
Early Performance Verification of Embedded
Inferencing Systems using open-source SystemC

NVIDIA MatchLib

Herbert Taucher, Siemens CT

Russell Klein, Mentor

© Accellera Systems Initiative 1

Disclaimer

• Subject to changes and errors. The information given in this document
only contains general descriptions and/or performance features which
may not always specifically reflect those described, or which may
undergo modification in the course of further development of the
products. The requested performance features are binding only when
they are expressly agreed upon in the concluded contract.

• All product designations, product names, etc. may contain trademarks
or other rights of Siemens AG, its affiliated companies or third parties.
Their unauthorized use may infringe the rights of the respective owner.

© Accellera Systems Initiative 2

Code Samples Disclaimer

• Code samples in this presentation are for illustrative purposes only and
are not to be considered complete and compilable. Simplifications have
been made for the sake of clarity and brevity. For example, type casts,
declarations, and irrelevant parameters have been removed to allow for
a clearer presentation of the underlying concepts and algorithms. Not
all code samples will be presented at DVCon Europe on October 29,
2019 due to time constraints. The complete code set is intended to be
made available as an example with the “Catapult” high-level synthesis
product at some time after the presentation at DVCon.

© Accellera Systems Initiative 3

Agenda

• The need for early performance verification

• What is MatchLib?

• Communication channels in MatchLib

• Modeling AXI in MatchLib

• A real-world example, the “wake word”

© Accellera Systems Initiative 4

Performance Analysis for HLS Design Flow
1

2

3

Motivation for performance analysis

Introduction to use case

Module/kernel level vs system level performance aspects

Module/kernel level performance analysis

System level performance analysis

Summary4

YOLO1 v3 as a low-complexity use case for a High-
level Synthesis flow to HW-accelerate AI workloads

HLS-ready C++ library for Mentor Catapult

• Systolic array based NN inference accelerator

• Optimization for max-pooling

• Flexible reduced precision fixed-point data format

• Supporting FPGA and ASIC/SoC

AI optimization and exploration framework

• Graph optimization

• Retraining to recover reduced precision losses

• Exploration of optimized accelerator configuration for defined
performance and resource constraints

0

10

20

30

40

50

60

70

80

0G

20G

40G

60G

80G

100G

120G

140G

160G

GOperations

of CONV Layers

of FC Layers

© Accellera Systems Initiative 6

1- ‘You only look once: Unified, real-time object detection’, CVPR 2016, Redmon et al

http://pjreddie.com/darknet/yolo

Output-stationary Systolic Array micro-architecture
for CNN acceleration

7

w27 w30 w33

w29

w30

w32 w34

w33 w35

w9 w12 w15

w10

w11

w13 w16

w14 w17

i16 i20 i24 i28

i17

i33

i34

i21 i25 i29

38 43 i30

39 44 i31

i0 i4 i8 i12

i1

i2

i3

i5 i9 i13

i6 i10 i14

i7 i11 i15

w0 w3 w6

w1

w2

w4 w7

w5 w8

w18 w21 w24

w19

w20

w22 w25

w23 w26

o4 o6

o5 o7
o0 o2

o1 o3

∗ =>

o0=w0 w1x +i0 x +i1 ... + i26xw17x + x +i2 i4w2 w3

S
y
s
to

lic
 A

rr
a

y

o0 o4

o1 o5

i0i1i2i4

i1i2i3i5i6

w0

w1

w2

w3

w4

w17

w18

w19

w20

w21

w22

w35

Input Data

Weights

i5i26

i27

o2

o3

i4i5i6i8i9i30

i5i6i7i9i10i31

o6

o7

Systolic Array

• implements fine-grained mix of arithmetic, memory and logic resources

• keeps routing quite local

• is highly scalable

© Accellera Systems Initiative

0

1

2

…

15

15…21

0

1

2

…

15

Output FIFOs

C
o
l
F

IF
O

s

1

Row FIFOs

sysArray

16x16

System performance depends on more
than just the Systolic Array kernel performance

Pre-processing

• Interfacing with the camera

and frame format

• Extracting frames to

process with CNN

• Scaling resolution of

camera to CNN

Processing the CNN

• Tiling the layers

• Managing the data to be

transferred back and forth

• Non-convolution layers

Post-processing

• Map bounding-boxed into

frames

• Scale resolution to be

displayed

© Accellera Systems Initiative 8

A complex architecture embeds the Systolic Array Kernel

0

1

2

…

15

fe
tc

h
 i

n
p

u
t

fe
at

u
re

s

p
in

g-
p

o
n

g
R

A
M

In
p

u
t

fe
at

u
re

 R
A

M

in_stream_row row_Buffer

15…21

0

1

2

…

15

Weight RAM

Output FIFOs

C
o
l
F

IF
O

s

O
u

tp
u

t
fe

at
u

re
 R

A
M

ping-pong RAM

C
o
l_

B
u
ff

e
r

sysArray_top

st
o

re
 o

u
tp

u
t

fe
at

u
re

s

out_stream

fetch weights

in
_
s
tr

e
a
m

_
c
o
l

configuration
register map

1

Row FIFOs

sysArray

16x16

AXI Network-on-Chip

AXI NoC

PS – Processor Subsystem

PL – Programable Logic

DDR
MemoryDDRC

Cortex A53Cortex A53Cortex A53Cortex A53 Cortex A53Cortex R5

Input feature

data stream

Weights

data stream

Output feature

data stream

SW Driver

© Accellera Systems Initiative 9

Xilinx Zynq UltraSCALE

Performance Analysis for HLS Design Flow
1

2

3

Motivation for performance analysis

Introduction to use case

Module/kernel level vs system level performance aspects

Module/kernel level performance analysis

System level performance analysis

Summary4

0

1

2

…

15

fe
tc

h
 i

n
p
u
t
fe

a
tu

re
s

p
in

g
-p

o
n
g
 R

A
M

In
p
u
t

fe
a
tu

re
 R

A
M

in_stream_row row_Buffer

1
5

…21

0

1

2

…

15

Weight RAM

Output FIFOs

C
o
l
F

IF
O

s

O
u
tp

u
t
fe

a
tu

re
 R

A
M

ping-pong RAM

C
o

l_
B

u
ff

e
r

sysArray_top

s
to

re
 o

u
tp

u
t
fe

a
tu

re
s

out_stream

fetch w eights

in
_

s
tr

e
a

m
_

co
l

configuration

register map

1

Row FIFOs

sysArray

16x16

SCVerify automates verification of implementation
and performance analysis

Functional Verification

• to verify functional correctness of accelerator kernel algorithm

• at high simulation performance

SCVerify

C++ Model

RTL Model

==

Verification of Implementation

• to verify non-functional correctness on top of

functional correctness

• verification of “kernel-performance”

© Accellera Systems Initiative 12

System-level models integrating the Systolic Array
kernel uncover potential parallelism and bottlenecks

Linux

App SW

+ UVM Connect

TLM-2-AXI

C++ Model

or

RTL Model

0

1

2

…

15

fe
tc

h
 i

n
p
u
t
fe

a
tu

re
s

p
in

g
-p

o
n
g
 R

A
M

In
p
u
t

fe
a
tu

re
 R

A
M

in_stream_row row_Buffer

1
5

…21

0

1

2

…

15

Weight RAM

Output FIFOs

C
o
l
F

IF
O

s

O
u
tp

u
t
fe

a
tu

re
 R

A
M

ping-pong RAM

C
o

l_
B

u
ff

e
r

sysArray_top

s
to

re
 o

u
tp

u
t
fe

a
tu

re
s

out_stream

fetch w eights

in
_

s
tr

e
a

m
_

co
l

configuration

register map

1

Row FIFOs

sysArray

16x16

AXI Netw ork-on-Chip

AXI NoC

PS – Processor Subsystem

PL – Programable Logic

DDR
MemoryDDRC

Cortex A53Cortex A53Cortex A53Cortex A53 Cortex A53Cortex R5

© Accellera Systems Initiative 13

https://www.google.at/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjD4JDrzYLlAhXMPOwKHQMYDicQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.accellera.org%2Fimages%2Fdownloads%2Fstandards%2Fsystemc%2FOSCI_SystemC_AMS_Users_Guide.pdf&psig=AOvVaw1K0WmofPVlTBJi6CfCtopc&ust=1570278613973182

0

1

2

…

15

fe
tc

h
 i

n
p
u
t
fe

a
tu

re
s

p
in

g
-p

o
n
g
 R

A
M

In
p
u
t

fe
a
tu

re
 R

A
M

in_stream_row row_Buffer

1
5

…21

0

1

2

…

15

Weight RAM

Output FIFOs

C
o
l
F

IF
O

s

O
u
tp

u
t
fe

a
tu

re
 R

A
M

ping-pong RAM

C
o

l_
B

u
ff

e
r

sysArray_top

s
to

re
 o

u
tp

u
t
fe

a
tu

re
s

out_stream

fetch w eights

in
_

s
tr

e
a

m
_

co
l

configuration

register map

1

Row FIFOs

sysArray

16x16

AXI Netw ork-on-Chip

AXI NoC

PS – Processor Subsystem

PL – Programable Logic

DDR
MemoryDDRC

Cortex A53Cortex A53Cortex A53Cortex A53 Cortex A53Cortex R5

Performance of individual paths vary to some extent
depending on layer configuration of CNN

Detailed analysis of performance of individual paths

• Clock cycle accurate for RTL

• Full visibility into all details of “HLS-part” in RTL

• Final performance of implementation only available
after Place&Route

• Approximate timing for compute subsystem modeled
in QEMU

Identification and optimization of parallel paths

• Considering modeling uncertainties of high-level
models

• Extending with layer-based scaling approach for all
configurations

• Reduced order model as input for automated
architecture exploration (design space exploration)

Tfin

Tfout

Tcalc

Tsort

Feature in n+1 n+2 n+3

Sort features n+1 n+2 n+3

Calculate n n+1 n+2

Feature out n n+1 n+2

© Accellera Systems Initiative 14

Some performance figures for simulation
of a “2-tiles-sequence”

Module-level simulation performance is quite high

• 10min simulation for 4ms real-time

• ~150.000x slower than real-time

System-level simulation performance

• 1h48min for 119ms real-time

• ~6.500.000x slower than real-time

• ~40x slower than module-level simulation

Linux

App SW

+ UVM Connect

TLM-2-AXI

C++ Model

or

RTL Model

0

1

2

…

15

fe
tc

h
 i

n
p
u
t
fe

a
tu

re
s

p
in

g
-p

o
n
g
 R

A
M

In
p
u
t

fe
a
tu

re
 R

A
M

in_stream_row row_Buffer

1
5

…21

0

1

2

…

15

Weight RAM

Output FIFOs

C
o
l
F

IF
O

s

O
u
tp

u
t
fe

a
tu

re
 R

A
M

ping-pong RAM

C
o

l_
B

u
ff

e
r

sysArray_top

s
to

re
 o

u
tp

u
t
fe

a
tu

re
s

out_stream

fetch w eights

in
_

s
tr

e
a

m
_

co
l

configuration

register map

1

Row FIFOs

sysArray

16x16

AXI Netw ork-on-Chip

AXI NoC

PS – Processor Subsystem

PL – Programable Logic

DDR
MemoryDDRC

Cortex A53Cortex A53Cortex A53Cortex A53 Cortex A53Cortex R5

0

1

2

…

15

fe
tc

h
 i

n
p
u
t
fe

a
tu

re
s

p
in

g
-p

o
n
g
 R

A
M

In
p
u
t

fe
a
tu

re
 R

A
M

in_stream_row row_Buffer

1
5

…21

0

1

2

…

15

Weight RAM

Output FIFOs

C
o
l
F

IF
O

s

O
u
tp

u
t
fe

a
tu

re
 R

A
M

ping-pong RAM

C
o

l_
B

u
ff

e
r

sysArray_top

s
to

re
 o

u
tp

u
t
fe

a
tu

re
s

out_stream

fetch w eights

in
_

s
tr

e
a

m
_

co
l

configuration

register map

1

Row FIFOs

sysArray

16x16

SCVerify

C++ Model

RTL Model

==

© Accellera Systems Initiative 15

Performance Analysis for HLS Design Flow
1

2

3

Motivation for performance analysis

Introduction to use case

Module/kernel level vs system level performance aspects

Module/kernel level performance analysis

System level performance analysis

Summary4

Key takeaways

• System performance depends on module-level performance
and system integration.

• Multi-disciplinary (HW, SW and application) expertise is
required!

• Either micro-architecture expertise or optimized reference
designs/libraries crucial for HLS implementation flows.

• Abstract system-level simulation models are key for analysis
and optimization of system integration and parallelism in
heterogeneous compute systems

1

2

© Accellera Systems Initiative 17

What is MatchLib?

• Modular Approach To Circuits and Hardware Library

• Developed by nVidia Labs while creating a machine learning accelerator

– Needed a more abstract method for simulating system behavior

– Needed to be able to closely (but not exactly) model performance

• Needed to evaluate many different architectures for performance and
power

– Could not afford to design them all in RTL

– Could not afford to be significantly wrong

© Accellera Systems Initiative 18

What is MatchLib?

• Library of reusable models and functions

– Encapsulate verified functionality

– Encapsulate QoR optimized implementation

– Heavy use of templates and parameterization

• Common HW components modeled as

– C++ functions: datapath description

– C++ classes: state updating methods

– SystemC modules: self contained modules

• Testbench components

© Accellera Systems Initiative 19

MatchLib Addresses Complexity and Risk
• The complexity/risk in many of today’s advanced HW designs has shifted from the past.
• Today’s HW designs often process huge sets of data, with large intermediate results.

– Machine Learning
– Computer Vision
– 5G Wireless

• The design of the memory/interconnect architecture and the management of data
movement in the system often has more impact on power/performance than the design of
the computation units themselves.

• Evaluating and verifying memory/interconnect architecture at RTL level is not feasible:
– Too late in design cycle
– Too much work to evaluate multiple candidate architectures.

• The most difficult/costly HW (& HW/SW) problems are found during system integration.
– If integration first occurs in RTL, it is very late and problems are very costly.
– MatchLib lets integration occur early when fixing problems is much cheaper.

© Accellera Systems Initiative 20

Key Parts of MatchLib

• “Connections”
– Synthesizable Message Passing Framework

– SystemC/C++ used to accurately model concurrent IO that synthesized HW will have

– Automatic stall injection enables interconnect to be stress tested at C++ level

• Parameterized AXI4 Fabric Components
– Router/Splitter

– Arbiter

– AXI4 <-> AXI4Lite

– Automatic burst segmentation and last bit generation

• Parameterized Banked Memories, Crossbar, Reorder Buffer, Cache

• Parameterized NOC components

© Accellera Systems Initiative 21

MatchLib Channels

• A set of classes for passing messages

• Channel types
– Combinational

– Bypass

– Pipeline

– Buffer

– Network (NoC)

• Functions
– Push(), PushNB()

– Pop(), PopNB()

© Accellera Systems Initiative 22

Timing Accuracy Across Abstractions

• One model for simulation, another for synthesis

– To properly model timing, non-synthesizable constructs are needed

– 2 implementations are used for the base classes
• All protocols built on this will inherit these characteristics

© Accellera Systems Initiative 23

A Modular Digital VLSI Flow for High-Productivity SoC Design, DAC 2018, Khailany, et al

MatchLib AXI4

• Class that models the AXI-4 protocol using a combinatorial channel

• Configurable for
– Width of address, data, ID, and user fields

– Optional read response and “last” signal

• Access classes
– axi::axi4<Cfg>::read::master and axi::axi4<Cfg>::read::slave

– axi::axi4<Cfg>::write::master and axi::axi4<Cfg>::write::slave

• Current version only performs full bus-width accesses
– We extended these class with read_xx and write_xx methods for partial bus

width accesses

© Accellera Systems Initiative 24

AXI4 Bus Fabric using Matchlib

© Accellera Systems Initiative 25

AXI4 Router/

Splitter

AXI4 Router/

Splitter

AXI4

Arbiter

AXI4

Arbiter
DMA0

DMA1
AXI4 Router/

Splitter

AXI4 Fabric

RAM0

RAM1

CPU

Blue boxes are Matchlib

Components

Address Map

0x00000

0x7FFFF

0x80000

0x8FFFF

AXI4 Bus Fabric using Matchlib – Test #0

© Accellera Systems Initiative 26

AXI4 Router/

Splitter

AXI4 Router/

Splitter

AXI4

Arbiter

AXI4

Arbiter
DMA0

DMA1
AXI4 Router/

Splitter

AXI4 Fabric

RAM0

RAM1

CPU

Test #0: Concurrently,

DMA0 reads/writes to RAM0

DMA1 reads/writes to RAM1

AXI4 Bus Fabric Test #0 Logs

© Accellera Systems Initiative 27

AS SystemC

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 0

44 ns top.ram0 ram read addr: 000000000 len: 0ff

44 ns top.ram0 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram read addr: 000000000 len: 0ff

304 ns top.ram0 ram read addr: 000000800 len: 03f

309 ns top.ram1 ram read addr: 000000800 len: 03f

311 ns top.ram0 ram write addr: 000002800 len: 03f

316 ns top.ram1 ram write addr: 000002800 len: 03f

385 ns top dma_done detected. 1 1

385 ns top start_time: 46 ns end_time: 385 ns

385 ns top axi beats (dec): 320

385 ns top elapsed time: 339 ns

385 ns top beat rate: 1059 ps

385 ns top clock period: 1 ns

425 ns top finished checking memory contents

AS RTL

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 0

55 ns top/ram0 ram write addr: 000002000 len: 0ff

60 ns top/ram1 ram write addr: 000002000 len: 0ff

68 ns top/ram0 ram read addr: 000000000 len: 0ff

70 ns top/ram1 ram read addr: 000000000 len: 0ff

340 ns top/ram0 ram write addr: 000002800 len: 03f

342 ns top/ram1 ram write addr: 000002800 len: 03f

343 ns top/ram0 ram read addr: 000000800 len: 03f

345 ns top/ram1 ram read addr: 000000800 len: 03f

414 ns top dma_done detected. 1 1

414 ns top start_time: 55 ns end_time: 414 ns

414 ns top axi beats (dec): 320

414 ns top elapsed time: 359 ns

414 ns top beat rate: 1122 ps

414 ns top clock period: 1 ns

454 ns top finished checking memory contents

AXI4 Fabric Waveforms

© Accellera Systems Initiative 28

SystemC

RTL

AXI4 Bus Fabric using Matchlib – Test #1

© Accellera Systems Initiative 29

AXI4 Router/

Splitter

AXI4 Router/

Splitter

AXI4

Arbiter

AXI4

Arbiter
DMA0

DMA1
AXI4 Router/

Splitter

AXI4 Fabric

RAM0

RAM1

CPU

Test #1: Concurrently,

DMA0 reads/writes to RAM0

DMA1 reads from RAM1 and writes to RAM0

Note contention on RAM0 writes

AXI4 Bus Fabric Test #1 Logs

© Accellera Systems Initiative 30

As SystemC

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 1

44 ns top.ram0 ram read addr: 000000000 len: 0ff

44 ns top.ram0 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram read addr: 000000000 len: 0ff

304 ns top.ram0 ram read addr: 000000800 len: 03f

308 ns top.ram0 ram write addr: 000006000 len: 0ff

560 ns top.ram1 ram read addr: 000000800 len: 03f

566 ns top.ram0 ram write addr: 000002800 len: 03f

632 ns top.ram0 ram write addr: 000006800 len: 03f

701 ns top dma_done detected. 1 1

701 ns top start_time: 46 ns end_time: 701 ns

701 ns top axi beats (dec): 320

701 ns top elapsed time: 655 ns

701 ns top beat rate: 2047 ps

701 ns top clock period: 1 ns

741 ns top finished checking memory contents

As RTL

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 1

55 ns top/ram0 ram write addr: 000002000 len: 0ff

68 ns top/ram0 ram read addr: 000000000 len: 0ff

70 ns top/ram1 ram read addr: 000000000 len: 0ff

335 ns top/ram0 ram write addr: 000006000 len: 0ff

343 ns top/ram0 ram read addr: 000000800 len: 03f

598 ns top/ram1 ram read addr: 000000800 len: 03f

598 ns top/ram0 ram write addr: 000002800 len: 03f

670 ns top/ram0 ram write addr: 000006800 len: 03f

736 ns top dma_done detected. 1 1

736 ns top start_time: 55 ns end_time: 736 ns

736 ns top axi beats (dec): 320

736 ns top elapsed time: 681 ns

736 ns top beat rate: 2128 ps

736 ns top clock period: 1 ns

776 ns top finished checking memory contents

Wake Word

• Microphone ”listens” for set of phrases that will turn on complete system for
user interaction
– E.g. “Hey Google!” or “Alexa”

• Needs to be very low power for battery powered systems, as it runs
continuously

• Example system:
– Processes 1 second of audio data

• 16,000 samples per second

• Processes a rolling sample every 20 milliseconds

– Performs an MFCC to get a spectral signature of the audio sample
• Mel-Frequency Cepstrum Coefficients, energy levels of human audible frequencies

– Uses machine learning techniques to match sample against set of 10 known keywords

© Accellera Systems Initiative 31

Wake Word Audio Pre-processing

© Accellera Systems Initiative 32

Audio input Quantization Integer array

(16k x 16 bits)

Spectral Array

MFCC()

Float array

(128 x 40 x 32-bits)

-4 0 4 7

To Neural Network

as feature map for

training and inferencing

0.123 0.456 -0.872 0.567

0.324 0.547 0.376 -0.231

0.846 0.183 0.834 0.937

0.625 0.737 0.746 0.827

Wake Word Neural Network

© Accellera Systems Initiative 33

conv2d
+bias

relu
matmul
+ bias

matmul
+ bias

matmul
+ bias

mfcc of 1000 ms
audio sample
128x40 words

128x8 kernel
186 channels

6138x128 matrix 128x128 matrix 128x10 matrix

soft-
max

Total weights: 1,000,186 words

MAC operations: 7,088,640

MACs/second: 354,432,200 (assuming 20 ms cycle time)

'cnn-one-fstride4’ from 'Convolutional Neural Networks for Small-footprint Keyword Spotting':

http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf

89%
computational

load

78% data
transfer load

Wake Word Design

© Accellera Systems Initiative 34

RISC-V
Rocket Core

Memory

Wake Word
Inference

Bus Fabric

mfcc block
(FFT)

UART

Screen

Keyboard
=========

=======

Rocket core can be RTL or “Spike” model

System Modeling
• Stimulus

– Pre-sampled waveform of 2 minutes (6000 inferences)

• Not modeling mfcc(), other than calling a C function
– A complete analysis of mfcc warrants a complete tutorial on it’s own
– Assumed to be instantaneous and zero power ☺

• System C models for
– Bus Fabric – using MatchLib connections for AXI4
– Accelerator
– Memory

• C models for
– Rocket core (SPIKE)
– UART
– MFCC and audio input (with System C interface to put spectral data into system memory)

© Accellera Systems Initiative 35

Bus Fabric Declaration

© Accellera Systems Initiative 36

Type declaration
for the AXI fabric

class

3 masters

2 slaves

Top Level Design

© Accellera Systems Initiative 37

Fabric
Instantiation

Slaves

Masters

Neural Network

© Accellera Systems Initiative 38

Compute Inference

© Accellera Systems Initiative 39

Weights, feature map and
intermediate results all in

one memory instance

Memory Map Struct Overlays

© Accellera Systems Initiative 40

Memory Accesses

© Accellera Systems Initiative 41

Memory access
routines, drives
AXI bus cycles

Function that
accesses AXI

memory

Naïve Implementation

• Take a software implementation and directly convert it to SystemC

– No accommodation for data flows or caching

– No pipelining or explicit parallelism

• Each inference runs 2.5 million AXI transactions

– Not burst transactions, one word access per bus cycle

– Does not use full width of data bus

• Requires 2.9 GHz to do real-time inferencing

• Solution:

– Get 16 adjacent data elements at a time and cache locally for computations

© Accellera Systems Initiative 42

Cached Operation

© Accellera Systems Initiative 43

No change to
function signature

Local buffers

No data or
data-path

dependencyOriginal code

Cached version

Change needs to be done for all

operations, convolution, matrix multiply, etc.

Cached Operation

• Instead of moving each data word as it is needed, a burst of 16 words is
performed and it is cached locally

• Improves performance significantly
– Approximately 19X faster, from improved bus utilization

• Memory is the bottleneck
– Features, weights, and intermediate results are all stored in AXI memory

– 64 bits per clock is maximum data movement

• Solution:
– Move intermediate results and weight memory off AXI bus to local connection to

accelerator

– With no arbitration, expanding memory width is not too expensive

© Accellera Systems Initiative 44

Wake Word Design

© Accellera Systems Initiative 45

RISC-V
Rocket Core

Memory

Wake Word
Inference

Bus Fabric

mfcc block
(FFT)

UART

Screen

Keyboard
=========

=======

Weight Memory

Scratchpad

Instantiate Additional Memories

© Accellera Systems Initiative 46

Weight memory
and scratchpad

Not connected to
AXI bus

Define Memory Regions

© Accellera Systems Initiative 47

Memory regions
now independent

Original code Local memories

Memory Access Routines

© Accellera Systems Initiative 48

Memory specific
access function

Reads now
happen in parallel

Burst
accesses

Banked Memories

• Data for weights and intermediate results are accessed over wider
buses, and in separate memories, not arbitrated

– Performance ~6X faster

• Different widths of memories and size of caches can be explored for
area/performance tradeoffs

• Further optimization can be achieved by structural pipelining of the
algorithm

© Accellera Systems Initiative 49

Create Separate Threads

• Convolution consumes 75% of the time for an inference
– Can be pipelined with remaining calculations

• Move convolution to a separate thread
– Separate threads enables HLS to synthesize pipelined implementation

– Break weight and scratchpad memories into 2 separate regions to avoid contention

– Create “ping-pong” buffers between convolution and matrix multiplies

– Add sync signals between threads

© Accellera Systems Initiative 50

mfcc()

compute convolution()

compute_matmul()

Sample N

Sample N

Sample N

Sample N+1 Sample N+2Sample N-1

Sample N+1 Sample N+1

Sample N+1

20 ms

Pipelined Inferencing

© Accellera Systems Initiative 51

Separate weight
and scratch
memories

Separate weight
and scratch
memories

Separate threads

Synchronization
events

Summary of Results

• All weights in main memory, naïve algorithm, no caching

– ~2.9 GHz needed to perform real-time

• 16 word bursts, local caching of data

– ~157 MHz

• Move coefficient data to local memory (local to inference block)

– ~33 MHz

• Pipeline convolution with matrix multiplies

– ~26 MHz

– Latency increases from 20 ms to 27 ms

© Accellera Systems Initiative 52

SystemC to RTL Synthesis

• High level synthesis converts abstract C or SystemC to synthesizable RTL

• MatchLib connection and AXI components are synthesizable through
Catapult HLS compiler

– Algorithmic code describing data transformations can be synthesized too

• Resulting RTL will closely match performance of the SystemC

– MatchLib communications are clock cycle accurate

– System is assumed to be I/O bound

• nVidia saw SystemC performance at +/- 3% compare to RTL

– While simulation run-times were 30 times faster1

© Accellera Systems Initiative 53

1 - A Modular Digital VLSI Flow for High-Productivity SoC Design, DAC 2018, Khailany, et al

Simulation Performance vs. RTL

© Accellera Systems Initiative 54

1

10

100

1000

10000

100000

1000000

Naïve Burst Local Wts Pipelined

Simulation Run Time (seconds)

SystemC RTL

0

20

40

60

80

100

120

Naïve Burst Local Wts Pipelined

System Performance (SystemC=100)

SystemC RTL

SystemC is 23.9 times faster, on average

(untimed SystemC was less than 1

second for all cases)

Performance predicted by SystemC is

averages +/- 11% of RTL results

(2.8% discounting naïve)

HLS optimized out
wait state from single
beat AXI transactions

Power Consumption

• In a MatchLib flow HSL synthesis can be used to create an equivalent
design at any time.

– This can be run through RTL synthesis and place and route to perform power
analysis using traditional EDA tools

• Once a candidate architecture is created, power estimates can be
derived without an expensive, time consuming RTL design cycle

© Accellera Systems Initiative 55

Peak Power Analysis

© Accellera Systems Initiative 56

View Activity
Power

Optimization

Power
Analysis

Collect more
data at hotspots

always@(posedge clk)
q<=d;

always@(posedge clk)
if(en)
q<=d;

Emulation System

Reduced Precision

• Reduces amount of data that needs to be moved
– For wake word algorithm 3 MB for 32 bit weights becomes 0.75 MB for 8 bit weights

• Reduces size of operations (multipliers)
– 8 bit multipliers are about 1/16th the area of 32 bit multipliers, and consume 1/20th the power

• There is a corresponding reduction in power
– For both data movement and calculations

© Accellera Systems Initiative 57

*NVIDIA 2017

Accuracy vs. Bit Width for CNN

• For ResNET
– 32-bit weights improves accuracy by less than 0.1% over 8-bit weights

© Accellera Systems Initiative 58

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Weight size

A
c
c
u
ra

c
y

Power Optimization Options

• Move from floating point to fixed point math operations

• Reduce bit representation of weights and features

• Reduce number of samples in spectral data

• Reduce number of frequencies computed in spectral data

• Reduce number of inference per second

© Accellera Systems Initiative 59

This work will show up in a future tutorial

MatchLib

• Based on a powerful message passing framework

• Allows meaningful performance measurement of a system early in the design
cycle

• With abstract models for computational elements, delivers fast simulation
performance

• With HLS enables an automated path to RTL implementation
– Ensuring consistency between high level simulations and RTL

– Facilitating power analysis and optimization

• Open source

• Proven
– Used by nVidia during the development of AI hardware accelerators

© Accellera Systems Initiative 60

www.mentor.com

Russell Klein
HLS Platform Director

Mentor

8005 SW Boeckman Rd
Wilsonville, OR, 97070
U.S.A.

Phone: +1 503-685-1416
Mobile: +1 971-832-4155

E-mail:
Russell_Klein@mentor.com

Contact page

Mentor.com/catapult

Published by Siemens

Herbert Taucher
Head of Research Group Electronic Design

Corporate Technology

Siemensstraße 90
1210 Vienna
Austria

Phone: +43 51707 37626
Mobile: +43 664 80117 37626

E-mail:
herbert.taucher@siemens.com

Contact page

siemens.com

mailto:herbert.taucher@siemens.com

© Accellera Systems Initiative 64

MATCHLIB ARCHITECTURAL EXAMPLE

Bonus Material

© Accellera Systems Initiative 65

Simple Example of HW Architectural Model using SC + Matchlib

© Accellera Systems Initiative 66

spark_plug_robot

engine_install_robot

finished_engines

car_factory

car_consumer

spark_plug_producer

engine_producer

chassis_producer

DUT

spark_plug_producer

© Accellera Systems Initiative 67

produces new spark_plug every 3-6 seconds

Source: Mentor Graphics, 2019

engine_producer

© Accellera Systems Initiative 68

produces new engine every 20 seconds

Source: Mentor Graphics, 2019

chassis_producer

© Accellera Systems Initiative 69

produces new chassis every 25 seconds

Source: Mentor Graphics, 2019

car_consumer

© Accellera Systems Initiative 70

consumes cars as quickly as possible

Source: Mentor Graphics, 2019

Simple car_factory

© Accellera Systems Initiative 71

Source: Mentor Graphics, 2019

spark_plug_robot

© Accellera Systems Initiative 72

Consumes 4 spark_plugs and 1 unfinished engine

Produces finished_engine after 60 seconds

After every other engine, 75% of time

needs 60 seconds of maintenance (ie idle time)

Source: Mentor Graphics, 2019

engine_install_robot

© Accellera Systems Initiative 73

Consumes 1 chassis and 1 finished_engine

Produces car after 30 seconds

Source: Mentor Graphics, 2019

Running simple car_factory

© Accellera Systems Initiative 74

Goal is to produce each car in smallest amount of time

Running simple car_factory

© Accellera Systems Initiative 75

Overutilized

Underutilized

Sequential car_factory

© Accellera Systems Initiative 76

Source: Mentor Graphics, 2019

Running sequential car_factory

© Accellera Systems Initiative 77

Car production time got worse!

Running sequential car_factory

© Accellera Systems Initiative 78

Worse!

Worse!

How do we fix the car_factory architecture?

© Accellera Systems Initiative 79

• Primary problem in “simple” car_factory is overutilization of
spark_plug_robot

• Obvious solution: add another spark_plug_robot

concurrent car_factory

© Accellera Systems Initiative 80

spark_plugs_split

engine_install_robot

concurrent car_factory

car_consumer

spark_plug_producer

engine_producer

chassis_producer

DUT

engines_split

spark_plug_robot1

spark_plug_robot2
engines_merge

spark_plugs_split and engines_split

© Accellera Systems Initiative 81

Source: Mentor Graphics, 2019

engines_merge

© Accellera Systems Initiative 82

Source: Mentor Graphics, 2019

Running concurrent car_factory

© Accellera Systems Initiative 83

Big improvement in car production time!

Running concurrent car_factory

© Accellera Systems Initiative 84

Better utilization

Both spark_plug_robots

busy at same time

Output order of engines

and plugs no longer matches

input order

