
e/eRM to SystemVerilog/UVM
Mind the Gap, But Don’t Miss the Train

Avidan Efody
Mentor Graphics, Corp.

10 Aba Eban Blvd.
Herzilya 46120, Israel

avidan_efody@mentor.com

Michael Horn
Mentor Graphics, Corp.

1811 Pike Rd.
Longmont, CO 80501, USA

mike_horn@mentor.com

Abstract— With industry trends showing a clear move to
SystemVerilog and the Universal Verification Methodology
(UVM)[1], verification teams using e and the e Reuse
Methodology (eRM) are increasingly looking for a language and
methodology migration path. Though migration does entail risk,
it holds the long-term promise of multi-vendor support, wide
choice of verification IPs and access to a growing market of
complementary tools. Planning carefully and minimizing
productivity setbacks means asking and answering several
questions: Does switching involve redesign of verification
architecture and flow or only a syntax change? Will it be possible
to build random generators, bus functional models (BFMs),
scoreboards, coverage models and tests the “old” way, or a “new”
way will have to be adopted instead? And, in general, what part
of the experience and knowledge acquired over years of using
e/eRM can be reused with the new approach?

Answers to these questions usually won’t be found in training
materials that teach SystemVerilog/UVM from scratch. These
tend to take SystemVerilog/UVM solutions as a given, without
considering the requirements at their base, or comparing them
against alternative solutions such as those provided by e/eRM.
While helpful, pre-UVM papers that compare specific language
features[4] are often limited since they don’t account for the
many e/eRM-like features added on top of SystemVerilog
through UVM. This paper draws on our hands-on experience to
provide an updated map of the gaps between e/eRM and
SystemVerilog/UVM, and of the ways in which those can be
bridged.

Keywords-eRM, UVM, migration, AOP, when inheritance,
random generation, reflection, DUT-testbench connection

I. INTRODUCTION
With SystemVerilog/UVM (Unified Verification

Methdology) gradually coming to dominate the verification
landscape, many e/eRM (e Reuse Methodology) teams are
starting to experiment with it at varying levels of intensity. In
some cases selected individuals might go through a
SystemVerilog/UVM training or be asked to test language
features deemed crucial. In others a pilot project will take
place, to make sure that a list of requirements can be addressed
with SystemVerilog/UVM. If the results are satisfactory, a
management decision might state that, moving forward, all
verification projects should use SystemVerilog/UVM.
Whatever the concrete situation is, there will probably be a
point when a few e/eRM verification engineers are grouped in

front of a whiteboard trying to figure out what a
SystemVerilog/UVM testbench for a specific block should look
like. This paper aims to help them.

The paper is divided in two main parts. The first is a “quick
migration reference” allowing e/eRM teams to detect the
potential hotspots when moving to SystemVerilog/UVM and
focus on those rather than on the more intuitive parts. It lists
e/eRM features alongside their SystemVerilog/UVM
counterparts and estimates how similar/different they are. To
keep things in a practical context, features are ordered
according to the typical testbench parts in which they are most
often used. Hence ports and static hierarchy are discussed as
part of a testbench skeleton section, transaction modeling and
sequences as part of a stimuli section, and packing/unpacking
as part of a drivers and monitors section.

Each testbench part has a dedicated table with the rows
representing features commonly used in it. The rows are color
coded: Green means that there is a high level of similarity
between e/eRM and SystemVerilog/UVM. Yellow means there
are significant technical differences but these don’t tend to
have a profound impact on testbench architecture. Red means
the differences are conceptual and might influence testbench
architecture.

The second part contains in-depth discussions of five
selected areas: AOP (Aspect Oriented Programming), when
inheritance, reflection, memory allocation during
randomization, and connecting testbench to DUT (Device
Under Test) signals. Because they are often perceived as
migration blocking points we see AOP and when inheritance as
entitled to a more in-depth discussion than the table would
allow. Reflection influences many distinct testbench parts, and
its full effects are therefore somewhat hidden when a testbench
is considered block by block. Like reflection the differences in
memory allocation during randomization have horizontal
effects that can be better pointed out when discussed
standalone. However, the stronger incentive for analyzing these
differences in-depth is that they often take e/eRM users by
complete surprise. Finally, connecting testbench to DUT
signals is a relatively technical issue with limited impacts that
usually poses an obstacle to migrating groups all the same.

When writing this paper we always aimed to stay at the
conceptual/architectural level. Technical details are only
discussed insomuch as we think they might influence testbench

structure. Otherwise, readers are simply referred to the detailed
LRM vs. LRM comparisons already in place [2]. Constraints
are an example in point: although there are numerous
syntactical differences in the way they are coded, none of these
really has any high level implications. Therefore, they are not
discussed at any length in this paper. The same goes for soft
constraints, a well-known difference between e and
SystemVerilog, discussed at considerable detail in earlier
publications [4]. We see it as yet another difference that might
have some local affects, but nothing that e/eRM users should
be aware of upfront before they migrate.

It is our firm belief that customers don’t have to figure out
solutions on their own. SystemVerilog, and even more so
UVM, have already gone to considerable length to try and
satisfy sensible requirements that e/eRM users had. There is
absolutely no reason why this healthy process should not go on.
As part of the work on this paper we have created a “migration
kit” that aims to minimize some of the more prominent gaps
between SystemVerilog/UVM and e/eRM. This migration kit”
is comprised of UVM add-ons, coding guidelines and examples
and is publicly available [5]. We refer the readers to various
parts of this kit where relevant.

II. SIMILARITIES AND GAPS BY TESTBENCH PART

TABLE I. TESTBENCH SKELETON

Category e/eRM SystemVerilog/UVM
Static

Hierarchy
A hierarchy of units exists from simulation time 0 to
simulation end and is used to implement interface
drivers, monitors, reference and coverage models, and
in general everything that must be up and running
whenever the DUT is alive.

A hierarchy of uvm_components exists from simulation
time 0 to simulation end and is used to model the same
testbench parts as in e.

The unit hierarchy is randomly generated. The uvm_component hierarchy is sequentially created
and not randomized by default. It is up to the user to
randomize it when required. Special care has to be
taken when the uvm_component topology is itself
partially random (i.e. contains arrays of
uvm_components of random size). See memory
allocation during randomization in the section 3.D,
for an in depth discussion and suggested solutions.

e_path() can be used to get the unique e path to a
specific unit.

Every uvm_component has a unique SystemVerilog
path, but there is no SystemVerilog API to get it (see
reflection in section 3.C for more details). Therefore,
uvm_components also have a string field called name
and the full name of a component serves as its unique
ID. It is usually recommended to keep the UVM name
of a component equal to the SystemVerilog handle
name.

get_enclosing_unit(),get_all_units(),
get_parent_unit(), and other APIs can be used to find
units in the hierarchy.

find()/find_all() can be used to find a uvm_component
by its name. UVM versions of the e/eRM API can be
easily implemented. Examples can be found as part of
our migration kit [5].

Port
connections

e/eRM ports of all kinds are used to connect units in a
reusable way that is decoupled from actual
implementation.

UVM ports of all kinds are used for the exact same
purpose.

e/eRM method_ports are usually used to pass structs
and other information from one unit to another; for
example, to pass a transaction from monitor to
scoreboard.

UVM tlm_analysis_ports/exports are usually used to
pass transactions between uvm_components in the
exact same way. The main difference is that a
method_port could pass a few parameters in parallel,
while a tlm_analysis_port/export can pass only one,
usually a transaction. UVM can be seen as encouraging
a stricter TLM approach than e/eRM. The channels
UVM provides require users to package all information
they want to pass in a single transaction object.

e/eRM event_ports are used to broadcast events. They
are also used to listen to signal level events.

tlm_analysis_ports/exports can be used to broadcast
events. Connecting to DUT signals is done in a
different way with UVM and discussed in detail under
connecting the testbench to DUT signals (section
3.E)

simple_ports are used to pass basic types and to
connect to DUT signals.

tlm_analysis_ports/exports can be used for that as well.
Connecting to DUT signals is discussed under
Connecting the testbench to DUT signals (section
3.E)

buffer_ports buffer data until retrieved by other side. tlm_fifos can be used for the same purpose.

TABLE II. STIMULI

Category e/eRM SystemVerilog/UVM
Transaction
modeling

A transaction is seen as the basic data unit and a
building block for more complex sequences.
Outlining transaction borders and the amount of
control a user will have over its contents via API is
a major part of designing random stimuli for an
interface.

Transactions play the same role in UVM.

when inheritance is often used to model
transactions (i.e. multiple transaction types are
often modeled using a single struct with multiple
when subtypes)

SystemVerilog doesn’t support “when inheritance”.
See when inheritance in section 3.B for in-depth
discussion and alternative approaches.

Random generation and constraints are often used
with transactions.

SystemVerilog’s randomization process is different
than e’s and migrating users should be aware of the
differences. See memory allocation during
randomization in section 3.D for an in depth
discussion and suggested solutions. There are also
many differences with regards to constraints at the
technical/syntactical level, but not at the conceptual
level. For a detailed technical comparison see [2].

Sequences eRM sequences are a way to constrain transactions
in a time/state dependent way. They are used for
system bring up at the initial stages of verification,
for closing coverage holes at the final stages or for
areas that require less randomness such as
initialization.

The use model for sequences in UVM is identical.

Sequence hierarchies can be created to
descend/ascend abstraction layers and implement
protocol stacks.

Same in UVM.

sequence_driver arbitrates between sequences
according to configurable arbitration policy.
get_next_item()/try_next_item() can be used to
retrieve arbitration output from a BFM.

A uvm_sequencer plays the exact same role in UVM
and has an almost identical API.

Sequence body() executes sequence items or
subsequences using do…keeping.

Sequence body() executes items using a similar looking
macro:

`uvm_do_with(item, {constraints})

Or with a straightforward API (easier to debug):

start_item(item); // go through arbitration
item.randomize() with {constraints};
finish_item(item); // wait for item_done()

Virtual
sequences

eRM virtual sequences are used to synchronize
stimuli on independent interfaces.

Same in UVM

Virtual sequence_driver simply holds a list of
sequence_drivers attached to real interfaces.

A virtual sequencer can be created in UVM. However,
there is not a need since, the list of sequencers is
usually stored in a generic sequence that starts sub-
sequences on those sequencers.

A sequence item must be tied to a specific
sequencer prior to execution.

Same in UVM

Test
termination

eRM allows for a test to be terminated when a
specific stimuli has been injected, a number of
elements checked by the scoreboard or certain
coverage reached. This is done through the

UVM implement the exact same mechanism, with the
exact same API.

objection mechanism, allowing each element to
“object” to test end.

TABLE III. DRIVERS AND MONITORS

Category e/eRM SystemVerilog/UVM
Transaction to

signal level
conversion

High level verification requires work with
transactions, while the DUT usually understands
signal level activity. e/eRM has a built in way of
supporting conversion between abstraction levels.

Same in UVM.

pack()/unpack() used to automatically turn all
physical fields into a list of integers of any size.
do_pack(), do_unpack() can be used to customize
default implementation.

The API is similar. Built in implementation supports
only packing into 1/8/32 bit integers, and only big
endian and small endian packing modes.

Automatic implementation is based on e’s
reflection API

Automatic implementation is based on UVM field
macros. See reflection in section 3.C of this paper for
an in-depth discussion.

Connecting
testbench to
DUT signals

e/eRM implements an abstraction layer on top of HDL signals allowing users to refer to those as ordinary
struct fields. This is mainly achieved through an automatic code generation stage that is not a native part of
SystemVerilog/UVM, but can be implemented for them as well. See section 3.E for more details.

TABLE IV. SCOREBOARDS AND COVERAGE

Category e/eRM SystemVerilog/UVM
Reference

model
Coding a reference model is a very specific task.
e/eRM infrastructure doesn’t provide a lot of help
in this area.

Same in UVM.

Storing/
searching

transactions

A typical e/eRM scoreboard calculates expected
DUT output transactions through a reference
model, stores the transactions in a list and matches
them against actual output transactions. e lists
allow for efficient searching/matching according to
any user criteria.

SystemVerilog arrays and queues have approximately
the same capabilities as e lists. Unlike lists, multiple
dimensions are allowed.

Comparing
transactions

compare()/deep_compare() automatically compare
all transaction fields. do_compare() allows
customization. Implementation is based on
reflection API.

API and capabilities are similar. Implementation is
based on UVM field macros. See reflection in section
3.C for in-depth discussion.

Message/error
control

To enable efficient debugging e/eRM allows
errors/messages to be configured/disabled based on
various criteria.

UVM gives users the same control of errors and
messages

Messages can be filtered based on origin (specific
IP), tag (horizontal screening), or string match
(pinpointed). They can be sent to files/screen and
formatted. Control of messages is always done
through the enclosing unit.

Same in UVM.

Errors are mainly filtered using string match.
Control and configuration of errors is done through
an API that is separate and different from
messages.

UVM has a unique API for errors and messages. Errors
are just messages with different severity, but can be
configured by the user.

Coverage
model

Coding a coverage model is a very specific task,
e/eRM infrastructure doesn’t provide a lot of help
in this area.

Same in UVM.

Few differences at the technical/syntactical level, but no conceptual ones. For a detailed technical comparison
see [2].

TABLE V. TESTS

Category e/eRM SystemVerilog/UVM
Test/

Testbench
separation

Test/testbench separation is required to prevent
users from frequently changing the verification
code base, while allowing them to test all the
different features of the DUT. e gives users
convenient means to achieve this separation.

Same in UVM.

The API of an e/eRM testbench is loosely defined.
Users can, in theory, change/override anything,
including private fields and methods from1 a test
file. However, a good verification architect can
make some parts more accessible than others. For
example, by making fields public or providing
hook methods.

The API of a SystemVerilog/UVM testbench has a
more compulsive nature. Users will be able to access
only things that fall within the API from a test file. For
example, a field can be constrained only if it is public,
and a function can be overridden only if it is virtual.

AOP and when inheritance are used to extend
structs and units from a test, to configure fields,
create new subtypes and shape stimuli.

See AOP in section 3.A and when Inheritance in
section 3.B for how to use UVM factory, UVM
configuration and some SystemVerilog coding
guidelines to achieve similar capabilities in UVM.

1 Although not straightforward it is possible. For example, An e method defined as private can only be accessed from the same package and same or derived
structs. However, a user can add any file to an existing package and override private members from this file.

III. IN DEPTH DISCUSSION OF SELECTED AREAS
In this section we discuss five selected areas in depth: AOP

(Aspect Oriented Programming), when inheritance,
reflection, memory allocation during randomization and
connecting testbench to DUT signals. For each of these we
describe the requirements behind the e/eRM solution and the
ways that are available within SystemVerilog/UVM to address
some or all of them. For the missing parts, we provide UVM
extensions and/or suggest some coding guidelines that would
help users find an adequate alternative.

A. Aspect Oriented Programming (AOP)
Aspect Oriented Programming (AOP) allows e users to add

fields, constraints, events and methods to structs and units; to
override existing implementations of methods or to
append/prepend them; to override events; to override and
extend coverage; and to extend enumerated types. Thus AOP
gives a skilled e user the ability override just about anything
from an external test, including fields and methods defined as
private. However, a well planned e/eRM testbench will have
parts that are easy to extend and override, and others that
will require significant amount of effort.

The main requirement addressed by e’s AOP is
test/testbench separation. AOP allows users to configure,
modify and extend testbench behavior without ever touching
testbench code. As already mentioned, this is a necessity if a
multitude of users are to check a multitude of different DUT
features using the same code base.

1) UVM solutions
Although AOP is not supported by SystemVerilog, UVM

does provide a couple of means for configuring, modifying and
extending testbench behavior from a test. Configuration, unless
required to be random, is usually done via the UVM
configuration database. Modifications and extensions can be
achieved through the UVM factory.

The UVM configuration database is a simple mechanism
for passing configuration data from a test file to the testbench.
Whereas an e user would add a “keep has_coverage” line to a
test to configure a specific unit to collect coverage, in UVM
that would be done via the configuration API. For
configuration parameters that are not required to be random it
is usually a sufficient replacement.

The UVM factory is a global object that exists in every
UVM testbench and is used to create instances of UVM objects
and components. Instead of constructing an object by directly
calling new(), UVM users ask the factory to create an object of
a specific type for them. Pushing the factory into the middle of
the object creation process enables overrides of specific object
types later on, for example, from a test file. When an override
is defined, it will make the factory return a different type of
object than the one originally requested. This allows for
external extensions or customizations of specific testbench
parts, but in a more limited way than AOP, since instances

returned by the factory are still accessed by a reference to the
original object type.

UVM’s configuration table and factory require that the
areas a user would like to access from a test are defined
upfront, during testbench coding. Depending on one’s point of
view they might be perceived as more restrictive than AOP or
as enforcing a more structured use model and an accurate
definition of the API. A well-planned UVM testbench will
have parts that are easy to extend and override, and others
that can’t be since they are outside the API. Table IV
below, compares e’s AOP against the capabilities of UVM’s
configuration table and factory.

Using UVM’s configuration table and factory adds a small
coding overhead. For the configuration table, any parameter
that is required to be configurable from a test must be pulled
from the configuration table prior to use. For the factory, every
object must be registered with the factory in order to allow it to
be overridden later. Also, object instantiations must not be
done directly using new(), but rather using the factory API
since the object might be overridden from a test.

TABLE VI. THE EXTENSION CAPABILITIES OF AOP VS. THOSE OF THE
UVM FACTORY.

e/eRM AOP UVM Factory/
Configuration

Set configuration fields to
specific values.

Users can set non random
configuration via the
configuration database.
Random configuration can be
constrained using the factory.

Add fields, methods,
events, coverage.

Users can add any of these
through the factory

Add constraints. Users can add constraints to
any object through the
factory. Since
SystemVerilog’s randomize()
is a virtual function, the added
constraints will be taken into
account by the solver.

Override methods, append
or prepend actions to
method.

The factory lets users override
only virtual functions that
were defined upfront as
candidates for override. For
such functions, users will also
be able to append or prepand
functionality to existing
implementation through the
use of super.

Override events. SystemVerilog events are
different than e events since
they are always emitted by
tasks or functions. The ability
to override the triggering of
these events depends on the

ability to override the emitting
functions/tasks.

Override/extend coverage. SystemVerilog/UVM
covergroups can’t be
extended. To disable or re-
implement them users should
wrap covergroups within
classes that are registered with
the UVM factory. This
allows replacement of a
coverage class with another
when required. Another
option is to use
SystemVerilog/UVM
configuration space to control
coverage.

Extend enumerated types. SystemVerilog doesn’t allow
enumerated types extensions.
A typical use case is
discussed under when
inheritance in section 3.B

2) Examples
a) Extending Specific Instances

AOP can be used together with when inheritance to extend
only a specific instance of a struct in a hierarchy. This is
usually done by extending only structs with a specific name
value, where name is an enumerated type.
// in testbench
type agent_name [AGENT0, AGENT1, AGENT2]

// in test
extend AGENT0 agent {
 keep delay < 20;
};

The UVM factory can be used in the same way through an
instance rather than a type override:
// in test
class agent0 extends agent;
 // factory registeration
 `uvm_component_utils(agent0)

 //override the constraint with the same name
 constraint delay { delay < 20; };
endclass

set_inst_override_by_type(
 agent::get_type(), // overridden type
 agent0::get_type(), // overriding type
 “uvm_test_top.env.agent0”
 // path to overridden instance
);

b) Base Class Extension
One characteristic of AOP is that it allows users to add class
members, such as fields and functions, to a base class after it
has been derived from. This type of extension is usually
referred to as “orthogonal extension”, and can be handy in
many cases. For example, we have used an orthogonal
extension of all uvm_component derived classes to create a
package that simplifies the connection of testbench to DUT
signals, as described in section 3.E below.

As already noted by earlier papers on the subject [4], an
infrastructure for creating orthogonal extensions can be set up
in any object oriented language by following the, so called,
façade design pattern. The trick is to add a generic placeholder
object, or façade, to the base class. Users wishing to extend a
base class and all the classes that derive from it would then
extend the façade, instead of extending the original class. To
allow multiple independent extensions of the same base class,
an array of facades is normally used. Just like the factory and
configuration table, this technique is more restrictive than AOP
since it requires the testbench designer to lay down the
infrastructure for extending a specific base class upfront.

UVM contains a class called uvm_callback which implements
façade objects. Testbench designers can instantiate those in
strategic classes that they think user might want to extend later.
UVM also has some of these façade objects in a few of its own
base classes such as uvm_report_object, but not in all. For
example, the following code makes use of the
uvm_report_object callback, to apply special formatting to all
messages coming from a specific component2.
// extend the uvm_report_object façade
// to apply formatting
class msg_formatter extends
 uvm_report_catcher;
 local string format_string;

 function new(string name="msg_formatter",
 color_t font_color,
 color_t bg_color);
 super.new(name);
 format_string = create_format(font_color,
 bg_color);
 endfunction : new

 function string create_format(
 color_t font_color,
 color_t bg_color);
 //…
 endfunction : create_format

 // apply formatting to any message
 // from the component
 function action_e catch();
 string msg = get_message();
 $sformat(msg, format_string, msg);
 set_message(msg);
 return THROW;
 endfunction : catch
endclass : msg_formatter

2 Full code for this example is available from
http://verificationacademy.com/sites/default/files/uvm_colors.tar.gz

// This env delegates message formatting
// to the callback object
class colorful_env extends uvm_env;

 //…

 color_t font_color = BLACK;
 color_t bg_color = WHITE;

 local msg_formatter formatter;

 function void end_of_elaboration_phase(
 uvm_phase phase);

 // get font_color and bg_color
 // from configuration table
 //…

 // create the callback object
 formatter = new("formatter",
 font_color,
 bg_color);
 // attach it to all components
 // under colorful_env
 uvm_report_cb::add_by_name("*",
 formatter,
 this);
 endfunction : end_of_elaboration_phase
endclass : colorful_env

One base class where it would be very useful to have
facades integrated is uvm_component. There are many cases
when users want to add some functionality to all the semi-static
objects in their testbench, but to do so they have to extend all
the classes that derive from uvm_component. Unfortunately,
there are a multitude of those (uvm_test, uvm_env,
uvm_sequencer, uvm_driver, and more). As part of this paper
we have created a simple package that extends all these classes
with an array of façades3. Users can then create a custom
façade and add it to all uvm_component derived classes, to
implement an additional functionality for all of them. The
following code shows how the package can be used to add an
hdl_path field, similar to the one that exists in e units, to all
uvm_component derived classes4.
// façade class implements some virtual hooks
// that could be extended later
class component_facade extends uvm_object;
 //…
 virtual function void build_hook();
 endfunction : build_hook
endclass : component_facade

3 The full code for this package is part of our migration kit [5]
4 The full code of the example is part of our migration kit [5]

// component add lists of facades and calls
// them at points where users might want
// to extend behavior
class aop_component extends uvm_component;
 component_facade m_facades[];

 // …

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 foreach(m_facades[i])
 m_facades[i].build_hook();
 endfunction : build_phase
endclass : aop_component

// To create a custom façade users simply
// extend the component_facade base class

class smp_facade extends component_facade;

 //…

 string hdl_path;

 virtual function void build_hook();
 calculate_hdl_path();
 endfunction : build_hook

 function string calculate_hdl_path();
 //…
 endfunction : calculate_hdl_path
endclass : smp_facade

B. When Inheritance
When inheritance allows e/eRM users to add fields,

constraints, methods, events and coverage based on the value
of an enumerated field. It is often used together with AOP to
extend or override functionality only for a specific subtype.
When inheritance is widely used in e/eRM testbenches but has
a significant added value over conventional Object Oriented
(OO) techniques only in limited areas. In this section we look
at the conventional OO techniques used to emulate when
inheritance in SystemVerilog, and describe their respective
pros and cons.

1) SystemVerilog solutions
There are two approaches that give when inheritance-like

behavior in SystemVerilog: the object factory approach, which
will be referred to here as “multi-class” to avoid confusion with
the UVM factory, and the “single-class” approach. In the
“multi-class” approach users simply define a class for every
when subtype they have; in the “single class” approach, users
sum up all when subtypes into one class.

The multi-class approach looks when-like since it allows
different subtypes to have different fields, even with identical
names. However, there are two points where it strongly diverts
from when:

1) If some of the subtypes share groups of fields, the
class hierarchy created might have duplicated parts,
which can’t be accessed through a base type. For
example, if a user tries to model the packets shown in
Fig. 1 below, two distinct types would have to be

created to represent AX and BX, each of them
containing all X’s fields.

2) In order to randomly generate a mix of different
subtypes, perhaps with some user-defined distribution,
the randomization process must be broken down in
two steps: first, randomize the type of the object, then
allocate the specific class required and randomize its
contents.

If 1) is not true, then breaking down the randomization
process in two steps usually won’t have any major effects,
since any constraints on the subtype fields actually imply the
choice of a unique subtype.

Due to these differences, “multi-class” has been largely
dismissed as a when inheritance replacement [4]. However,
looking at the SystemVerilog parallels of some common e
packages reveals that e’s when is often replaced with “multi-
class” on the SystemVerilog side. This is simply because in
some cases the subtypes don’t share any common groups of
fields, That is, 1) is not true. The implementation of UVM
sequences, and register package are two such examples. Both
are implemented using when inheritance in e/eRM and the
multi-class approach in UVM, but users will only rarely, if at
all, notice any change. The main reason is that neither sequence
subtypes nor register subtypes tend to have any group of fields
in common, apart from what the base class provides.

As subtypes share more groups of fields, with more
constraints tying fields from one group to fields from other
groups, the multi-class approach gradually gets more and more
cumbersome to implement. It becomes practically impossible
when verification architecture requires that constraints on fields
affect subtype choices. For example, if a user would like to
specify the constraint X1 == 8 from a test, and get all packet
types allowed by Fig. 1 for that value, then a multi-class
approach simply can’t be used.

Figure 1. Multiple field groups bounded with constraints. Layer 1 can be
either A, B or C. Layer 2 can be either X or Y. Some cross combinations such
as AX, AY, BX, BY, CX are allowed, with some constraints, and some, such

as CY are not.

In cases where the “multi-class” is not an option, a “single
class” can always be used. “Single-class” simply means that all
when subtypes are merged into one SystemVerilog class. When
choosing this way, we recommend grouping fields that would
have been defined under a when subtype into a class of their
own (for example, “A fields”, “Y fields”, etc. for diagram 1).
This will prevent name collisions, reduce congestion during
debugging and help identify irrelevant field bundles if the user
takes care to set those to null at post_randomize(). Of course,
the more when subtypes one has, the larger the single class
grows, and the harder it becomes to tell relevant from irrelevant
information. However, in cases we have seen, this never
seemed to be an issue.

In general the multi-class approach is easier on debug and
performance but limited in its application areas. The opposite
holds true for the single-class approach.

layer1 = A

-A1
-A2
-A3

layer1 = B

-B1
-B2

Layer1 = C

-C1
-C2
-C3
-C4

 layer2 = X

-X1
-X2
-X3

layer2 = Y

-Y1
-Y2
-Y3

X1<10

X1<5

X1<C2

2) Examples
a) Creating new subtypes from a test

A common way of using AOP with when inheritance is to
extend an enumerated type from a test, then use the additional
enumerated value to create a complete subtype. In general, it is
possible to do the same with SystemVerilog/UVM, whether
“multi-class” or “single-class” is used to model the transaction.
We will show how this is done with “single-class” since this
case is slightly more challenging and requires some upfront
preparation during testbench coding.

The main idea is to have an extra placeholder enumerated
value for every enumerated type expected to be extended from
a test. This placeholder value lets the user make a neutral
choice from the test, which won’t activate any constraints in
the testbench. The user can then add fields and a set of extra
constraints for the new subtype. The example below shows
how this is done5:
// testbench code
typedef enum [TYPE_A, TYPE_B, TYPE_C,
 PLACEHOLDER] packet_type_t;

class a_fields extends uvm_object;
 rand int A1, A2, A3;
endclass : a_fields

class packet extends uvm_sequence_item;
 rand packet_type_t type;

 // disabled from test
 constraint not_placeholder
 { type != PLACEHOLDER; };

 rand a_fields A;
 rand x_fields X;

 constraint X1_lt_10_when_A
 { type == TYPE_A -> X.X1 < 10; };

endclass : packet

// test code
typedef enum {D} extra_packet_types_t;

// the extended packet can generate all
// previous subtypes plus the new one
class extended_packet extends packet;
 rand extra_packet_types_t extra_type;

 // disable constraint
 constraint not_placeholder {};

 constraint placeholder_is_d
 {(type == PLACEHOLDER) ==
 (extra_type == D);};

 rand d_field D;

 constraint some_constraint
 {extra_type == D -> X.X1 < D.D1; };
endclass : extended_packet

5 The full code of this example is part of our migration kit [5]

set_type_override_by_type(
 packet::get_type(),
 extended_packet::get_type(),
 “*”
);

C. Reflection
Reflection (or introspection) is not designed to address any

specific verification requirements, but rather to create an
infrastructure on which solutions for specific requirements
could be built. At the technical level it means that e keeps a
database for each of its types. For a struct or unit, this database
would include an entry per field, which holds information such
as the field type, the field name, whether it is
physical/ungenerated or not and so on. This database can then
be used, for example, to reduce code maintenance effort by
providing a default implementation for widely used
functionality such as copy() or print(). Or it could be used to
allow e structs and units to access their absolute e instance
name, which would help users understand where messages are
coming from. There are of course other ways, including user
defined ones in which it could be used.

Since SystemVerilog doesn’t support reflection,
replacements for specific reflection-based applications must be
discussed on a per-application basis. We will do so now for the
most widely used reflection based application: the
implementation of print(), copy(), pack() and other predefined
struct utilities.

1) print(), copy(), pack(), unpack(), compare(),
deep_compare()

Without reflection it is not possible to have a default
implementation that will actually do something valuable for
any of the methods above. More often than not, only a limited
subset of those methods will actually be useful. However, in
the very few cases where they are all useful, implementing
them by hand might result in a very verbose code, and
therefore, in a code maintenance problem.

To solve this problem, field automation macros were
introduced into UVM. These can be used to implement any or
all of the above mentioned utilities for a subset or for all fields
of an object. While they are convenient and can reduce the
amount of code the user has to write and maintain, they have
some downsides that users should be aware of. Additional
debugging effort due to the use of long macro sequences, an
overly complex implementation and a minor performance pain,
are probably the most important ones. For a comprehensive list
see “Are Macros Evil?”[3]. The code below shows an example
of how these macros are used.
class transaction extend uvm_sequence_item;
 rand int data[];
 `uvm_object_utils_begin(transaction)
 `uvm_field_array_int(data, UVM_ALL_ON)
 `uvm_object_utils_end
 //…
endclass : transaction

We recommend using UVM field macros very carefully
and only where absolutely required. In the case of
uvm_components, most of the utility functions that are
automatically created are not relevant in any use case. Like e
units, uvm_components can’t be copied or unpacked, and
there’s probably little need to compare or deep compare them.
The only relevant method for those is probably print(), so it
might just as well be implemented manually instead of using
the macros. The same is often true for sequences. Transactions
are where field macros contribute the most since all of the
utilities can be relevant to them. However, we strongly
recommend a case-by-case analysis.

As part of the work on this paper we have implemented a
version of the UVM field macros6 that uses template classes to
reduce macro code to almost zero. This can improve
significantly the debugging difficulties and a few of the other
known disadvantages, but unfortunately not the complexity of
the implementation, since it is an almost exact copy of the
macros.

D. Memory allocation during randomization
To allow objects to be allocated according to the random

values generated, e combines together memory allocation and
random generation. SystemVerilog, on the other hand, keeps
them separated, in order to simplify debugging and reduce
random generation complexity. This seemingly technical
difference has considerable implications on testbench structure
and code, that migrating e/eRM users should be aware of.

1) SystemVerilog solution
The first time e/eRM users will notice the difference in

generation, is when they try to randomize an object that
contains a child random object. While in e the child object will
be allocated in memory automatically after a gen action on its
parent, in SystemVerilog it will remain null after a call to
randomize() on its parent. To allow the child object to be
randomized along with its parent SystemVerilog users usually
extend the pre-defined pre_randomize() function of every class,
to allocate the child object.
class parent_object;

 rand nested_object nested;

 function void pre_randomize();
 //Don’t create a new object every time
 // randomize() is called
 if (nested == null)
 nested = new(“nested”);
 endfunction : pre_randomize

 //…
endclass : parent_object

a) Object arrays of random size
Things become slightly more complicated when the parent

object contains an array of child objects. If the size of the array
is not random, this is just a matter of introducing a loop that

6 The code for this version of the macros is available as part of our
migration kit [5]

will allocate all required elements into the example above.
When it is random users are faced with a choice that has similar
aspects to the “single-class”/”multi-class” one presented in the
when inheritance section (3.B). They can either go for a two-
step generation and randomize the size before they randomize
the array contents, as shown below:
class obj_array_container;
 rand int unsigned obj_array_size;

 constraint obj_array_size_max_c {
 obj_array_size < 30; }

 obj obj_array[];

 // after the size is randomized allocate
 // the array accordingly, then randomize
 // each element
 function void post_randomize();
 obj_array = new[obj_array_size];

 foreach (obj_array[i])
 begin
 obj_array[i] = new();
 obj_array[i].randomize();
 end
 endfunction : post_randomize
endclass : obj_array_container

Or, they can allocate the maximal possible array size prior
to randomization and randomize the size of the array together
with everything else. Although SystemVerilog will not allocate
new memory during generation, it will de-allocate it, so in the
second case, it will automatically remove any array elements
beyond the chosen size.

Obviously, each solution has its own advantage and
disadvantage and users must choose which of these matters
most. The first solution is cheap in memory, but breaks
randomization in two steps, which means that object array
contents can’t affect the size of the array. The second solution
is high in memory consumption, but allows the generated
random array elements to influence the size.

In cases where the maximum possible array size is not
known, users can try and break the nested object into individual
arrays of basic types. SystemVerilog will allocate dynamic
memory for those, so their sizes can be randomized in-line with
the rest of the random variables. Such cases, however, are rare
and when they are found, might imply that the transaction
object has not been delineated correctly.

2) uvm_component arrays of random size
When the type of the objects in the random size array is

derived from uvm_component, most UVM users automatically
opt for a solution similar to the two-step one shown above.
They do so because uvm_components, once created, can’t be
destroyed, so allocating a maximal size array and then cutting it
down to the right size, is not an option. Implementing the two-
step solution in this case can be done in various ways, but the
most common one is to generate the size of the array within
some random configuration object, then make this object
available to the parent of the array during the build_phase().

It often happens that when the components in the array
require some random configuration themselves, this
configuration will find its way into the random configuration
object as well. In some cases, to avoid having some
configuration as fields of the components, and some inside the
random configuration object, users simply move all
configuration to the configuration object, creating a sort of a
shadow semi-static hierarchy before they build the actual one.

An alternative solution, created as part of the work on this
paper, allows users to randomize their entire static hierarchy in
a single step, in a very similar way to static generation of e.
This is achieved by setting redundant uvm_components in
arrays to an inactive state rather than de-allocating them. An
inactive component skips all the phases following the
build_phase(). While this eliminates the need for an external
configuration object, and allows all components and
configuration to be randomized together, it does come at the
price of higher memory consumption. Whether this
disadvantage outweighs the advantage depends on a case-by-
case analysis, and on user preferences. The code below shows
what this solution looks like:
// on_off_pkg
class on_off_test extends uvm_test;

 function void end_of_elaboration_phase
 (uvm_phase phase);
 this.randomize();
 endfunction : end_of_elaboration_phase
endclass : on_off_test

class on_off_component extends uvm_component;
 rand bit off;
 constraint off_if_parent_off
 { m_parent.off -> off; };
 task run_phase(uvm_phase phase);
 if (off) return;
 endtask : run_phase

 function void check_phase(uvm_phase phase);
 if (off) return;
 endfunction : checkphase

 //more default implementations for phases…

endclass : on_off_component

// Testbench.

class my_component extends on_off_component;
 task run_phase(uvm_phase phase);
 // call the super-class to check for
 // the off bit. This should be done
 // in every overridden phase
 super.run_phase(phase);

 // do stuff
 endtask : run_phase
endclass : my_component

class base_test extends on_off_test;
 rand unsigned int component_array_size
 rand my_component component_array[];

 // array size is always the maximal size. We
 // “delete” component by setting them to off
 constraint component_array_size
 { component_array.size() == MAX_SIZE; };
 constraint component_on_size
 { component_array_size <= MAX_SIZE;

 foreach (component_array[i])
 if (i<component_array_size)
 component_array[i].off == 0;
 else
 component_array[i].off == 1;
 };

 function void build_phase(uvm_phase phase)
 component_array = new[MAX_SIZE];
 foreach(component_array[i])
 component_array[i] ==
 my_component::get_type::
 create({“component_array[“, i, “]”},
 this);
 endfunction : build_phase
endclass : base_test

// test
class test1 extends base_test;
 constraint component_array_bt_10
 { component_array_size > 10; };
endclass : test1

E. Connecting testbench to DUT signals
e adds a layer of abstraction on top of HDL signals. From

the e user point of view, signals, represented by simple_ports
are just additional unit members that can be read and written in
an almost identical way to normal unit/struct fields. e users are
typically fully unaware of the way in which the actual
connection to the HDL signals is performed and of any nuances
that exist between Verilog and VHDL, reg and wire, etc..

To support this abstraction e simply generates automatic
connection code prior to actual running, during the stub
creation phase. The automatic code generator takes care of the
specific requirements of the HDL in question, so that the users
don’t have to deal with those. Since the automatic generation is
performed at run time, it allows users to refer to signal names
via strings, and use string manipulation methods to specify
names.

The actual signal connection code generated is similar to
the code that is required in order to connect a SystemVerilog
testbench to a DUT. In both cases this code is relatively simple
and repetitive, and is made of a few simple patterns that are
applied in a limited number of cases. SystemVerilog and UVM
don’t support automation of connection code natively, but as
part of the work on this paper, we have implemented such
automation. Users can choose to learn the few simple patterns
for connecting various types of signals to their testbench, or to
use this package.

1) Examples
a) Connecting a Verilog reg to a tesbench

As mentioned above, the patterns that users should follow
for connecting signals depend on the HDL and the signal type.
The code below shows the typical way of connecting a Verilog
reg to a testbench. (If the code seems verbose this is because
connecting one signal and hundred signals requires the same
overhead)
// signal we want to connect to
module dut();
 reg x;

 //…
endmodule

// use an interface to connect to the signal
interface dut_if();
 // used for monitoring x
 wire x_in;
 // used for driving it
 reg x_out;
endinterface

module tb();
 //…

 dut dut_i();
 dut_if dut_if_i();

 // connect the monitor pin
 assign dut_if_i.x_in = dut_i.x;
 // connect the driver pin
 always @(dut_if_i.x_out)
 dut_i.x = dut_if_i.x_out;

 initial begin
 //put interface in configuration database
 uvm_config_db#(virtual dut_if)::
 set(null, "*", "vif", dut_if_i);
 // …
 end
endmodule

package test_pkg;
 //…
 class test extends uvm_test;
 //…

 virtual dut_if vif;

 function void build_phase(
 uvm_phase phase);
 //…
 // pull virtual interface from
 // configuration database
 if (!uvm_config_db#(virtual dut_if)::
 get(this, "", "vif", vif))
 `uvm_error("NO_VIF",
 "Couldn't find vif in config db")
 endfunction : build_phase

 task run_phase(uvm_phase phase);
 //…
 // use it to drive/monitor
 vif.x_out = 0;
 #1;
 vif.x_out = 1;
 //…
 endtask : run_phase
 endclass : test
endpackage : test_pkg

Similar patterns for other cases can be found through the
link in the footnote7.

b) Using the automation package to connect the
testbench to DUT

The DUT-testbench connectivity package we have created
allows users to:

1. Define signals inside classes rather than inside virtual
interfaces.

2. Attach uvm_components to specific HDL blocks using
an hdl_path field.

3. Define signal names that relative to a component’s
hdl_path field.

4. Define signal names using strings and string
manipulation methods at run time.

5. Control the actual connection code generated using
normal configuration parameters.

The example below shows how this package is used to
define signals and connect them.
// verification IP code
package vip;
 //…
 import smp_pkg::*;

 class vip_component extends aop_component8;
 //…

 // define signals
 smp_port#(1) req;
 smp_port#(1) ack;

 // create them
 function void build_phase(
 uvm_phase phase);
 //…
 req = smp_port#(bit)::type_id::
 create("req", this);
 ack = smp_port#(bit)::type_id::
 create("ack", this);
 endfunction : build_phase

7 The patterns for various signal types as well as the connection
automation package are all part of our migration kit [5]

8 This package extends each uvm_component derived class with an hdl_path
field. As mentioned in the AOP section, we have created a package that allows

this to be done easily, which is being used here.

 // use them
 task run_phase(uvm_phase phase);

 req.set(1);
 ack.set(0);
 #1;
 `uvm_info("vip_comp”,
 $sformatf("%s value at time %0d is %d",
 req.get_hdl_path(), $time, req.get()),
 UVM_MEDIUM)
 `uvm_info(“vip_comp”,
 $sformatf("%s value at time %0d is %d",
 ack.get_hdl_path(), $time, ack.get()),
 UVM_MEDIUM)
 endtask : run_phase
 endclass : vip_component

 // verification IP integration
 class test_base extends aop_test;
 //…
 vip_env my_vip1;

 function void build_phase(
 uvm_phase phase);
 super.build_phase(phase);

 // configure the hdl_path of
 // the verification IP instance
 uvm_config_db#(string)::
 set(this, "my_vip1",
 "hdl_path", "verilog_top");
 uvm_config_db#(string)::
 set(this, "my_vip1.comp",
 "hdl_path", "verilog_block_i");

 // configure the relative hdl_path
 // of the signal
 uvm_config_db#(string)::
 set(this, "my_vip1.comp.req",
 "hdl_path", "req");

 // configure its HDL and type
 uvm_config_db#(signal_hdl)::
 set(this, "my_vip1.comp.req",
 "sig_hdl", Verilog);
 uvm_config_db#(signal_net)::
 set(this, "my_vip1.comp.req",
 "sig_net", Verilog_reg);
 endfunction : build_phase
 endclass : test_base

IV. SUMMARY
Understandably, migration from one language/methodology

to another is not something that users look forward to. It is a
hard learning process that results in reduced productivity for a
significant amount of time. From a verification engineer’s
perspective, it is nothing but another obstacle on the way to the
real goal of getting a bug-free project out. Unfortunately, from
a high level view that must take long term industry support into
account, it might be a necessary evil.

Our aim in this paper was not to persuade e/eRM users that
migration is going to be a pleasant walk in the park. Rather, we
have tried to show that despite the hard work and productivity
setbacks that are always a part of it, it can also be a golden
opportunity to update old conventions. By focusing on
verification requirements, either those associated with specific
testbench blocks, or with specific e/eRM features, we were
hoping to make readers ask themselves what is it that they
really need, and how much are they willing to pay for it. If they
actually do so, whether or not they decide to migrate to
SystemVerilog/UVM at the end, we have done our job.

V. ACKNOWLEDGMENTS
The authors of this paper would like to thank Ionel

Simionescu and Mentor Graphics Verification Methodology
team for reviewing and commenting on this paper. We would
also like to thank Geoff Koch for helping to edit this paper.

VI. REFERENCES
[1] 2010 Wilson Research Group Functional Verification Study -

SystemVerilog usage is up from 24% of the testbenches written in 2007
to 60% of testbenches written in 2010.

[2] “SystemVerilog for the Specman Engineer” – Marriott, Paul 2005
[3] “Are OVM & UVM Macros Evil? A Cost Benefit Analysis” – Erickson,

Adam DVCon 2011
[4] “SystemVerilog for e Experts – Understanding the Migration process” –

Janick Bergeron, 2006
[5] http://verificationacademy.com/uvm-ovm/ERM2UVM/Overview

