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Abstract—This paper introduces a fault injection library for SystemC/SystemC AMS which can be used to 
dynamically integrate failure structures into arbitrary SystemC/SystemC AMS descriptions. The injection is realized 
at the beginning of a test case run by dynamically reconnecting netlists without changing the DUT model itself. The 
approach was successfully validated on a model of a battery management system (BMS). Additionally for the same 
system, the benefits of the proposed fault library are shown and discussed for Hardware-in-the-Loop systems during 
lab validation. 
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I.  INTRODUCTION  

There is an increasing complexity of systems consisting of analogue and digital hardware and embedded 
software, as the physical environment has to be taken into consideration during the verification and validation 
phase. However, verification is not only required to test the nominal behavior. It is also necessary to check the 
behavior in case of faulty components. This ensures not only the fulfilment of functional requirements but also 
the fulfilment of safety requirements. Verification tools and methods have to support the design of functional 
correct, robust, and safe systems. Especially, the automotive industry expects solutions that are in compliance 
with the ISO 26262 functional safety standard. The presented approach can be applied in the design process of 
the related systems. 

A simulation approach based on SystemC/SystemC AMS is a good choice to validate the nominal behavior. 
It guarantees a high simulation speed while maintaining appropriate accuracy. Software development aspects can 
be included into the design and verification process. The approach also closes the bridge to Hardware-in-the-Loop 
(HiL) simulation and therefore to the lab validation. 

So far, little effort was spent on improvement of the consideration of failure aspects and appropriate methods 
to model fault behavior. This paper, therefore, describes a new method to inject faulty behavior into 
SystemC/SystemC AMS descriptions of the nominal behavior without changing the models or netlists. Thus, the 
main advantage of the solution is that for a wide class of failures it is not necessary to modify the SystemC/SystemC 
AMS description that is provided for the nominal case. Faulty behavior can be handled on the level of test scenarios. 
The potential of the approach was investigated related to the specification phase of a battery management system 
and further tested in a HiL environment during the project IKEBA*. 

State of the art fault injection methods use approaches which typically integrate faulty behavior or failure 
structures directly into the model, which is used as DUT. For a certain test case the nominal or the faulty behavior 
is used. This approach has the disadvantage of no clear separation between functional and test description. On the 
other hand, there is a risk that functional and faulty behavior are not consistent. 

 
*  The R&D project IKEBA was partially funded by the German Ministry for Education and Research (BMBF) under the grant 
16N12440. The sole responsibility for the contents rests with the authors. 



 
The paper is organized as follows: The second section describes the requirements for fault injection mechanism. 

The third section describes the proposed library exemplarily for the different SystemC/SystemC AMS domains and 
models of computation (MoC). Then in section four, the library is used together with hybrid HiL simulations. It is 
followed by a case study which is based on battery management system, in section five. Finally, section six and 
seven conclude the paper and give an outlook on future work.  

II. FAULT INJECTION REQUIREMENTS 

In order to enable usability for a wide range of different models/systems, a generic modelling approach has to 
be used. This provides the possibility to use the fault injection library for different model domains and MoCs. The 
fault injection approach should guarantee a clear and absolute separation between functional model (DUT) and test 
descriptions. This means, that the separation has to be realized for both aspects related to data management and 
runtime integration. Additionally, this gives the possibility to develop completely separate descriptions of the 
functional model (DUT), test environment and the fault description. Another key point should be a simple usability 
for own use cases. Therefore, predefined and unified interfaces have to be used. Last but not least, a central location 
for a failure configuration related to a certain test case has to exist. 

III. PROPOSED LIBRARY 

The introduced fault injection library uses a hierarchical approach. This means, the fault injection can be 
described at different abstraction levels. There are injection structures at the lowest level, e.g., in order to disconnect 
signals/ports of a DUT netlist and fault inject models. This reconnection is dynamically done before the simulation 
of the related test case is started and without changing the DUT model itself. 

A. SystemC backgrounds: 

The execution of a SystemC application is divided in two phases, elaboration and simulation [1]. During 
elaboration the module hierarchy which should be simulated in the second phase is created. In order to gain control 
of the different phases, the hardware description language SystemC provides callback functions. These callback 
functions are called by the simulator kernel and can be used to influence the execution. E.g., the callback function 
before_end _of_elaboration is called after creation of the module hierarchy, but before the port binding is 
completed. Therefore, the module hierarchy can still be extended or manipulated. This language feature is used 
in order to instantiate fault structures which will be injected into the DUT hierarchy. 

B. Reconnecting: 

Based on the language functionality which was described in 
the last section, the design environment COSIDE1 already 
provides a library function sc_reconnect_port. The function 
takes references to the target port, the new signal and 
additionally a signal reference to return the previously 
connected signal. If this function is called during the 
before_end_of_elaboration callback, the references can be 
used in order to insert a switchable driver.  

In principle, this approach is usable for all MoCs in a 
SystemC/ SystemC AMS system with different kinds of low 
level fault injection structure models. A low level structure 
model represents the lowest abstraction level of fault 
injection models in the library and could be a simple 
multiplexer, for example for non-conservative signals/ports. 
Afterwards, such a multiplexer enables the switching 
between the original and a new driver, for instance a new 
source (e.g. for stuck-at value) or another signal from inside or outside the DUT (e.g. for crosstalk). 

 

1 – COSIDE is a design environment provided by the COSEDA Technologies  GmbH 

Figure 1: Reconnecting approach, source: COSEDA 
Technologies GmbH 



 
For linear networks, as one of the SystemC AMS MoCs, a switchable resistor is instantiated, instead. By using 

the references to the original connected node and the terminal, the resistance is connected between both. Afterwards, 
the resistance value is definable by a separate port.  

Depending on the used fault model, the instantiation of an 
additional switchable resistance and a voltage source can be 
necessary in order to connect an alternative source to the target 
terminal. Additionally, it has to be considered that the MoC and the 
signal type of the source and the target have to be identical. Figure 2 
shows the low level structures used for different MoCs. 

C. Fault models: 

The fault injection library includes a number of classical fault 
models, which are based on the low level injection structures, introduced in the previous sections. The fault models 
represent the next higher abstraction level in the library. Actually, classes for the following fault models are 
available: stuck-at (value or signal), crosstalk, bridging, open/ short, delay and glitch. It is planned to extend this 
enumeration. The figure below shows examples. 

 

Figure 4: stuck at (value) and crosstalk examples for linear networks 

The fault models are realized as template classes. This means, that they are usable for several signal types. The 
data type is the template argument and has to be defined during the instantiation. Contrary to the data type the 
MoC type is recognized automatically by identifying the signal/ port derivations. Therefore, the right low level 
structure is chosen automatically. During the instantiation of a fault model, an arguments set consisting of at least 
a string representing the name of the target port and its hierarchy are necessary.  It therefore represents the location 
where the fault should be injected. Optional is a second string of an object, which should be the new driver. This 
new driver can also be realized by instantiating an additional module prior to the instantiation of the related fault 
model. 

The constructor of the fault model will call a function get_object by using the object name strings above. If these 
objects could be found successfully, the references of the expected objects are given back by this function. The 
get_object function with extended pattern matching is also a part of the COSIDE design environment and allows 
to find an object in the module 
hierarchy by searching its object 
name during the runtime.   

The fault model crosstalk allows, 
especially for digital or non-
conservative signals/ ports, to define 
the kind of logical combination of 
original and new driver. Actually 
available are the logical 
combinations WAND, WOR, ADD, 
SUB, REPLACE and USER. The last 
one enables the possibility to call a 

(Optional)

(Optional)

for eln networksfor sc/ tdf connections

Figure 2: low level failure structures for different 
domains 

Figure 6: logical combination types for crosstalk in non-conservative networks 
 

Inserted low level structure

Figure 5: logical combination types for crosstalk in non-conservative networks 



 
user function, which realizes the combination. 

D. Scenarios: 

The highest abstraction level in the library is represented by the scenario. A scenario instantiates one or more 
fault models and allows to configure it/them. The library includes a scenario template class which gives the 
possibility to use the predefined fault models. The template argument of the scenario is the data type of the target 
port. Additionally, the constructor expects some arguments. The first constructor argument includes a vector of 
string pairs. As a scenario can handle more than one fault model instances, these pairs are the target and the source 
ports for each of the fault models. A second argument is the name of the desired fault model. The type of this 
argument is an enumeration, which includes all predefined fault models. Additional constructor arguments could 
be necessary, for example the logical combination in the crosstalk fault model. The fault scenario template includes 
the possibility to activate fault models permanently. Alternatively, a sequence for periodical activation/ deactivation 
of fault models can be configured. Additionally, the sweep of e.g. the voltage for the stuck-at fault models can be 
configured, too. 

E. Applying the library and the stimulus model: 

Creating a separate SystemC stimulus module is a proven approach to apply the fault injection library for specific 
investigations. The instantiation and configuration of one or more fault injection scenarios is the only task of such 
a stimulus model. Additionally, the stimulus module provides activation/ deactivation and, optional, tracing 
functionalities related to the fault. In most cases, the fault injection stimulus module is related to a specific test 
case. Therefore, it is suggested to create a special fault injection stimulus module for each test case which includes 
fault injection. Figure 7 shows an example of a fault injection stimulus model, which includes crosstalk and stuck-
at scenarios 

F. Activation during a test case: 

The simplest way to integrate fault injection in a special test case is to instantiate the fault injection stimulus 
module, which was described in the last section. The fault injection can be activated by calling the activation 

stimuli_fault_injection_spi(sc_core::sc_module_name nm, params pa = params() ) : p(pa) 
{ 
  //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
  /// Create 1. Scenario: crosstalk from global clock signal to the chip select and mosi signals oft he SPI interface 
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
  // define source and target ports 
  port.push_back("*i_spi_slave1.mosi"); 
  port_q.push_back("*i_clk_src_sc1.clk_o"); 
  port.push_back("*i_spi_slave1.csq_in"); 
  port_q.push_back("*i_clk_src_sc1.clk_o"); 
 
  // ..and instantiate the scenario 
  cross_f1 = new fault_scenario_template<bool >(std::make_pair(port, port_b), fault_injection_base::FAULT_CROSSTALK, fault_injection_base::REPLACE); 
 
  //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
  /// Create 2. Scenario: SPI-clock: Stuck-at “true“ 
  //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
  port_c.push_back("*i_spi_slave1.sclk_in"); 
  port_d.push_back(""); 
  stuck_at_err1  = new fault_scenario_template<bool >(std::make_pair(port_c, port_d), fault_injection_base::FAULT_STUCK_AT); 
  stuck_at_err1->fehler_mod[0]->set_voltage(double(1)); //Haftfehler für boolean Port auf Wert true 
 
  fault_duration  = sc_core::sc_time(3.0, SC_US); 
 
  stat_mode_val = STAT_STATISTICAL_SUB; 
  SC_THREAD(sequence_of_all_faults); 
 
  enable_fault  = false; 
} 

Figure 7: example of a fault injection stimulus module, which creates different scenarios 

   :: 
///////////////////////////////////////////////////////////////// 
void ikeba_toplevel_2_stim_bmic_bh_error::tb_measure_inclusion() 
{ 
 
  /////////////////////////////////////////////////////////////// 
  // instantiation of a fault injection stimulus module 
  ////////////////////////////////////////////////////////////// 
  fault_stim = new stimuli_fault_injection_ikeba("fault_stim"); 

   :: 
 
 

   :: 
//////////////////////////////////////////////////////////////////// 
void ikeba_toplevel_2_stim_bmic_bh_error::stimulus_sequence() 
{ 
  //dynamic control sequence 
  wait(1.0, SC_US); 
  dut->resn.write(false); 
  wait(2.0, SC_US); 
  dut->resn.write(true); 
  wait(100.0, SC_US); 
 
  wait(0.1, SC_SEC); 
  fault_stim->activate_fault_injection(true); //activiation of fault injection 

   :: 

Figure 8: instantiation and activation of a stimulus fault model inside a generic test case file 



 
function of the fault injection stimulus model depending on either the simulation time or a trigger event. The 
COSIDE environment enables the configuration of test cases by using a generic approach and provides the 
automated generation of template files, so-called generic test case files. Typically, the activation/ deactivation of 
the fault injection is described in the stimulus_sequence part of such a generic test case file.  

G. Inclusion of statistical aspects: 

The occurrence of faults in real systems can depend on diverse conditions, which are very often not predictable. 
In order to reproduce similar behavior, it is state of the art to use statistical methods.  

Statistical functionality can be integrated in the actual release of the fault injection library by using a statistical 
library, which was introduced in [2]. For a certain test case it is possible to dice both, the time when a failure occurs 
and, if more than one fault model is included as well as the failure location. 

H. Specifics of TLM-transactions: 

The approach which was described in the previous sections is not applicable for TLM-transactions, due to 
missing signals and ports in a literal sense. Instead, TLM uses so-called sockets in order to transmit the information, 
which can be understood as using access functions. Therefore, fault injection into TLM transactions has to be 
realized in a completely different way.  

A practicable approach for fault 
injection into TLM transactions 
would be the usage of so-called 
adaptors. Such adaptors represent 
interconnects which are 
integrated automatically between 
TLM initiators and/ or TLM targets. The TLM adaptor approach was already described in [3]. The advantage of 
these adaptors is their high flexibility, which can be used for fault injections, too. Special manipulation function 
have to be provided depending on the used transaction, because the transaction content is specific to the actual 
transaction as well as its manipulation. On the other hand, there is an effort to write and automatically integrate the 
adaptors into specific TLM models. However, the usage of the tlm_generic_libraries [4] for custom TLM 
applications extremely simplifies this task. Using adaptors for fault injection into TLM transactions is a reliable 
approach. An investigation of other TLM approaches was not done and is therefore out of focus for this work.  

IV. FAULT INJECTION DURING LAB VALIDATION 

The above introduced fault injection mechanism is not limited to a virtual prototype and can be applied during 
lab validation or even re-used from the virtual prototype. By lab validation we understand the test of early available 
parts or prototypes of the system, are insufficient for a complete system test. Therefore, we distinguish between the 
following three major groups of prototypes: 

 Pure Virtual – a virtual prototype completely modeled and executed by a simulator 

 Real Hardware – a setup where every part of the prototype is represented by an existing piece of hardware 

 Mixed (HiL) – a mix of both, thereby the virtual part is executed on special hardware (HiL Tester) 

The requirements for such a mixed environment aim to obtain a HiL-Tester capable of running SystemC AMS 
for the model part as well as hardware/ software interfaces, which guarantee value and timing accurate connections. 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
/// Create 1. Scenario: Crosstalk from a constant source; occurrence time and active failure location are statistical 
/// varied and activated/ deactivated in a sequence loop 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
scenario1 = new fault_scenario_template<bool >(std::make_pair(port, port_b), fault_injection_base::FAULT_CROSSTALK, fault_injection_base::REPLACE); 
scenario1->stat_failure_time_function  = exponential; 
scenario1->location_function   = fault_location; 
scenario1->set_mean_fault_occurrence( sc_core::sc_time(30.0, SC_US) ); 
scenario1->set_fault_duration(  sc_core::sc_time(5.0, SC_US) )); 
stat_mode_val = STAT_STATISTICAL_SUB; 

Figure 9: Example of fault injection by using statistical functions from the statistical libraries 

Figure 10: adaptor insertion example, source: [3] 



 
This is discussed in detail in [7]. To compare the different types of prototypes they are evaluated regarding different 
aspects listed below: 

 Debug – Accessibility and traceability of signals for error root cause analysis  

 Speed/Detail – Tradeoff between speed vs detail level of the model 

 Fault Injection – Possibility to manipulate expected behavior to evaluate system robustness 

 

Figure 11 Comparison of different tpyes of prototypes 

The result of the comparison is shown in Figure 11. The table therefore shows that virtual prototypes are most 
easy to debug and always have a tradeoff between modelling detail and the resulting simulation speed. Especially 
when it comes to fault injection the virtual prototypes are superior and can use the fault injection library discussed 
in this paper. The hardware prototypes on the other hand maintain by nature every piece of detail, while maintaining 
full speed, but have a very limited accessibility to signals and internals for debugging. Their fault injection is limited 
to locations applicable, the resulting consequences and the deterministic repeatability. Locations are for example 
are accessible terminals which can be cut or short circuited. Consequences could be permanently broken hardware 
or hazard to the environment. The HiL prototype contains real hardware along with the model running on the HiL-
Tester. Thereby the discussed advantages for software and hardware parts remain but the partitioning can be varied 
as needed up to a full hardware model of the DUT. At this point only the test bench would remain in SystemC AMS 
on the HiL-Tester.  

To highlight the benefits of the mixed prototype, the partitioning of the BMS of the case study is discussed. One 
scenario for the prototype would be the firmware development. Therefore the control unit with its application 
processor is used in real hardware to realistically run the firmware, while the environment remains in software to 
easily inject faults, for which the firmware should be resistant. Especially the battery cells should remain in software 
as they could cause a fire or get damaged if short circuited, which would lead to replacements during firmware 
design or regression runs. This also benefits the test time because batteries have to be charged and discharged to 
obtain a certain state of charge, which is not even deterministically reproducible because complex physicochemical 
reactions are involved. The HiL setup also provides a realistic and safe environment for early versions of the 
firmware, since faults can also occur unintended during the firmware development. Therefore, the introduced fault 
injection library also aids the design flow during lab validation and significantly improves test coverage at this 
stage.  

V.  CASE STUDY BATTERY MANAGEMENT 

An important key point while developing, especially automotive components and systems is to guarantee their 
functional safety. An applicability of the fault injection according to this topic for real systems was investigated in 
the government funded project IKEBA. The basis for the work was a system model of a battery management system 
which was created in the project. This complex system model includes beside digital and analog hardware 
components also non-electrical effects and real software applications of the target system. The battery model was 
created by using characterization results of true battery cells made by the KIT in Karlsruhe. 

One aim of the project was to investigate the ability of the management software application of the project 
partner Hella to recognize failures fast enough and, if necessary, to react on them, e.g. after single cell damages or 
overheating. During the project it was decided that a dynamical fault injection provides the best approach to fulfill 
this task. 

Pure Virtual

• Debug ++
• Environment model (+)

‐ Virtual Sensors
• Speed/Detail ‐‐
• Failure Injection ++

Real Hardware

• Debug ‐‐
• Environment model (+)

‐ Hardware Sensor
• Speed/Detail ++
• Failure Injection ‐‐

Mixed (HiL)

• Debug +
• Environment model (++)

• Both possible
• Speed/Detail +
• Failure Injection +



 

 

Figure 12: Toplevel of the battery management system model 

Therefore, the fault injection approach was exemplary used for the following tasks: 

- Investigation of the influence while battery cells run out of specified voltage or temperature ranges 

- Investigations of communication failures in the SPI interface 

- Provoke dynamical load balancing 

- Generate special stimuli, e.g. for the internal ADC of the BMIC 

Exemplary, the following figure shows the application of the 
library to inject faults into battery pack models. This is done by 
inserting switchable resistances in series to the terminal 
connections of a battery cell. Afterwards, the related cell can be 
deactivated by setting the resistance value to high impedance. An 
additional voltage source in parallel to the battery cell is activated 
in this case. Finally, the voltage on the cell terminals can be 
defined by the test case description. This description can include 
several scenarios like over/ under voltage, short spikes, ramps/ 
sweeps or many other scenarios. Figure 14 shows a comparison 
of simulation results for the nominal case and a faulty cell voltage. 
The test case which includes fault injection is used in order to 
check the ability and reaction time of the application for detecting 
battery failures. Therefore, this simple example shows the high 
flexibility of the approach.  

Battery BMIC‐Model 

Application‐Model

Controller‐Model 
Current‐Sensor 

Load‐Scenario 

Temp.‐Sensor 

Balancing‐Network

Figure 13: fault injection into battery packs



 
 Overall, the system 
model assisted in the 
implementation and 
test phase of the BMS-
software. The dynamic 
fault injection in 
particular allowed for 
accelerated 
implementation of the 
fault reaction routines 
by provinding a virtual 
testbench for cell 
boundary conditions 
(like described above). 
Although the 
functional safety 
features of the IKEBA-software application are far from extensive, the experience gained during the project 
provides confidence that full functional safety applications would benefit from the dynamic fault injection 
approach. The virtual system model was faster to set up than an equivalent HiL-Tester while being of lower cost 
and although it cannot replace HiL-tests completely, it can certainly help to reduce HiL workload.  

VI. CONCLUSION  

The presented library allows the user to non-intrusively inject faults in ports of different domains in SystemC 
AMS, which includes normal SystemC ones. Therefore the normal test bench includes an additional SystemC 
model which dynamically rewires the DUT to include the failure, while also providing control handles for it. The 
library has been successfully used to inject faults into different parts of a battery management system (BMS) 
developed during the IKEBA research project. 

VII. FUTURE WORK 

Although the library has proven successfully to work for different SystemC AMS projects the authors wish to 
continue the work to improve its applicability. The library should be easily to use and integrate, for example into 
an existing UVM-SystemC environment [8]. Therefore it can provide additional or extend test sequences, leading 
to more comprehensive test runs improving the verification and validation coverages. Another focus will be the 
detection of the injected faults and the traceability of its propagation throughout the DUT.  
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