n+1 n+2 n+3

Calculate n n+1 n+2

Feature out n n+1 n+2
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Some performance figures for simulation 
of a “2-tiles-sequence”

Module-level simulation performance is quite high

• 10min simulation for 4ms real-time

• ~150.000x slower than real-time

System-level simulation performance 

• 1h48min for 119ms real-time

• ~6.500.000x slower than real-time

• ~40x slower than module-level simulation
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Key takeaways

• System performance depends on module-level performance 
and system integration.

• Multi-disciplinary (HW, SW and application) expertise is 
required!

• Either micro-architecture expertise or optimized reference 
designs/libraries crucial for HLS implementation flows.

• Abstract system-level simulation models are key for analysis 
and optimization of system integration and parallelism in 
heterogeneous compute systems

1

2
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What is MatchLib?

• Modular Approach To Circuits and Hardware Library

• Developed by nVidia Labs while creating a machine learning accelerator 

– Needed a more abstract method for simulating system behavior 

– Needed to be able to closely (but not exactly) model performance

• Needed to evaluate many different architectures for performance and 
power

– Could not afford to design them all in RTL

– Could not afford to be significantly wrong

© Accellera Systems Initiative 18



What is MatchLib?

• Library of reusable models and functions

– Encapsulate verified functionality

– Encapsulate QoR optimized implementation

– Heavy use of templates and parameterization

• Common HW components modeled as

– C++ functions: datapath description

– C++ classes: state updating methods

– SystemC modules: self contained modules

• Testbench components

© Accellera Systems Initiative 19



MatchLib Addresses Complexity and Risk
• The complexity/risk in many of today’s advanced HW designs has shifted from the past.
• Today’s HW designs often process huge sets of data, with large intermediate results.

– Machine Learning
– Computer Vision
– 5G Wireless

• The design of the memory/interconnect architecture and the management of data 
movement in the system often has more impact on power/performance than the design of 
the computation units themselves.

• Evaluating and verifying memory/interconnect architecture at RTL level is not feasible:
– Too late in design cycle
– Too much work to evaluate multiple candidate architectures.

• The most difficult/costly HW (& HW/SW) problems are found during system integration. 
– If integration first occurs in RTL, it is very late and problems are very costly.
– MatchLib lets integration occur early when fixing problems is much cheaper. 

© Accellera Systems Initiative 20



Key Parts of MatchLib

• “Connections”
– Synthesizable Message Passing Framework 

– SystemC/C++ used to accurately model concurrent IO that synthesized HW will have

– Automatic stall injection enables interconnect to be stress tested at C++ level

• Parameterized AXI4 Fabric Components
– Router/Splitter

– Arbiter

– AXI4 <-> AXI4Lite

– Automatic burst segmentation and last bit generation

• Parameterized Banked Memories, Crossbar, Reorder Buffer, Cache

• Parameterized NOC components

© Accellera Systems Initiative 21



MatchLib Channels

• A set of classes for passing messages 

• Channel types
– Combinational

– Bypass

– Pipeline

– Buffer

– Network (NoC)

• Functions
– Push(), PushNB()

– Pop(), PopNB()

© Accellera Systems Initiative 22



Timing Accuracy Across Abstractions 

• One model for simulation, another for synthesis

– To properly model timing, non-synthesizable constructs are needed

– 2 implementations are used for the base classes
• All protocols built on this will inherit these characteristics

© Accellera Systems Initiative 23
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MatchLib AXI4

• Class that models the AXI-4 protocol using a combinatorial channel

• Configurable for 
– Width of address, data, ID, and user fields 

– Optional read response and “last” signal

• Access classes
– axi::axi4<Cfg>::read::master and axi::axi4<Cfg>::read::slave 

– axi::axi4<Cfg>::write::master and axi::axi4<Cfg>::write::slave 

• Current version only performs full bus-width accesses
– We extended these class with read_xx and write_xx methods for partial bus 

width accesses 

© Accellera Systems Initiative 24



AXI4 Bus Fabric using Matchlib

© Accellera Systems Initiative 25
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AXI4 Bus Fabric using Matchlib – Test #0
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AXI4 Bus Fabric Test #0 Logs
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AS SystemC

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 0

44 ns top.ram0 ram read  addr: 000000000 len: 0ff

44 ns top.ram0 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram read  addr: 000000000 len: 0ff

304 ns top.ram0 ram read  addr: 000000800 len: 03f

309 ns top.ram1 ram read  addr: 000000800 len: 03f

311 ns top.ram0 ram write addr: 000002800 len: 03f

316 ns top.ram1 ram write addr: 000002800 len: 03f

385 ns top dma_done detected. 1 1

385 ns top start_time: 46 ns end_time: 385 ns

385 ns top axi beats (dec): 320

385 ns top elapsed time: 339 ns

385 ns top beat rate: 1059 ps

385 ns top clock period: 1 ns

425 ns top finished checking memory contents

AS RTL

# 0 s top Stimulus started

# 6 ns top Running FABRIC_TEST # : 0

# 55 ns top/ram0 ram write addr: 000002000 len: 0ff

# 60 ns top/ram1 ram write addr: 000002000 len: 0ff

# 68 ns top/ram0 ram read  addr: 000000000 len: 0ff

# 70 ns top/ram1 ram read  addr: 000000000 len: 0ff

# 340 ns top/ram0 ram write addr: 000002800 len: 03f

# 342 ns top/ram1 ram write addr: 000002800 len: 03f

# 343 ns top/ram0 ram read  addr: 000000800 len: 03f

# 345 ns top/ram1 ram read  addr: 000000800 len: 03f

# 414 ns top dma_done detected. 1 1

# 414 ns top start_time: 55 ns end_time: 414 ns

# 414 ns top axi beats (dec): 320

# 414 ns top elapsed time: 359 ns

# 414 ns top beat rate: 1122 ps

# 414 ns top clock period: 1 ns

# 454 ns top finished checking memory contents



AXI4 Fabric Waveforms
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SystemC

RTL



AXI4 Bus Fabric using Matchlib – Test #1
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Test #1: Concurrently,

DMA0 reads/writes to RAM0 

DMA1 reads from RAM1 and writes to RAM0

Note contention on RAM0 writes



AXI4 Bus Fabric Test #1 Logs
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As SystemC

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 1

44 ns top.ram0 ram read  addr: 000000000 len: 0ff

44 ns top.ram0 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram read  addr: 000000000 len: 0ff

304 ns top.ram0 ram read  addr: 000000800 len: 03f

308 ns top.ram0 ram write addr: 000006000 len: 0ff

560 ns top.ram1 ram read  addr: 000000800 len: 03f

566 ns top.ram0 ram write addr: 000002800 len: 03f

632 ns top.ram0 ram write addr: 000006800 len: 03f

701 ns top dma_done detected. 1 1

701 ns top start_time: 46 ns end_time: 701 ns

701 ns top axi beats (dec): 320

701 ns top elapsed time: 655 ns

701 ns top beat rate: 2047 ps

701 ns top clock period: 1 ns

741 ns top finished checking memory contents

As RTL

# 0 s top Stimulus started

# 6 ns top Running FABRIC_TEST # : 1

# 55 ns top/ram0 ram write addr: 000002000 len: 0ff

# 68 ns top/ram0 ram read  addr: 000000000 len: 0ff

# 70 ns top/ram1 ram read  addr: 000000000 len: 0ff

# 335 ns top/ram0 ram write addr: 000006000 len: 0ff

# 343 ns top/ram0 ram read  addr: 000000800 len: 03f

# 598 ns top/ram1 ram read  addr: 000000800 len: 03f

# 598 ns top/ram0 ram write addr: 000002800 len: 03f

# 670 ns top/ram0 ram write addr: 000006800 len: 03f

# 736 ns top dma_done detected. 1 1

# 736 ns top start_time: 55 ns end_time: 736 ns

# 736 ns top axi beats (dec): 320

# 736 ns top elapsed time: 681 ns

# 736 ns top beat rate: 2128 ps

# 736 ns top clock period: 1 ns

# 776 ns top finished checking memory contents



Wake Word

• Microphone ”listens” for set of phrases that will turn on complete system for 
user interaction
– E.g. “Hey Google!” or “Alexa”

• Needs to be very low power for battery powered systems, as it runs 
continuously

• Example system:
– Processes 1 second of audio data

• 16,000 samples per second

• Processes a rolling sample every 20 milliseconds

– Performs an MFCC to get a spectral signature of the audio sample
• Mel-Frequency Cepstrum Coefficients, energy levels of human audible frequencies

– Uses machine learning techniques to match sample against set of 10 known keywords 
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Wake Word Audio Pre-processing
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Audio input Quantization Integer array

(16k x 16 bits)

Spectral Array

MFCC()

Float array

(128 x 40 x 32-bits)

-4   0    4    7

To Neural Network 

as feature map for 

training and inferencing

0.123  0.456   -0.872  0.567

0.324  0.547   0.376   -0.231

0.846  0.183   0.834   0.937

0.625  0.737   0.746   0.827



Wake Word Neural Network
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conv2d
+bias

relu
matmul
+ bias

matmul
+ bias

matmul
+ bias

mfcc of 1000 ms
audio sample
128x40 words

128x8 kernel
186 channels

6138x128 matrix 128x128 matrix 128x10 matrix

soft-
max

Total weights: 1,000,186 words

MAC operations: 7,088,640

MACs/second: 354,432,200 (assuming 20 ms cycle time)

'cnn-one-fstride4’ from 'Convolutional Neural Networks for Small-footprint Keyword Spotting':

http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf

89% 
computational 

load

78% data 
transfer load



Wake Word Design
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RISC-V
Rocket Core

Memory

Wake Word 
Inference

Bus Fabric

mfcc block
(FFT) 

UART

Screen  

Keyboard
=========

=======

Rocket core can be RTL or “Spike” model



System Modeling
• Stimulus

– Pre-sampled waveform of 2 minutes (6000 inferences)

• Not modeling mfcc(), other than calling a C function
– A complete analysis of mfcc warrants a complete tutorial on it’s own
– Assumed to be instantaneous and zero power ☺

• System C models for 
– Bus Fabric – using MatchLib connections for AXI4 
– Accelerator
– Memory 

• C models for
– Rocket core (SPIKE)
– UART
– MFCC and audio input (with System C interface to put spectral data into system memory)
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Bus Fabric Declaration
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Type declaration 
for the AXI fabric 

class

3 masters

2 slaves



Top Level Design
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Fabric 
Instantiation

Slaves

Masters



Neural Network 
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Compute Inference
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Weights, feature map and 
intermediate results all in 

one memory instance



Memory Map Struct Overlays
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Memory Accesses
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Memory access 
routines, drives 
AXI bus cycles

Function that 
accesses AXI 

memory



Naïve Implementation

• Take a software implementation and directly convert it to SystemC

– No accommodation for data flows or caching

– No pipelining or explicit parallelism

• Each inference runs 2.5 million AXI transactions

– Not burst transactions, one word access per bus cycle

– Does not use full width of data bus

• Requires 2.9 GHz to do real-time inferencing

• Solution:

– Get 16 adjacent data elements at a time and cache locally for computations
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Cached Operation
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No change to 
function signature

Local buffers

No data or 
data-path 

dependencyOriginal code

Cached version

Change needs to be done for all 

operations, convolution, matrix multiply, etc.



Cached Operation

• Instead of moving each data word as it is needed, a burst of 16 words is 
performed and it is cached locally

• Improves performance significantly
– Approximately 19X faster, from improved bus utilization

• Memory is the bottleneck
– Features, weights, and intermediate results are all stored in AXI memory

– 64 bits per clock is maximum data movement

• Solution:
– Move intermediate results and weight memory off AXI bus to local connection to 

accelerator

– With no arbitration, expanding memory width is not too expensive
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Wake Word Design
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Instantiate Additional Memories
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Weight memory 
and scratchpad

Not connected to 
AXI bus 



Define Memory Regions

© Accellera Systems Initiative 47

Memory regions 
now independent

Original code Local memories



Memory Access Routines
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Memory specific 
access function

Reads now 
happen in parallel

Burst 
accesses



Banked Memories 

• Data for weights and intermediate results are accessed over wider 
buses, and in separate memories, not arbitrated

– Performance ~6X faster 

• Different widths of memories and size of caches can be explored for 
area/performance tradeoffs

• Further optimization can be achieved by structural pipelining of the 
algorithm
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Create Separate Threads

• Convolution consumes 75% of the time for an inference
– Can be pipelined with remaining calculations

• Move convolution to a separate thread
– Separate threads enables HLS to synthesize pipelined implementation

– Break weight and scratchpad memories into 2 separate regions to avoid contention

– Create “ping-pong” buffers between convolution and matrix multiplies

– Add sync signals between threads
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Pipelined Inferencing
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Separate weight 
and scratch 
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Summary of Results

• All weights in main memory, naïve algorithm, no caching

– ~2.9 GHz needed to perform real-time

• 16 word bursts, local caching of data

– ~157 MHz

• Move coefficient data to local memory (local to inference block)

– ~33 MHz

• Pipeline convolution with matrix multiplies

– ~26 MHz 

– Latency increases from 20 ms to 27 ms
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SystemC to RTL Synthesis

• High level synthesis converts abstract C or SystemC to synthesizable RTL

• MatchLib connection and AXI components are synthesizable through 
Catapult HLS compiler

– Algorithmic code describing data transformations can be synthesized too

• Resulting RTL will closely match performance of the SystemC

– MatchLib communications are clock cycle accurate

– System is assumed to be I/O bound

• nVidia saw SystemC performance at +/- 3% compare to RTL

– While simulation run-times were 30 times faster1
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1 - A Modular Digital VLSI Flow for High-Productivity SoC Design, DAC 2018, Khailany, et al 



Simulation Performance vs. RTL
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Power Consumption

• In a MatchLib flow HSL synthesis can be used to create an equivalent 
design at any time.

– This can be run through RTL synthesis and place and route to perform power 
analysis using traditional EDA tools

• Once a candidate architecture is created, power estimates can be 
derived without an expensive, time consuming RTL design cycle 
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Peak Power Analysis
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Reduced Precision

• Reduces amount of data that needs to be moved
– For wake word algorithm 3 MB for 32 bit weights becomes 0.75 MB for 8 bit weights

• Reduces size of operations (multipliers)
– 8 bit multipliers are about 1/16th the area of 32 bit multipliers, and consume 1/20th the power

• There is a corresponding reduction in power
– For both data movement and calculations
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*NVIDIA 2017



Accuracy vs. Bit Width for CNN

• For ResNET
– 32-bit weights improves accuracy by less than 0.1% over 8-bit weights
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Power Optimization Options

• Move from floating point to fixed point math operations

• Reduce bit representation of weights and features

• Reduce number of samples in spectral data

• Reduce number of frequencies computed in spectral data

• Reduce number of inference per second
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This work will show up in a future tutorial



MatchLib

• Based on a powerful message passing framework

• Allows meaningful performance measurement of a system early in the design 
cycle

• With abstract models for computational elements, delivers fast simulation 
performance 

• With HLS enables an automated path to RTL implementation 
– Ensuring consistency between high level simulations and RTL

– Facilitating power analysis and optimization 

• Open source

• Proven
– Used by nVidia during the development of AI hardware accelerators 
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MATCHLIB ARCHITECTURAL EXAMPLE

Bonus Material
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Simple Example of HW Architectural Model using SC + Matchlib
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spark_plug_producer
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produces new spark_plug every 3-6 seconds

Source: Mentor Graphics, 2019



engine_producer
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produces new engine every 20 seconds

Source: Mentor Graphics, 2019



chassis_producer

© Accellera Systems Initiative 69

produces new chassis every 25 seconds

Source: Mentor Graphics, 2019



car_consumer
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consumes cars as quickly as possible

Source: Mentor Graphics, 2019



Simple car_factory
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Source: Mentor Graphics, 2019



spark_plug_robot
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Consumes 4 spark_plugs and 1 unfinished engine

Produces finished_engine after 60 seconds

After every other engine, 75% of time

needs 60 seconds of maintenance (ie idle time)

Source: Mentor Graphics, 2019



engine_install_robot
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Consumes 1 chassis and 1 finished_engine

Produces car after 30 seconds

Source: Mentor Graphics, 2019



Running simple car_factory
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Goal is to produce each car in smallest amount of time



Running simple car_factory
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Overutilized

Underutilized



Sequential car_factory
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Source: Mentor Graphics, 2019



Running sequential car_factory
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Car production time got worse!



Running sequential car_factory
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Worse!

Worse!



How do we fix the car_factory architecture?
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• Primary problem in “simple” car_factory is overutilization of 
spark_plug_robot

• Obvious solution: add another spark_plug_robot



concurrent car_factory
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spark_plugs_split and engines_split
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Source: Mentor Graphics, 2019



engines_merge
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Source: Mentor Graphics, 2019



Running concurrent car_factory
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Big improvement in car production time!



Running concurrent car_factory
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Better utilization

Both spark_plug_robots

busy at same time

Output order of engines 

and plugs no longer matches

input order


