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Abstract— With industry trends showing a clear move to 
SystemVerilog and the Universal Verification Methodology 
(UVM)[1], verification teams using e and the e Reuse 
Methodology (eRM) are increasingly looking for a language and 
methodology migration path. Though migration does entail risk, 
it holds the long-term promise of multi-vendor support, wide 
choice of verification IPs and access to a growing market of 
complementary tools. Planning carefully and minimizing 
productivity setbacks means asking and answering several 
questions: Does switching involve redesign of verification 
architecture and flow or only a syntax change? Will it be possible 
to build random generators, bus functional models (BFMs), 
scoreboards, coverage models and tests the “old” way, or a “new” 
way will have to be adopted instead? And, in general, what part 
of the experience and knowledge acquired over years of using 
e/eRM can be reused with the new approach? 

Answers to these questions usually won’t be found in training 
materials that teach SystemVerilog/UVM from scratch. These 
tend to take SystemVerilog/UVM solutions as a given, without 
considering the requirements at their base, or comparing them 
against alternative solutions such as those provided by e/eRM. 
While helpful, pre-UVM papers that compare specific language 
features[4] are often limited since they don’t account for the 
many e/eRM-like features added on top of SystemVerilog 
through UVM. This paper draws on our hands-on experience to 
provide an updated map of the gaps between e/eRM and 
SystemVerilog/UVM, and of the ways in which those can be 
bridged.  

Keywords-eRM, UVM, migration, AOP, when inheritance, 
random generation, reflection, DUT-testbench connection 

I.  INTRODUCTION 
With SystemVerilog/UVM (Unified Verification 

Methdology) gradually coming to dominate the verification 
landscape, many e/eRM (e Reuse Methodology) teams are 
starting to experiment with it at varying levels of intensity. In 
some cases selected individuals might go through a 
SystemVerilog/UVM training or be asked to test language 
features deemed crucial. In others a pilot project will take 
place, to make sure that a list of requirements can be addressed 
with SystemVerilog/UVM. If the results are satisfactory, a 
management decision might state that, moving forward, all 
verification projects should use SystemVerilog/UVM. 
Whatever the concrete situation is, there will probably be a 
point when a few e/eRM verification engineers are grouped in 

front of a whiteboard trying to figure out what a 
SystemVerilog/UVM testbench for a specific block should look 
like. This paper aims to help them. 

The paper is divided in two main parts. The first is a “quick 
migration reference” allowing e/eRM teams to detect the 
potential hotspots when moving to SystemVerilog/UVM and 
focus on those rather than on the more intuitive parts. It lists 
e/eRM features alongside their SystemVerilog/UVM 
counterparts and estimates how similar/different they are. To 
keep things in a practical context, features are ordered 
according to the typical testbench parts in which they are most 
often used. Hence ports and static hierarchy are discussed as 
part of a testbench skeleton section, transaction modeling and 
sequences as part of a stimuli section, and packing/unpacking 
as part of a drivers and monitors section.  

Each testbench part has a dedicated table with the rows 
representing features commonly used in it. The rows are color 
coded: Green means that there is a high level of similarity 
between e/eRM and SystemVerilog/UVM. Yellow means there 
are significant technical differences but these don’t tend to 
have a profound impact on testbench architecture.  Red means 
the differences are conceptual and might influence testbench 
architecture. 

The second part contains in-depth discussions of five 
selected areas: AOP (Aspect Oriented Programming), when 
inheritance, reflection, memory allocation during 
randomization, and connecting testbench to DUT (Device 
Under Test) signals. Because they are often perceived as 
migration blocking points we see AOP and when inheritance as 
entitled to a more in-depth discussion than the table would 
allow. Reflection influences many distinct testbench parts, and 
its full effects are therefore somewhat hidden when a testbench 
is considered block by block.  Like reflection the differences in 
memory allocation during randomization have horizontal 
effects that can be better pointed out when discussed 
standalone. However, the stronger incentive for analyzing these 
differences in-depth is that they often take e/eRM users by 
complete surprise. Finally, connecting testbench to DUT 
signals is a relatively technical issue with limited impacts that 
usually poses an obstacle to migrating groups all the same.   

When writing this paper we always aimed to stay at the 
conceptual/architectural level. Technical details are only 
discussed insomuch as we think they might influence testbench 



structure. Otherwise, readers are simply referred to the detailed 
LRM vs. LRM comparisons already in place [2]. Constraints 
are an example in point: although there are numerous 
syntactical differences in the way they are coded, none of these 
really has any high level implications. Therefore, they are not 
discussed at any length in this paper. The same goes for soft 
constraints, a well-known difference between e and 
SystemVerilog, discussed at considerable detail in earlier 
publications [4]. We see it as yet another difference that might 
have some local affects, but nothing that e/eRM users should 
be aware of upfront before they migrate. 

It is our firm belief that customers don’t have to figure out 
solutions on their own. SystemVerilog, and even more so 
UVM, have already gone to considerable length to try and 
satisfy sensible requirements that e/eRM users had. There is 
absolutely no reason why this healthy process should not go on. 
As part of the work on this paper we have created a “migration 
kit” that aims to minimize some of the more prominent gaps 
between SystemVerilog/UVM and e/eRM. This migration kit” 
is comprised of UVM add-ons, coding guidelines and examples 
and is publicly available [5]. We refer the readers to various 
parts of this kit where relevant. 

II. SIMILARITIES AND GAPS BY TESTBENCH PART



TABLE I.  TESTBENCH SKELETON 

Category e/eRM SystemVerilog/UVM 
Static 

Hierarchy 
A hierarchy of units exists from simulation time 0 to 
simulation end and is used to implement interface 
drivers, monitors, reference and coverage models, and 
in general everything that must be up and running 
whenever the DUT is alive.  

A hierarchy of uvm_components exists from simulation 
time 0 to simulation end and is used to model the same 
testbench parts as in e. 

The unit hierarchy is randomly generated. The uvm_component hierarchy is sequentially created 
and not randomized by default. It is up to the user to 
randomize it when required. Special care has to be 
taken when the uvm_component topology is itself 
partially random (i.e. contains arrays of 
uvm_components of random size).   See memory 
allocation during randomization in the section 3.D, 
for an in depth discussion and suggested solutions. 

e_path() can be used to get the unique e path to a 
specific unit. 

Every uvm_component has a unique SystemVerilog 
path, but there is no SystemVerilog API to get it (see 
reflection in section 3.C for more details). Therefore, 
uvm_components also have a string field called name 
and the full name of a component serves as its unique 
ID. It is usually recommended to keep the UVM name 
of a component equal to the SystemVerilog handle 
name. 

get_enclosing_unit(),get_all_units(), 
get_parent_unit(), and other APIs can be used to find 
units in the hierarchy. 

find()/find_all() can be used to find a uvm_component 
by its name. UVM versions of the e/eRM API can be 
easily implemented. Examples can be found as part of 
our migration kit [5]. 

Port 
connections 

e/eRM ports of all kinds are used to connect units in a 
reusable way that is decoupled from actual 
implementation. 

UVM ports of all kinds are used for the exact same 
purpose. 

e/eRM method_ports are usually used to pass structs 
and other information from one unit to another; for 
example, to pass a transaction from monitor to 
scoreboard. 
 

UVM tlm_analysis_ports/exports are usually used to 
pass transactions between uvm_components in the 
exact same way. The main difference is that a 
method_port could pass a few parameters in parallel, 
while a tlm_analysis_port/export can pass only one, 
usually a transaction. UVM can be seen as encouraging 
a stricter TLM approach than e/eRM. The channels 
UVM provides require users to package all information 
they want to pass in a single transaction object. 

e/eRM event_ports are used to broadcast events. They 
are also used to listen to signal level events.  

tlm_analysis_ports/exports can be used to broadcast 
events. Connecting to DUT signals is done in a 
different way with UVM and discussed in detail under 
connecting the testbench to DUT signals (section 
3.E) 

simple_ports are used to pass basic types and to 
connect to DUT signals. 

tlm_analysis_ports/exports can be used for that as well. 
Connecting to DUT signals is discussed under 
Connecting the testbench to DUT signals (section 
3.E) 
 

buffer_ports buffer data until retrieved by other side. tlm_fifos can be used for the same purpose. 

 

 



TABLE II.  STIMULI 

Category e/eRM SystemVerilog/UVM 
Transaction 
modeling 

A transaction is seen as the basic data unit and a 
building block for more complex sequences. 
Outlining transaction borders and the amount of 
control a user will have over its contents via API is 
a major part of designing random stimuli for an 
interface. 

Transactions play the same role in UVM. 

when inheritance is often used to model 
transactions (i.e. multiple transaction types are 
often modeled using a single struct with multiple 
when subtypes) 

SystemVerilog doesn’t support “when inheritance”. 
See when inheritance in section 3.B for in-depth 
discussion and alternative approaches. 

Random generation and constraints are often used 
with transactions. 

SystemVerilog’s randomization process is different 
than e’s and migrating users should be aware of the 
differences. See memory allocation during 
randomization in section 3.D for an in depth 
discussion and suggested solutions. There are also 
many differences with regards to constraints at the 
technical/syntactical level, but not at the conceptual 
level. For a detailed technical comparison see [2]. 

Sequences eRM sequences are a way to constrain transactions 
in a time/state dependent way. They are used for 
system bring up at the initial stages of verification, 
for closing coverage holes at the final stages or for 
areas that require less randomness such as 
initialization.  

The use model for sequences in UVM is identical. 

Sequence hierarchies can be created to 
descend/ascend abstraction layers and implement 
protocol stacks. 

Same in UVM. 

sequence_driver arbitrates between sequences 
according to configurable arbitration policy. 
get_next_item()/try_next_item() can be used to 
retrieve arbitration output from a BFM. 

A uvm_sequencer plays the exact same role in UVM 
and has an almost identical API. 

Sequence body() executes sequence items or 
subsequences using do…keeping. 

Sequence body() executes items using a similar looking 
macro: 
 
`uvm_do_with(item, {constraints}) 
 
Or with a straightforward API (easier to debug): 
 
start_item(item); // go through arbitration 
item.randomize() with {constraints}; 
finish_item(item); // wait for item_done() 

Virtual 
sequences 

eRM virtual sequences are used to synchronize 
stimuli on independent interfaces. 

Same in UVM 

Virtual sequence_driver simply holds a list of 
sequence_drivers attached to real interfaces. 
 

A virtual sequencer can be created in UVM.  However, 
there is not a need since, the list of sequencers is 
usually stored in a generic sequence that starts sub-
sequences on those sequencers.  

A sequence item must be tied to a specific 
sequencer prior to execution. 

Same in UVM 

Test 
termination 

eRM allows for a test to be terminated when a 
specific stimuli has been injected, a number of 
elements checked by the scoreboard or certain 
coverage reached. This is done through the 

UVM implement the exact same mechanism, with the 
exact same API. 



objection mechanism, allowing each element to 
“object” to test end. 

TABLE III.  DRIVERS AND MONITORS 

Category e/eRM SystemVerilog/UVM 
Transaction to 

signal level 
conversion 

High level verification requires work with 
transactions, while the DUT usually understands 
signal level activity. e/eRM has a built in way of 
supporting conversion between abstraction levels. 

Same in UVM. 

pack()/unpack() used to automatically turn all 
physical fields into a list of integers of any size. 
do_pack(), do_unpack() can be used to customize 
default implementation. 

The API is similar. Built in implementation supports 
only packing into 1/8/32 bit integers, and only big 
endian and small endian packing modes.  

Automatic implementation is based on e’s 
reflection API 
 

Automatic implementation is based on UVM field 
macros. See reflection in section 3.C of this paper for 
an in-depth discussion. 

Connecting 
testbench to 
DUT signals 

e/eRM implements an abstraction layer on top of HDL signals allowing users to refer to those as ordinary 
struct fields. This is mainly achieved through an automatic code generation stage that is not a native part of 
SystemVerilog/UVM, but can be implemented for them as well. See section 3.E for more details. 

TABLE IV.  SCOREBOARDS AND COVERAGE 

Category e/eRM SystemVerilog/UVM 
Reference 

model 
Coding a reference model is a very specific task. 
e/eRM infrastructure doesn’t provide a lot of help 
in this area. 

Same in UVM. 
 
 

Storing/ 
searching 

transactions 

A typical e/eRM scoreboard calculates expected 
DUT output transactions through a reference 
model, stores the transactions in a list and matches 
them against actual output transactions. e lists 
allow for efficient searching/matching according to 
any user criteria. 

SystemVerilog arrays and queues have approximately 
the same capabilities as e lists. Unlike lists, multiple 
dimensions are allowed. 

Comparing 
transactions 

compare()/deep_compare() automatically compare 
all transaction fields. do_compare() allows 
customization. Implementation is based on 
reflection API. 

API and capabilities are similar. Implementation is 
based on UVM field macros. See reflection in section 
3.C for in-depth discussion. 

Message/error 
control 

To enable efficient debugging e/eRM allows 
errors/messages to be configured/disabled based on 
various criteria.  

UVM gives users the same control of errors and 
messages 

Messages can be filtered based on origin (specific 
IP), tag (horizontal screening), or string match 
(pinpointed). They can be sent to files/screen and 
formatted. Control of messages is always done 
through the enclosing unit. 

Same in UVM.  

Errors are mainly filtered using string match. 
Control and configuration of errors is done through 
an API that is separate and different from 
messages. 

UVM has a unique API for errors and messages. Errors 
are just messages with different severity, but can be 
configured by the user. 

Coverage 
model 

Coding a coverage model is a very specific task, 
e/eRM infrastructure doesn’t provide a lot of help 
in this area. 

Same in UVM. 

Few differences at the technical/syntactical level, but no conceptual ones. For a detailed technical comparison 
see [2]. 

 

 



TABLE V.  TESTS 

Category e/eRM SystemVerilog/UVM 
Test/ 

Testbench 
separation 

Test/testbench separation is required to prevent 
users from frequently changing the verification 
code base, while allowing them to test all the 
different features of the DUT. e gives users 
convenient means to achieve this separation. 

Same in UVM. 

The API of an e/eRM testbench is loosely defined. 
Users can, in theory, change/override anything, 
including private fields and methods from1 a test 
file. However, a good verification architect can 
make some parts more accessible than others. For 
example, by making fields public or providing 
hook methods.  

The API of a SystemVerilog/UVM testbench has a 
more compulsive nature. Users will be able to access 
only things that fall within the API from a test file. For 
example, a field can be constrained only if it is public, 
and a function can be overridden only if it is virtual. 

AOP and when inheritance are used to extend 
structs and units from a test, to configure fields, 
create new subtypes and shape stimuli. 

See AOP in section 3.A and when Inheritance in 
section 3.B for how to use UVM factory, UVM 
configuration and some SystemVerilog coding 
guidelines to achieve similar capabilities in UVM. 

                                                             
1 Although not straightforward it is possible. For example, An e method defined as private can only be accessed from the same package and same or derived 
structs. However, a user can add any file to an existing package and override private members from this file. 



  

III. IN DEPTH DISCUSSION OF SELECTED AREAS 
In this section we discuss five selected areas in depth: AOP 

(Aspect Oriented Programming), when inheritance, 
reflection, memory allocation during randomization and 
connecting testbench to DUT signals. For each of these we 
describe the requirements behind the e/eRM solution and the 
ways that are available within SystemVerilog/UVM to address 
some or all of them. For the missing parts, we provide UVM 
extensions and/or suggest some coding guidelines that would 
help users find an adequate alternative. 

A. Aspect Oriented Programming (AOP) 
Aspect Oriented Programming (AOP) allows e users to add 

fields, constraints, events and methods to structs and units; to 
override existing implementations of methods or to 
append/prepend them; to override events; to override and 
extend coverage; and to extend enumerated types. Thus AOP 
gives a skilled e user the ability override just about anything 
from an external test, including fields and methods defined as 
private. However, a well planned e/eRM testbench will have 
parts that are easy to extend and override, and others that 
will require significant amount of effort. 

The main requirement addressed by e’s AOP is 
test/testbench separation. AOP allows users to configure, 
modify and extend testbench behavior without ever touching 
testbench code. As already mentioned, this is a necessity if a 
multitude of users are to check a multitude of different DUT 
features using the same code base.  

1) UVM solutions 
Although AOP is not supported by SystemVerilog, UVM 

does provide a couple of means for configuring, modifying and 
extending testbench behavior from a test. Configuration, unless 
required to be random, is usually done via the UVM 
configuration database. Modifications and extensions can be 
achieved through the UVM factory. 

The UVM configuration database is a simple mechanism 
for passing configuration data from a test file to the testbench. 
Whereas an e user would add a “keep has_coverage” line to a 
test to configure a specific unit to collect coverage, in UVM 
that would be done via the configuration API. For 
configuration parameters that are not required to be random it 
is usually a sufficient replacement.  

The UVM factory is a global object that exists in every 
UVM testbench and is used to create instances of UVM objects 
and components.  Instead of constructing an object by directly 
calling new(), UVM users ask the factory to create an object of 
a specific type for them. Pushing the factory into the middle of 
the object creation process enables overrides of specific object 
types later on, for example, from a test file. When an override 
is defined, it will make the factory return a different type of 
object than the one originally requested. This allows for 
external extensions or customizations of specific testbench 
parts, but in a more limited way than AOP, since instances 

returned by the factory are still accessed by a reference to the 
original object type.  

UVM’s configuration table and factory require that the 
areas a user would like to access from a test are defined 
upfront, during testbench coding. Depending on one’s point of 
view they might be perceived as more restrictive than AOP or 
as enforcing a more structured use model and an accurate 
definition of the API.  A well-planned UVM testbench will 
have parts that are easy to extend and override, and others 
that can’t be since they are outside the API.  Table IV 
below, compares e’s AOP against the capabilities of UVM’s 
configuration table and factory. 

Using UVM’s configuration table and factory adds a  small 
coding overhead. For the configuration table, any parameter 
that is required to be configurable from a test must be pulled 
from the configuration table prior to use. For the factory, every 
object must be registered with the factory in order to allow it to 
be overridden later. Also, object instantiations must not be 
done directly using new(), but rather using the factory API 
since the object might be overridden from a test. 

TABLE VI.  THE EXTENSION CAPABILITIES OF AOP VS. THOSE OF THE 
UVM FACTORY. 

e/eRM AOP UVM Factory/ 
Configuration 

Set configuration fields to 
specific values. 

Users can set non random 
configuration via the 
configuration database. 
Random configuration can be 
constrained using the factory.  

Add fields, methods, 
events, coverage. 

Users can add any of these 
through the factory 

Add constraints. Users can add constraints to 
any object through the 
factory. Since 
SystemVerilog’s randomize() 
is a virtual function, the added 
constraints will be taken into 
account by the solver. 

Override methods, append 
or prepend  actions to 
method. 

The factory lets users override 
only virtual functions that 
were defined upfront as 
candidates for override. For 
such functions, users will also 
be able to append or prepand 
functionality to existing 
implementation through the 
use of super. 

Override events. SystemVerilog events are 
different than e events since 
they are always emitted by 
tasks or functions. The ability 
to override the triggering of 
these events depends on the 



ability to override the emitting 
functions/tasks. 

Override/extend coverage. SystemVerilog/UVM 
covergroups can’t be 
extended. To disable or re-
implement them users should 
wrap covergroups within 
classes that are registered with 
the UVM factory.  This 
allows replacement of a 
coverage class with another 
when required.  Another 
option is to use 
SystemVerilog/UVM 
configuration space to control 
coverage. 

Extend enumerated types. SystemVerilog doesn’t allow 
enumerated types extensions. 
A typical use case is 
discussed under when 
inheritance in section 3.B 

 

2) Examples 
a) Extending Specific Instances 

AOP can be used together with when inheritance to extend 
only a specific instance of a struct in a hierarchy. This is 
usually done by extending only structs with a specific name 
value, where name is an enumerated type. 
// in testbench 
type agent_name [AGENT0, AGENT1, AGENT2] 
 
// in test 
extend AGENT0  agent { 
   keep delay < 20; 
}; 
 

The UVM factory can be used in the same way through an 
instance rather than a type override: 
// in test 
class agent0 extends agent; 
  // factory registeration 
  `uvm_component_utils(agent0) 
   
  //override the constraint with the same name 
  constraint delay { delay < 20; }; 
endclass 
 
set_inst_override_by_type( 
  agent::get_type(),   // overridden type 
  agent0::get_type(),  // overriding type 
  “uvm_test_top.env.agent0” 
  // path to overridden instance 
); 
 
 
 
 
 

b) Base Class Extension 
One characteristic of AOP is that it allows users to add class 
members, such as fields and functions, to a base class after it 
has been derived from. This type of extension is usually 
referred to as “orthogonal extension”, and can be handy in 
many cases. For example, we have used an orthogonal 
extension of all uvm_component derived classes to create a 
package that simplifies the connection of testbench to DUT 
signals, as described in section 3.E below.  

As already noted by earlier papers on the subject [4], an 
infrastructure for creating orthogonal extensions can be set up 
in any object oriented language by following the, so called, 
façade design pattern. The trick is to add a generic placeholder 
object, or façade, to the base class. Users wishing to extend a 
base class and all the classes that derive from it would then 
extend the façade, instead of extending the original class. To 
allow multiple independent extensions of the same base class, 
an array of facades is normally used. Just like the factory and 
configuration table, this technique is more restrictive than AOP 
since it requires the testbench designer to lay down the 
infrastructure for extending a specific base class upfront. 

UVM contains a class called uvm_callback which implements 
façade objects. Testbench designers can instantiate those in 
strategic classes that they think user might want to extend later. 
UVM also has some of these façade objects in a few of its own 
base classes such as uvm_report_object, but not in all. For 
example, the following code makes use of the 
uvm_report_object callback, to apply special formatting to all 
messages coming from a specific component2. 
// extend the uvm_report_object façade 
// to apply formatting 
class msg_formatter extends 
                           uvm_report_catcher; 
  local string format_string; 
 
  function new(string name="msg_formatter", 
               color_t font_color, 
               color_t bg_color); 
    super.new(name); 
    format_string = create_format(font_color, 
                                  bg_color);        
  endfunction : new 
 
  function string create_format( 
                           color_t font_color, 
                           color_t bg_color); 
    //… 
  endfunction : create_format 
 
  // apply formatting to any message 
  // from the component 
  function action_e catch(); 
    string msg = get_message(); 
    $sformat(msg, format_string, msg); 
    set_message(msg); 
    return THROW; 
  endfunction : catch 
endclass : msg_formatter 

                                                             
2 Full code for this example is available from 
http://verificationacademy.com/sites/default/files/uvm_colors.tar.gz  



 
// This env delegates message formatting 
// to the callback object 
class colorful_env extends uvm_env; 
   
  //… 
   
  color_t font_color = BLACK; 
  color_t bg_color = WHITE; 
 
  local msg_formatter formatter; 
     
  function void end_of_elaboration_phase( 
                             uvm_phase phase); 
       
    // get font_color and bg_color 
    // from configuration table  
    //… 
 
    // create the callback object 
    formatter = new("formatter", 
                    font_color, 
                    bg_color); 
    // attach it to all components 
    // under colorful_env 
    uvm_report_cb::add_by_name("*", 
                               formatter, 
                               this); 
  endfunction : end_of_elaboration_phase 
endclass : colorful_env 
 

One base class where it would be very useful to have 
facades integrated is uvm_component. There are many cases 
when users want to add some functionality to all the semi-static 
objects in their testbench, but to do so they have to extend all 
the classes that derive from uvm_component. Unfortunately, 
there are a multitude of those (uvm_test, uvm_env, 
uvm_sequencer, uvm_driver, and more). As part of this paper 
we have created a simple package that extends all these classes 
with an array of façades3. Users can then create a custom 
façade and add it to all uvm_component derived classes, to 
implement an additional functionality for all of them.  The 
following code shows how the package can be used to add an 
hdl_path field, similar to the one that exists in e units, to all 
uvm_component derived classes4. 
// façade class implements some virtual hooks 
// that could be extended later 
class component_facade extends uvm_object; 
  //… 
  virtual function void build_hook(); 
  endfunction : build_hook 
endclass : component_facade 
 
 
 
 
 
 
 

                                                             
3 The full code for this package is part of our migration kit [5] 
4 The full code of the example is part of our migration kit [5] 

// component add lists of facades and calls 
// them at points where users might want 
// to extend behavior 
class aop_component extends uvm_component; 
  component_facade m_facades[]; 
    
  // … 
 
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    foreach(m_facades[i]) 
      m_facades[i].build_hook(); 
  endfunction : build_phase 
endclass : aop_component 
 
// To create a custom façade users simply 
// extend the component_facade base class 
 
class smp_facade extends component_facade; 
 
  //…     
    
  string hdl_path; 
 
  virtual function void build_hook(); 
    calculate_hdl_path();    
  endfunction : build_hook 
 
  function string calculate_hdl_path(); 
    //… 
  endfunction : calculate_hdl_path 
endclass : smp_facade 

B.  When Inheritance 
When inheritance allows e/eRM users to add fields, 

constraints, methods, events and coverage based on the value 
of an enumerated field.  It is often used together with AOP to 
extend or override functionality only for a specific subtype. 
When inheritance is widely used in e/eRM testbenches but has 
a significant added value over conventional Object Oriented 
(OO) techniques only in limited areas. In this section we look 
at the conventional OO techniques used to emulate when 
inheritance in SystemVerilog, and describe their respective 
pros and cons. 

1) SystemVerilog solutions  
There are two approaches that give when inheritance-like 

behavior in SystemVerilog: the object factory approach, which 
will be referred to here as “multi-class” to avoid confusion with 
the UVM factory, and the “single-class” approach. In the 
“multi-class” approach users simply define a class for every 
when subtype they have; in the “single class” approach, users 
sum up all when subtypes into one class. 

The multi-class approach looks when-like since it allows 
different subtypes to have different fields, even with identical 
names. However, there are two points where it strongly diverts 
from when:  

1) If some of the subtypes share groups of fields, the 
class hierarchy created might have duplicated parts, 
which can’t be accessed through a base type. For 
example, if a user tries to model the packets shown in 
Fig. 1 below, two distinct types would have to be 



created to represent AX and BX, each of them 
containing all X’s fields.  

2) In order to randomly generate a mix of different 
subtypes, perhaps with some user-defined distribution, 
the randomization process must be broken down in 
two steps: first, randomize the type of the object, then 
allocate the specific class required and randomize its 
contents. 

If 1) is not true, then breaking down the randomization 
process in two steps usually won’t have any major effects, 
since any constraints on the subtype fields actually imply the 
choice of a unique subtype. 

Due to these differences, “multi-class” has been largely 
dismissed as a when inheritance replacement [4]. However, 
looking at the SystemVerilog parallels of some common e 
packages reveals that e’s when is often replaced with “multi-
class” on the SystemVerilog side. This is simply because in 
some cases the subtypes don’t share any common groups of 
fields, That is, 1) is not true. The implementation of UVM 
sequences, and register package are two such examples. Both 
are implemented using when inheritance in e/eRM and the 
multi-class approach in UVM, but users will only rarely, if at 
all, notice any change. The main reason is that neither sequence 
subtypes nor register subtypes tend to have any group of fields 
in common, apart from what the base class provides.  

As subtypes share more groups of fields, with more 
constraints tying fields from one group to fields from other 
groups, the multi-class approach gradually gets more and more 
cumbersome to implement. It becomes practically impossible 
when verification architecture requires that constraints on fields 
affect subtype choices. For example, if a user would like to 
specify the constraint X1 == 8 from a test, and get all packet 
types allowed by Fig. 1 for that value, then a multi-class 
approach simply can’t be used. 

 

Figure 1.  Multiple field groups bounded with constraints. Layer 1 can be 
either A, B or C. Layer 2 can be either X or Y. Some cross combinations such 
as AX, AY, BX, BY, CX are allowed, with some constraints, and some, such 

as CY are not. 

In cases where the “multi-class” is not an option, a “single 
class” can always be used. “Single-class” simply means that all 
when subtypes are merged into one SystemVerilog class. When 
choosing this way, we recommend grouping fields that would 
have been defined under a when subtype into a class of their 
own (for example, “A fields”, “Y fields”, etc. for diagram 1). 
This will prevent name collisions, reduce congestion during 
debugging and help identify irrelevant field bundles if the user 
takes care to set those to null at post_randomize(). Of course, 
the more when subtypes one has, the larger the single class 
grows, and the harder it becomes to tell relevant from irrelevant 
information. However, in cases we have seen, this never 
seemed to be an issue. 

In general the multi-class approach is easier on debug and 
performance but limited in its application areas. The opposite 
holds true for the single-class approach.  
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2) Examples 
a) Creating new subtypes from a test 

A common way of using AOP with when inheritance is to 
extend an enumerated type from a test, then use the additional 
enumerated value to create a complete subtype. In general, it is 
possible to do the same with SystemVerilog/UVM, whether 
“multi-class” or “single-class” is used to model the transaction. 
We will show how this is done with “single-class” since this 
case is slightly more challenging and requires some upfront 
preparation during testbench coding. 

The main idea is to have an extra placeholder enumerated 
value for every enumerated type expected to be extended from 
a test. This placeholder value lets the user make a neutral 
choice from the test, which won’t activate any constraints in 
the testbench. The user can then add fields and a set of extra 
constraints for the new subtype. The example below shows 
how this is done5: 
// testbench code 
typedef enum [TYPE_A, TYPE_B, TYPE_C,  
              PLACEHOLDER] packet_type_t; 
 
class a_fields extends uvm_object; 
   rand int A1, A2, A3; 
endclass : a_fields 
 
class packet extends uvm_sequence_item; 
  rand packet_type_t type; 
 
  // disabled from test 
  constraint not_placeholder 
      { type != PLACEHOLDER; };  
 
  rand a_fields A; 
  rand x_fields X; 
 
  constraint X1_lt_10_when_A 
      { type == TYPE_A ->  X.X1 < 10; }; 
   
endclass : packet 
 
// test code 
typedef enum {D} extra_packet_types_t; 
 
// the extended packet can generate all 
// previous subtypes plus the new one 
class extended_packet extends packet; 
  rand extra_packet_types_t extra_type; 
 
  // disable constraint 
  constraint not_placeholder {}; 
 
  constraint placeholder_is_d  
      {(type == PLACEHOLDER) ==  
                         (extra_type == D);}; 
 
  rand d_field D; 
 
  constraint some_constraint  
      {extra_type == D -> X.X1 < D.D1; }; 
endclass : extended_packet 

                                                             
5 The full code of this example is part of our migration kit [5] 

 
set_type_override_by_type( 
   packet::get_type(), 
  extended_packet::get_type(),  
  “*” 
); 

C. Reflection 
Reflection (or introspection) is not designed to address any 

specific verification requirements, but rather to create an 
infrastructure on which solutions for specific requirements 
could be built. At the technical level it means that e keeps a 
database for each of its types. For a struct or unit, this database 
would include an entry per field, which holds information such 
as the field type, the field name, whether it is 
physical/ungenerated or not and so on. This database can then 
be used, for example, to reduce code maintenance effort by 
providing a default implementation for widely used 
functionality such as copy() or print(). Or it could be used to 
allow e structs and units to access their absolute e instance 
name, which would help users understand where messages are 
coming from. There are of course other ways, including user 
defined ones in which it could be used. 

Since SystemVerilog doesn’t support reflection, 
replacements for specific reflection-based applications must be 
discussed on a per-application basis. We will do so now for the 
most widely used reflection based application: the 
implementation of print(), copy(), pack() and other predefined 
struct utilities. 

1) print(), copy(), pack(), unpack(), compare(), 
deep_compare() 

Without reflection it is not possible to have a default 
implementation that will actually do something valuable for 
any of the methods above. More often than not, only a limited 
subset of those methods will actually be useful. However, in 
the very few cases where they are all useful, implementing 
them by hand might result in a very verbose code, and 
therefore, in a code maintenance problem.  

To solve this problem, field automation macros were 
introduced into UVM. These can be used to implement any or 
all of the above mentioned utilities for a subset or for all fields 
of an object. While they are convenient and can reduce the 
amount of code the user has to write and maintain, they have 
some downsides that users should be aware of. Additional 
debugging effort due to the use of long macro sequences, an 
overly complex implementation and a minor performance pain, 
are probably the most important ones. For a comprehensive list 
see “Are Macros Evil?”[3]. The code below shows an example 
of how these macros are used. 
class transaction extend uvm_sequence_item; 
  rand int data[];  
  `uvm_object_utils_begin(transaction) 
    `uvm_field_array_int(data, UVM_ALL_ON) 
  `uvm_object_utils_end 
    //… 
endclass : transaction 

 

 



We recommend using UVM field macros very carefully 
and only where absolutely required. In the case of 
uvm_components, most of the utility functions that are 
automatically created are not relevant in any use case. Like e 
units, uvm_components can’t be copied or unpacked, and 
there’s probably little need to compare or deep compare them. 
The only relevant method for those is probably print(), so it 
might just as well be implemented manually instead of using 
the macros. The same is often true for sequences. Transactions 
are where field macros contribute the most since all of the 
utilities can be relevant to them. However, we strongly 
recommend a case-by-case analysis. 

As part of the work on this paper we have implemented a 
version of the UVM field macros6 that uses template classes to 
reduce macro code to almost zero. This can improve 
significantly the debugging difficulties and a few of the other 
known disadvantages, but unfortunately not the complexity of 
the implementation, since it is an almost exact copy of the 
macros.  

D. Memory allocation during randomization 
To allow objects to be allocated according to the random 

values generated, e combines together memory allocation and 
random generation. SystemVerilog, on the other hand, keeps 
them separated, in order to simplify debugging and reduce 
random generation complexity. This seemingly technical 
difference has considerable implications on testbench structure 
and code, that migrating e/eRM users should be aware of.  

1) SystemVerilog solution 
The first time e/eRM users will notice the difference in 

generation, is when they try to randomize an object that 
contains a child random object. While in e the child object will 
be allocated in memory automatically after a gen action on its 
parent, in SystemVerilog it will remain null after a call to 
randomize() on its parent. To allow the child object to be 
randomized along with its parent SystemVerilog users usually 
extend the pre-defined pre_randomize() function of every class, 
to allocate the child object. 
class parent_object; 
 
  rand nested_object nested; 
 
  function void pre_randomize(); 
    //Don’t create a new object every time  
    // randomize() is called 
    if (nested == null)   
      nested = new(“nested”);  
  endfunction : pre_randomize 
 
  //… 
endclass : parent_object 
 

a) Object arrays of random size 
Things become slightly more complicated when the parent 

object contains an array of child objects. If the size of the array 
is not random, this is just a matter of introducing a loop that 

                                                             
6 The code for this version of the macros is available as part of our 
migration kit [5] 

will allocate all required elements into the example above. 
When it is random users are faced with a choice that has similar 
aspects to the “single-class”/”multi-class” one presented in the 
when inheritance section (3.B). They can either go for a two-
step generation and randomize the size before they randomize 
the array contents, as shown below:  
class obj_array_container; 
  rand int unsigned obj_array_size; 
   
  constraint obj_array_size_max_c { 
                        obj_array_size < 30; } 
   
  obj obj_array[]; 
 
  // after the size is randomized allocate 
  // the array accordingly, then randomize 
  // each element 
  function void post_randomize(); 
    obj_array = new[obj_array_size]; 
 
    foreach (obj_array[i]) 
      begin 
        obj_array[i] = new(); 
        obj_array[i].randomize(); 
      end 
  endfunction : post_randomize 
endclass : obj_array_container 
  

Or, they can allocate the maximal possible array size prior 
to randomization and randomize the size of the array together 
with everything else. Although SystemVerilog will not allocate 
new memory during generation, it will de-allocate it, so in the 
second case, it will automatically remove any array elements 
beyond the chosen size.  

Obviously, each solution has its own advantage and 
disadvantage and users must choose which of these matters 
most. The first solution is cheap in memory, but breaks 
randomization in two steps, which means that object array 
contents can’t affect the size of the array. The second solution 
is high in memory consumption, but allows the generated 
random array elements to influence the size.  

In cases where the maximum possible array size is not 
known, users can try and break the nested object into individual 
arrays of basic types. SystemVerilog will allocate dynamic 
memory for those, so their sizes can be randomized in-line with 
the rest of the random variables. Such cases, however, are rare 
and when they are found, might imply that the transaction 
object has not been delineated correctly. 

2) uvm_component arrays of random size 
When the type of the objects in the random size array is 

derived from uvm_component, most UVM users automatically 
opt for a solution similar to the two-step one shown above. 
They do so because uvm_components, once created, can’t be 
destroyed, so allocating a maximal size array and then cutting it 
down to the right size, is not an option. Implementing the two-
step solution in this case can be done in various ways, but the 
most common one is to generate the size of the array within 
some random configuration object, then make this object 
available to the parent of the array during the build_phase().  



It often happens that when the components in the array 
require some random configuration themselves, this 
configuration will find its way into the random configuration 
object as well. In some cases, to avoid having some 
configuration as fields of the components, and some inside the 
random configuration object, users simply move all 
configuration to the configuration object, creating a sort of a 
shadow semi-static hierarchy before they build the actual one.  

An alternative solution, created as part of the work on this 
paper, allows users to randomize their entire static hierarchy in 
a single step, in a very similar way to static generation of e. 
This is achieved by setting redundant uvm_components in 
arrays to an inactive state rather than de-allocating them. An 
inactive component skips all the phases following the 
build_phase(). While this eliminates the need for an external 
configuration object, and allows all components and 
configuration to be randomized together, it does come at the 
price of higher memory consumption. Whether this 
disadvantage outweighs the advantage depends on a case-by-
case analysis, and on user preferences. The code below shows 
what this solution looks like: 
// on_off_pkg 
class on_off_test extends uvm_test; 
 
  function void end_of_elaboration_phase  
                            (uvm_phase phase); 
    this.randomize(); 
  endfunction : end_of_elaboration_phase 
endclass : on_off_test 
 
class on_off_component extends uvm_component; 
  rand bit off; 
  constraint off_if_parent_off  
                     { m_parent.off -> off; }; 
  task run_phase(uvm_phase phase); 
    if (off) return; 
  endtask : run_phase 
 
  function void check_phase(uvm_phase phase); 
    if (off) return; 
  endfunction : checkphase 
 
  //more default implementations for phases… 
 
endclass : on_off_component 
 
// Testbench.  
 
class my_component extends on_off_component; 
  task run_phase(uvm_phase phase); 
    // call the super-class to check for 
    // the off bit. This should be done 
    // in every overridden phase 
    super.run_phase(phase); 
 
    // do stuff 
  endtask : run_phase 
endclass : my_component 
 
class base_test extends on_off_test; 
  rand unsigned int component_array_size 
  rand my_component component_array[]; 

 
  // array size is always the maximal size. We 
  // “delete” component by setting them to off 
  constraint component_array_size  
      { component_array.size() == MAX_SIZE; }; 
  constraint component_on_size  
      { component_array_size <= MAX_SIZE; 
 
        foreach (component_array[i]) 
          if (i<component_array_size) 
            component_array[i].off == 0; 
        else  
          component_array[i].off == 1;  
      }; 
   
  function void build_phase(uvm_phase phase) 
    component_array = new[MAX_SIZE]; 
    foreach(component_array[i]) 
      component_array[i] == 
       my_component::get_type:: 
          create({“component_array[“, i, “]”}, 
                 this); 
  endfunction : build_phase 
endclass : base_test 
 
// test 
class test1 extends base_test; 
   constraint component_array_bt_10  
       { component_array_size > 10; }; 
endclass : test1 

E. Connecting testbench to DUT signals 
e adds a layer of abstraction on top of HDL signals. From 

the e user point of view, signals, represented by simple_ports 
are just additional unit members that can be read and written in 
an almost identical way to normal unit/struct fields. e users are 
typically fully unaware of the way in which the actual 
connection to the HDL signals is performed and of any nuances 
that exist between Verilog and VHDL, reg and wire, etc.. 

To support this abstraction e simply generates automatic 
connection code prior to actual running, during the stub 
creation phase. The automatic code generator takes care of the 
specific requirements of the HDL in question, so that the users 
don’t have to deal with those. Since the automatic generation is 
performed at run time, it allows users to refer to signal names 
via strings, and use string manipulation methods to specify 
names. 

The actual signal connection code generated is similar to 
the code that is required in order to connect a SystemVerilog 
testbench to a DUT. In both cases this code is relatively simple 
and repetitive, and is made of a few simple patterns that are 
applied in a limited number of cases. SystemVerilog and UVM 
don’t support automation of connection code natively, but as 
part of the work on this paper, we have implemented such 
automation. Users can choose to learn the few simple patterns 
for connecting various types of signals to their testbench, or to 
use this package. 

 

 

 



1) Examples  
a) Connecting a Verilog reg to a tesbench 

As mentioned above, the patterns that users should follow 
for connecting signals depend on the HDL and the signal type. 
The code below shows the typical way of connecting a Verilog 
reg to a testbench. (If the code seems verbose this is because 
connecting one signal and hundred signals requires the same 
overhead) 
// signal we want to connect to 
module dut(); 
  reg x; 
   
  //… 
endmodule 
 
// use an interface to connect to the signal 
interface dut_if(); 
  // used for monitoring x 
  wire x_in; 
  // used for driving it 
  reg x_out; 
endinterface 
 
module tb(); 
  //… 
 
  dut dut_i(); 
  dut_if dut_if_i(); 
 
  // connect the monitor pin 
  assign dut_if_i.x_in = dut_i.x; 
  // connect the driver pin 
  always @(dut_if_i.x_out) 
    dut_i.x = dut_if_i.x_out; 
 
  initial begin 
    //put interface in configuration database 
    uvm_config_db#(virtual dut_if):: 
              set(null, "*", "vif", dut_if_i); 
    // … 
  end 
endmodule 
 
package test_pkg; 
  //… 
  class test extends uvm_test; 
    //… 
 
    virtual dut_if vif; 
 
    function void build_phase( 
                             uvm_phase phase); 
      //…     
      // pull virtual interface from 
      // configuration database 
      if (!uvm_config_db#(virtual dut_if):: 
                    get(this, "", "vif", vif)) 
        `uvm_error("NO_VIF", 
             "Couldn't find vif in config db") 
    endfunction : build_phase 
 
 
 

    task run_phase(uvm_phase phase); 
      //… 
      // use it to drive/monitor 
      vif.x_out = 0; 
      #1; 
      vif.x_out = 1; 
      //… 
    endtask : run_phase 
  endclass : test 
endpackage : test_pkg 
 

Similar patterns for other cases can be found through the 
link in the footnote7. 

b) Using the automation package to connect the 
testbench to DUT 

The DUT-testbench connectivity package we have created 
allows users to: 

1. Define signals inside classes rather than inside virtual 
interfaces. 

2. Attach uvm_components to specific HDL blocks using 
an hdl_path field. 

3. Define signal names that relative to a component’s 
hdl_path field. 

4. Define signal names using strings and string 
manipulation methods at run time. 

5. Control the actual connection code generated using 
normal configuration parameters. 

The example below shows how this package is used to 
define signals and connect them. 
// verification IP code 
package vip; 
  //… 
  import smp_pkg::*; 
 
  class vip_component extends aop_component8; 
    //… 
 
    // define signals 
    smp_port#(1) req; 
    smp_port#(1) ack; 
 
    // create them 
    function void build_phase( 
                             uvm_phase phase); 
      //… 
      req = smp_port#(bit)::type_id:: 
                          create("req", this); 
      ack = smp_port#(bit)::type_id:: 
                          create("ack", this); 
    endfunction : build_phase 
 
 

                                                             
7 The patterns for various signal types as well as the connection 
automation package are all part of our migration kit [5] 

8 This package extends each uvm_component derived class with an hdl_path 
field. As mentioned in the AOP section, we have created a package that allows 

this to be done easily, which is being used here. 



    // use them 
    task run_phase(uvm_phase phase); 
       
      req.set(1); 
      ack.set(0); 
      #1; 
      `uvm_info("vip_comp”, 
       $sformatf("%s value at time %0d is %d", 
        req.get_hdl_path(), $time, req.get()), 
                UVM_MEDIUM) 
      `uvm_info(“vip_comp”, 
       $sformatf("%s value at time %0d is %d", 
        ack.get_hdl_path(), $time, ack.get()), 
                UVM_MEDIUM) 
    endtask : run_phase 
  endclass : vip_component 
 
  // verification IP integration 
  class test_base extends aop_test; 
    //… 
    vip_env my_vip1; 
 
    function void build_phase( 
                             uvm_phase phase); 
      super.build_phase(phase); 
 
      // configure the hdl_path of 
      // the verification IP instance 
      uvm_config_db#(string):: 
               set(this, "my_vip1", 
                   "hdl_path", "verilog_top"); 
      uvm_config_db#(string):: 
           set(this, "my_vip1.comp", 
               "hdl_path", "verilog_block_i"); 
 
      // configure the relative hdl_path 
      // of the signal 
      uvm_config_db#(string):: 
                 set(this, "my_vip1.comp.req", 
                    "hdl_path", "req"); 
 
      // configure its HDL and type 
      uvm_config_db#(signal_hdl):: 
                 set(this, "my_vip1.comp.req", 
                     "sig_hdl", Verilog); 
      uvm_config_db#(signal_net):: 
                 set(this, "my_vip1.comp.req", 
                    "sig_net", Verilog_reg); 
    endfunction : build_phase 
  endclass : test_base 

IV. SUMMARY 
Understandably, migration from one language/methodology 

to another is not something that users look forward to. It is a 
hard learning process that results in reduced productivity for a 
significant amount of time. From a verification engineer’s 
perspective, it is nothing but another obstacle on the way to the 
real goal of getting a bug-free project out. Unfortunately, from 
a high level view that must take long term industry support into 
account, it might be a necessary evil. 

Our aim in this paper was not to persuade e/eRM users that 
migration is going to be a pleasant walk in the park. Rather, we 
have tried to show that despite the hard work and productivity 
setbacks that are always a part of it, it can also be a golden 
opportunity to update old conventions. By focusing on 
verification requirements, either those associated with specific 
testbench blocks, or with specific e/eRM features, we were 
hoping to make readers ask themselves what is it that they 
really need, and how much are they willing to pay for it. If they 
actually do so, whether or not they decide to migrate to 
SystemVerilog/UVM at the end, we have done our job. 
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