

Dynamic Fault Injection Library Approach for
SystemC AMS

Thomas Markwirth, Fraunhofer IIS - Design Automation Division - EAS, Dresden, Germany
(Thomas.Markwirth@eas.iis.fraunhofer.de)

Paul Ehrlich, COSEDA Technologies GmbH, Dresden, Germany
(Paul.Ehrlich@coseda-tech.com)

Dominik Matter, Hella Aglaia Mobile Vision GmbH, Berlin, Germany
(Dominik.Matter@hella.com)

Abstract—This paper introduces a fault injection library for SystemC/SystemC AMS which can be used to
dynamically integrate failure structures into arbitrary SystemC/SystemC AMS descriptions. The injection is realized
at the beginning of a test case run by dynamically reconnecting netlists without changing the DUT model itself. The
approach was successfully validated on a model of a battery management system (BMS). Additionally for the same
system, the benefits of the proposed fault library are shown and discussed for Hardware-in-the-Loop systems during
lab validation.

Keywords—Verification, Validation, SystemC AMS, Fault injection, HiL, Hardware Acceleration

I. INTRODUCTION

There is an increasing complexity of systems consisting of analogue and digital hardware and embedded
software, as the physical environment has to be taken into consideration during the verification and validation
phase. However, verification is not only required to test the nominal behavior. It is also necessary to check the
behavior in case of faulty components. This ensures not only the fulfilment of functional requirements but also
the fulfilment of safety requirements. Verification tools and methods have to support the design of functional
correct, robust, and safe systems. Especially, the automotive industry expects solutions that are in compliance
with the ISO 26262 functional safety standard. The presented approach can be applied in the design process of
the related systems.

A simulation approach based on SystemC/SystemC AMS is a good choice to validate the nominal behavior.
It guarantees a high simulation speed while maintaining appropriate accuracy. Software development aspects can
be included into the design and verification process. The approach also closes the bridge to Hardware-in-the-Loop
(HiL) simulation and therefore to the lab validation.

So far, little effort was spent on improvement of the consideration of failure aspects and appropriate methods
to model fault behavior. This paper, therefore, describes a new method to inject faulty behavior into
SystemC/SystemC AMS descriptions of the nominal behavior without changing the models or netlists. Thus, the
main advantage of the solution is that for a wide class of failures it is not necessary to modify the SystemC/SystemC
AMS description that is provided for the nominal case. Faulty behavior can be handled on the level of test scenarios.
The potential of the approach was investigated related to the specification phase of a battery management system
and further tested in a HiL environment during the project IKEBA*.

State of the art fault injection methods use approaches which typically integrate faulty behavior or failure
structures directly into the model, which is used as DUT. For a certain test case the nominal or the faulty behavior
is used. This approach has the disadvantage of no clear separation between functional and test description. On the
other hand, there is a risk that functional and faulty behavior are not consistent.

* The R&D project IKEBA was partially funded by the German Ministry for Education and Research (BMBF) under the grant
16N12440. The sole responsibility for the contents rests with the authors.

The paper is organized as follows: The second section describes the requirements for fault injection mechanism.

The third section describes the proposed library exemplarily for the different SystemC/SystemC AMS domains and
models of computation (MoC). Then in section four, the library is used together with hybrid HiL simulations. It is
followed by a case study which is based on battery management system, in section five. Finally, section six and
seven conclude the paper and give an outlook on future work.

II. FAULT INJECTION REQUIREMENTS

In order to enable usability for a wide range of different models/systems, a generic modelling approach has to
be used. This provides the possibility to use the fault injection library for different model domains and MoCs. The
fault injection approach should guarantee a clear and absolute separation between functional model (DUT) and test
descriptions. This means, that the separation has to be realized for both aspects related to data management and
runtime integration. Additionally, this gives the possibility to develop completely separate descriptions of the
functional model (DUT), test environment and the fault description. Another key point should be a simple usability
for own use cases. Therefore, predefined and unified interfaces have to be used. Last but not least, a central location
for a failure configuration related to a certain test case has to exist.

III. PROPOSED LIBRARY

The introduced fault injection library uses a hierarchical approach. This means, the fault injection can be
described at different abstraction levels. There are injection structures at the lowest level, e.g., in order to disconnect
signals/ports of a DUT netlist and fault inject models. This reconnection is dynamically done before the simulation
of the related test case is started and without changing the DUT model itself.

A. SystemC backgrounds:

The execution of a SystemC application is divided in two phases, elaboration and simulation [1]. During
elaboration the module hierarchy which should be simulated in the second phase is created. In order to gain control
of the different phases, the hardware description language SystemC provides callback functions. These callback
functions are called by the simulator kernel and can be used to influence the execution. E.g., the callback function
before_end _of_elaboration is called after creation of the module hierarchy, but before the port binding is
completed. Therefore, the module hierarchy can still be extended or manipulated. This language feature is used
in order to instantiate fault structures which will be injected into the DUT hierarchy.

B. Reconnecting:

Based on the language functionality which was described in
the last section, the design environment COSIDE1 already
provides a library function sc_reconnect_port. The function
takes references to the target port, the new signal and
additionally a signal reference to return the previously
connected signal. If this function is called during the
before_end_of_elaboration callback, the references can be
used in order to insert a switchable driver.

In principle, this approach is usable for all MoCs in a
SystemC/ SystemC AMS system with different kinds of low
level fault injection structure models. A low level structure
model represents the lowest abstraction level of fault
injection models in the library and could be a simple
multiplexer, for example for non-conservative signals/ports.
Afterwards, such a multiplexer enables the switching
between the original and a new driver, for instance a new
source (e.g. for stuck-at value) or another signal from inside or outside the DUT (e.g. for crosstalk).

1 – COSIDE is a design environment provided by the COSEDA Technologies GmbH

Figure 1: Reconnecting approach, source: COSEDA
Technologies GmbH

For linear networks, as one of the SystemC AMS MoCs, a switchable resistor is instantiated, instead. By using

the references to the original connected node and the terminal, the resistance is connected between both. Afterwards,
the resistance value is definable by a separate port.

Depending on the used fault model, the instantiation of an
additional switchable resistance and a voltage source can be
necessary in order to connect an alternative source to the target
terminal. Additionally, it has to be considered that the MoC and the
signal type of the source and the target have to be identical. Figure 2
shows the low level structures used for different MoCs.

C. Fault models:

The fault injection library includes a number of classical fault
models, which are based on the low level injection structures, introduced in the previous sections. The fault models
represent the next higher abstraction level in the library. Actually, classes for the following fault models are
available: stuck-at (value or signal), crosstalk, bridging, open/ short, delay and glitch. It is planned to extend this
enumeration. The figure below shows examples.

Figure 4: stuck at (value) and crosstalk examples for linear networks

The fault models are realized as template classes. This means, that they are usable for several signal types. The
data type is the template argument and has to be defined during the instantiation. Contrary to the data type the
MoC type is recognized automatically by identifying the signal/ port derivations. Therefore, the right low level
structure is chosen automatically. During the instantiation of a fault model, an arguments set consisting of at least
a string representing the name of the target port and its hierarchy are necessary. It therefore represents the location
where the fault should be injected. Optional is a second string of an object, which should be the new driver. This
new driver can also be realized by instantiating an additional module prior to the instantiation of the related fault
model.

The constructor of the fault model will call a function get_object by using the object name strings above. If these
objects could be found successfully, the references of the expected objects are given back by this function. The
get_object function with extended pattern matching is also a part of the COSIDE design environment and allows
to find an object in the module
hierarchy by searching its object
name during the runtime.

The fault model crosstalk allows,
especially for digital or non-
conservative signals/ ports, to define
the kind of logical combination of
original and new driver. Actually
available are the logical
combinations WAND, WOR, ADD,
SUB, REPLACE and USER. The last
one enables the possibility to call a

(Optional)

(Optional)

for eln networksfor sc/ tdf connections

Figure 2: low level failure structures for different
domains

Figure 6: logical combination types for crosstalk in non-conservative networks

Inserted low level structure

Figure 5: logical combination types for crosstalk in non-conservative networks

user function, which realizes the combination.

D. Scenarios:

The highest abstraction level in the library is represented by the scenario. A scenario instantiates one or more
fault models and allows to configure it/them. The library includes a scenario template class which gives the
possibility to use the predefined fault models. The template argument of the scenario is the data type of the target
port. Additionally, the constructor expects some arguments. The first constructor argument includes a vector of
string pairs. As a scenario can handle more than one fault model instances, these pairs are the target and the source
ports for each of the fault models. A second argument is the name of the desired fault model. The type of this
argument is an enumeration, which includes all predefined fault models. Additional constructor arguments could
be necessary, for example the logical combination in the crosstalk fault model. The fault scenario template includes
the possibility to activate fault models permanently. Alternatively, a sequence for periodical activation/ deactivation
of fault models can be configured. Additionally, the sweep of e.g. the voltage for the stuck-at fault models can be
configured, too.

E. Applying the library and the stimulus model:

Creating a separate SystemC stimulus module is a proven approach to apply the fault injection library for specific
investigations. The instantiation and configuration of one or more fault injection scenarios is the only task of such
a stimulus model. Additionally, the stimulus module provides activation/ deactivation and, optional, tracing
functionalities related to the fault. In most cases, the fault injection stimulus module is related to a specific test
case. Therefore, it is suggested to create a special fault injection stimulus module for each test case which includes
fault injection. Figure 7 shows an example of a fault injection stimulus model, which includes crosstalk and stuck-
at scenarios

F. Activation during a test case:

The simplest way to integrate fault injection in a special test case is to instantiate the fault injection stimulus
module, which was described in the last section. The fault injection can be activated by calling the activation

stimuli_fault_injection_spi(sc_core::sc_module_name nm, params pa = params()) : p(pa)
{
 //
 /// Create 1. Scenario: crosstalk from global clock signal to the chip select and mosi signals oft he SPI interface
 //

 // define source and target ports
 port.push_back("*i_spi_slave1.mosi");
 port_q.push_back("*i_clk_src_sc1.clk_o");
 port.push_back("*i_spi_slave1.csq_in");
 port_q.push_back("*i_clk_src_sc1.clk_o");

 // ..and instantiate the scenario
 cross_f1 = new fault_scenario_template<bool >(std::make_pair(port, port_b), fault_injection_base::FAULT_CROSSTALK, fault_injection_base::REPLACE);

 //
 /// Create 2. Scenario: SPI-clock: Stuck-at “true“
 //
 port_c.push_back("*i_spi_slave1.sclk_in");
 port_d.push_back("");
 stuck_at_err1 = new fault_scenario_template<bool >(std::make_pair(port_c, port_d), fault_injection_base::FAULT_STUCK_AT);
 stuck_at_err1->fehler_mod[0]->set_voltage(double(1)); //Haftfehler für boolean Port auf Wert true

 fault_duration = sc_core::sc_time(3.0, SC_US);

 stat_mode_val = STAT_STATISTICAL_SUB;
 SC_THREAD(sequence_of_all_faults);

 enable_fault = false;
}

Figure 7: example of a fault injection stimulus module, which creates different scenarios

 ::
///
void ikeba_toplevel_2_stim_bmic_bh_error::tb_measure_inclusion()
{

 ///
 // instantiation of a fault injection stimulus module
 //
 fault_stim = new stimuli_fault_injection_ikeba("fault_stim");

 ::

 ::
//
void ikeba_toplevel_2_stim_bmic_bh_error::stimulus_sequence()
{
 //dynamic control sequence
 wait(1.0, SC_US);
 dut->resn.write(false);
 wait(2.0, SC_US);
 dut->resn.write(true);
 wait(100.0, SC_US);

 wait(0.1, SC_SEC);
 fault_stim->activate_fault_injection(true); //activiation of fault injection

 ::

Figure 8: instantiation and activation of a stimulus fault model inside a generic test case file

function of the fault injection stimulus model depending on either the simulation time or a trigger event. The
COSIDE environment enables the configuration of test cases by using a generic approach and provides the
automated generation of template files, so-called generic test case files. Typically, the activation/ deactivation of
the fault injection is described in the stimulus_sequence part of such a generic test case file.

G. Inclusion of statistical aspects:

The occurrence of faults in real systems can depend on diverse conditions, which are very often not predictable.
In order to reproduce similar behavior, it is state of the art to use statistical methods.

Statistical functionality can be integrated in the actual release of the fault injection library by using a statistical
library, which was introduced in [2]. For a certain test case it is possible to dice both, the time when a failure occurs
and, if more than one fault model is included as well as the failure location.

H. Specifics of TLM-transactions:

The approach which was described in the previous sections is not applicable for TLM-transactions, due to
missing signals and ports in a literal sense. Instead, TLM uses so-called sockets in order to transmit the information,
which can be understood as using access functions. Therefore, fault injection into TLM transactions has to be
realized in a completely different way.

A practicable approach for fault
injection into TLM transactions
would be the usage of so-called
adaptors. Such adaptors represent
interconnects which are
integrated automatically between
TLM initiators and/ or TLM targets. The TLM adaptor approach was already described in [3]. The advantage of
these adaptors is their high flexibility, which can be used for fault injections, too. Special manipulation function
have to be provided depending on the used transaction, because the transaction content is specific to the actual
transaction as well as its manipulation. On the other hand, there is an effort to write and automatically integrate the
adaptors into specific TLM models. However, the usage of the tlm_generic_libraries [4] for custom TLM
applications extremely simplifies this task. Using adaptors for fault injection into TLM transactions is a reliable
approach. An investigation of other TLM approaches was not done and is therefore out of focus for this work.

IV. FAULT INJECTION DURING LAB VALIDATION

The above introduced fault injection mechanism is not limited to a virtual prototype and can be applied during
lab validation or even re-used from the virtual prototype. By lab validation we understand the test of early available
parts or prototypes of the system, are insufficient for a complete system test. Therefore, we distinguish between the
following three major groups of prototypes:

 Pure Virtual – a virtual prototype completely modeled and executed by a simulator

 Real Hardware – a setup where every part of the prototype is represented by an existing piece of hardware

 Mixed (HiL) – a mix of both, thereby the virtual part is executed on special hardware (HiL Tester)

The requirements for such a mixed environment aim to obtain a HiL-Tester capable of running SystemC AMS
for the model part as well as hardware/ software interfaces, which guarantee value and timing accurate connections.

//
/// Create 1. Scenario: Crosstalk from a constant source; occurrence time and active failure location are statistical
/// varied and activated/ deactivated in a sequence loop
//
scenario1 = new fault_scenario_template<bool >(std::make_pair(port, port_b), fault_injection_base::FAULT_CROSSTALK, fault_injection_base::REPLACE);
scenario1->stat_failure_time_function = exponential;
scenario1->location_function = fault_location;
scenario1->set_mean_fault_occurrence(sc_core::sc_time(30.0, SC_US));
scenario1->set_fault_duration(sc_core::sc_time(5.0, SC_US)));
stat_mode_val = STAT_STATISTICAL_SUB;

Figure 9: Example of fault injection by using statistical functions from the statistical libraries

Figure 10: adaptor insertion example, source: [3]

This is discussed in detail in [7]. To compare the different types of prototypes they are evaluated regarding different
aspects listed below:

 Debug – Accessibility and traceability of signals for error root cause analysis

 Speed/Detail – Tradeoff between speed vs detail level of the model

 Fault Injection – Possibility to manipulate expected behavior to evaluate system robustness

Figure 11 Comparison of different tpyes of prototypes

The result of the comparison is shown in Figure 11. The table therefore shows that virtual prototypes are most
easy to debug and always have a tradeoff between modelling detail and the resulting simulation speed. Especially
when it comes to fault injection the virtual prototypes are superior and can use the fault injection library discussed
in this paper. The hardware prototypes on the other hand maintain by nature every piece of detail, while maintaining
full speed, but have a very limited accessibility to signals and internals for debugging. Their fault injection is limited
to locations applicable, the resulting consequences and the deterministic repeatability. Locations are for example
are accessible terminals which can be cut or short circuited. Consequences could be permanently broken hardware
or hazard to the environment. The HiL prototype contains real hardware along with the model running on the HiL-
Tester. Thereby the discussed advantages for software and hardware parts remain but the partitioning can be varied
as needed up to a full hardware model of the DUT. At this point only the test bench would remain in SystemC AMS
on the HiL-Tester.

To highlight the benefits of the mixed prototype, the partitioning of the BMS of the case study is discussed. One
scenario for the prototype would be the firmware development. Therefore the control unit with its application
processor is used in real hardware to realistically run the firmware, while the environment remains in software to
easily inject faults, for which the firmware should be resistant. Especially the battery cells should remain in software
as they could cause a fire or get damaged if short circuited, which would lead to replacements during firmware
design or regression runs. This also benefits the test time because batteries have to be charged and discharged to
obtain a certain state of charge, which is not even deterministically reproducible because complex physicochemical
reactions are involved. The HiL setup also provides a realistic and safe environment for early versions of the
firmware, since faults can also occur unintended during the firmware development. Therefore, the introduced fault
injection library also aids the design flow during lab validation and significantly improves test coverage at this
stage.

V. CASE STUDY BATTERY MANAGEMENT

An important key point while developing, especially automotive components and systems is to guarantee their
functional safety. An applicability of the fault injection according to this topic for real systems was investigated in
the government funded project IKEBA. The basis for the work was a system model of a battery management system
which was created in the project. This complex system model includes beside digital and analog hardware
components also non-electrical effects and real software applications of the target system. The battery model was
created by using characterization results of true battery cells made by the KIT in Karlsruhe.

One aim of the project was to investigate the ability of the management software application of the project
partner Hella to recognize failures fast enough and, if necessary, to react on them, e.g. after single cell damages or
overheating. During the project it was decided that a dynamical fault injection provides the best approach to fulfill
this task.

Pure Virtual

• Debug ++
• Environment model (+)

‐ Virtual Sensors
• Speed/Detail ‐‐
• Failure Injection ++

Real Hardware

• Debug ‐‐
• Environment model (+)

‐ Hardware Sensor
• Speed/Detail ++
• Failure Injection ‐‐

Mixed (HiL)

• Debug +
• Environment model (++)

• Both possible
• Speed/Detail +
• Failure Injection +

Figure 12: Toplevel of the battery management system model

Therefore, the fault injection approach was exemplary used for the following tasks:

- Investigation of the influence while battery cells run out of specified voltage or temperature ranges

- Investigations of communication failures in the SPI interface

- Provoke dynamical load balancing

- Generate special stimuli, e.g. for the internal ADC of the BMIC

Exemplary, the following figure shows the application of the
library to inject faults into battery pack models. This is done by
inserting switchable resistances in series to the terminal
connections of a battery cell. Afterwards, the related cell can be
deactivated by setting the resistance value to high impedance. An
additional voltage source in parallel to the battery cell is activated
in this case. Finally, the voltage on the cell terminals can be
defined by the test case description. This description can include
several scenarios like over/ under voltage, short spikes, ramps/
sweeps or many other scenarios. Figure 14 shows a comparison
of simulation results for the nominal case and a faulty cell voltage.
The test case which includes fault injection is used in order to
check the ability and reaction time of the application for detecting
battery failures. Therefore, this simple example shows the high
flexibility of the approach.

Battery BMIC‐Model

Application‐Model

Controller‐Model
Current‐Sensor

Load‐Scenario

Temp.‐Sensor

Balancing‐Network

Figure 13: fault injection into battery packs

 Overall, the system
model assisted in the
implementation and
test phase of the BMS-
software. The dynamic
fault injection in
particular allowed for
accelerated
implementation of the
fault reaction routines
by provinding a virtual
testbench for cell
boundary conditions
(like described above).
Although the
functional safety
features of the IKEBA-software application are far from extensive, the experience gained during the project
provides confidence that full functional safety applications would benefit from the dynamic fault injection
approach. The virtual system model was faster to set up than an equivalent HiL-Tester while being of lower cost
and although it cannot replace HiL-tests completely, it can certainly help to reduce HiL workload.

VI. CONCLUSION

The presented library allows the user to non-intrusively inject faults in ports of different domains in SystemC
AMS, which includes normal SystemC ones. Therefore the normal test bench includes an additional SystemC
model which dynamically rewires the DUT to include the failure, while also providing control handles for it. The
library has been successfully used to inject faults into different parts of a battery management system (BMS)
developed during the IKEBA research project.

VII. FUTURE WORK

Although the library has proven successfully to work for different SystemC AMS projects the authors wish to
continue the work to improve its applicability. The library should be easily to use and integrate, for example into
an existing UVM-SystemC environment [8]. Therefore it can provide additional or extend test sequences, leading
to more comprehensive test runs improving the verification and validation coverages. Another focus will be the
detection of the injected faults and the traceability of its propagation throughout the DUT.

ACKNOWLEDGMENT

We thank our former Fraunhofer-EAS colleagues Thomas Uhle and Karsten Einwich for prior activities.

REFERENCES

[1] IEEE Computer Society, 1666-2005 IEEE Standard SystemC Language Reference Manual

[2] T.Markwirth, J.Haase, K.Einwich; Statistical Modeling with SystemC-AMS for Automotive Systems; FDL’08; 2008

[3] S.Schulz, J.Becker, T.Uhle, K.Einwich, S.Sonntag; Transmitting TLM transactions over analogue wire models; Design Automation and
Test in Europe (Date’10) conference; March 2010

[4] T.Markwirth; Entwicklung einer SystemC Modellbibliothek zur Transaktions-Level-Modellierung (TLM) für den Konzeptionsentwurf
von Systemen der Automobilelektronik; Diplomarbeit TU-Dresden; 2011

[5] Accellera Systems Initiative, SystemC AMS 2.0 Standard, http://www.accellera.org/downloads/standards/systemc.

[6] P. Ehrlich, T. Nguyen, T. Vörtler, “UVM-SystemC based hardware in the loop simulations for accelerated Co-Verification”, Design and
Verification Conference & Exhibition (DVCon Europe), October 2015.

[7] Accellera Systems Initiative, Standard Universal Verification Methodology (UVM),
http://www.accellera.org/downloads/standards/uvm/.

[8] M. Barnasconi, F. Pêcheux and T. Vörtler, “Advancing system-level verification using UVM in SystemC”, Design and Verification
Conference & Exhibition (DVCon), March 2014

Figure 15: results for nominal case and fault injection

Figure 14: results for nominal case and fault injection

