Dynamic Fault Injection Library Approach for SystemC AMS

Thomas Markwirth – Fraunhofer IIS Paul Ehrlich – COSEDA Technologies Dominik Matter – Hella Aglaia Mobile Vision GmbH

Cross-domain system level modelling

- Exploration and validation of the overall system
- Concept engineering support and system level verification
 - Combined simulation HW (an.+dig.), SW and non-electrical environment
 - Trade-off: high performance and model accuracy

SystemC/ SystemC AMS

firmware development

development

Ensuring functional safety

- Safety integrity verification by fault simulation
- Checking correct and complete implementation of technical safety requirements (ASIL)

- Improvement of diagnostic coverage and design robustness
 - State of the art: fault injection by direct integration
- Introduced: Approach for dynamical fault injections for SystemC AMS

© Accellera Systems Initiative

Design Under Test (DUT) in SystemC/ SystemC AMS Test description

Execution of a SystemC simulation

Preparations e.g.:

- create module hierarchy
- port bindings

Test case simulation run

20

DESIGN AND VE

2016

SYSTEMS INITIATIVE

How to create fault descriptions?

Fault description

Fault descriptions:

Fault descriptions:

Fault injection library structure

- Low level failure structures depend on MoC
- Established fault models
 - (stuck-at, crosstalk, open/short, delay, bridge, glitch)

• Scenarios

Fault occurrence configuration

• Periodical

• Statistical variations of ...

...time

11

Fault value configuration

• Continuous value sweep

SYSTEMS INITIATIVE

Sequence of simulations (fault parameter sweep)

Battery management application (IKEBA)

Functional validation - nominal

2016

DESIGN AND VERIFIC

Battery management application

2016

DESIGN AND VERIEICA

Battery management application

2016

DESIGN AND VERIFICATIO

Investigation of battery faults

Battery management application (IKEBA)

Functional validation - HiL

Approach used as stimulus generator

2016

DESIGN AND VERIFICATION

Conclusion

- Dynamical fault injection approach
 - Clear separation between DUT and test environment
 - Avoids code changes in the DUT
 - Prepared and user defined fault models
 - Applicable in real-time systems (HiL)
- Usage as in-depth stimulus generator possible
 - Further investigation in process
 - Enables new testbench concepts
- Wide range of investigation on system level enabled

19

- Diagnostic coverage improvement
- Software testing
- Variation testing

22 02 2022

Outlook

- Increase user friendliness
 - Automatical generation of the fault injection stimulus model (requirement management tools)
 - Alternative GUI-based approach
- Extensions of available fault models

Questions ?

What is the injection approach in details?

- SystemC callback used: *before_end_of_elaboration*
- Searching in design hierarchy for target port
- reconnecting port
- Instantiate and insert failure structure

