

Dynamic Control Over UVM Register

Backdoor Hierarchy

Roy Vincent, Senior Design Engineer, Analog Devices Inc., Bengaluru, India

Unnikrishnan Nath, Design Verification Engineer, Analog Devices Inc., Bengaluru, India

Ashok Chandran, Engineering Manager, Analog Devices Inc., Bengaluru, India

Abstract- Recent times, the integrated circuit complexity has increased many fold. A fundamental reason is the

increased feature addition into a single chip to sufficiently satisfy multiple customer requirements. This has made the

programming of the chip complex. From the DV perspective, proper programming is essential to get the chip into the

required state. This initial programming section consumes much of the simulation time before the actual functional test

starts, especially if it is done through some slow peripherals like serial ports. UVM register backdoor access is an

advantage here but will not directly solve all the use-cases. This paper discusses how to dynamically change the backdoor

hierarchy for a register access during simulation time by using the UVM register callbacks from one of our use-case

perspectives.

I. INTRODUCTION

The UVM backdoor write access uses the DPI calls to deposit the required value from the RAL model at the

required hierarchical node which is conventionally a register’s immediate output node. Similarly, for backdoor read,

the required hierarchical node is directly polled, the value taken and updated to the RAL model instantaneously. The

mechanism is illustrated in figure 1.

Figure 1

The above-shown mechanism is a straightforward use-case. But in SoC, paged registers are common. This is to

program multiple similar blocks inside the SoC at one shot therefore reducing the programming time. One can think

of broadcasting the required values to multiple registers at the same time. Principally, these registers will have the

same address and there will be associated extra control bits, often from another register, which controls whether the

access should go through or not. For e.g., 4 instances of a register ABCD with same address 0x1234 can be present

in a SoC whose programming is controlled by another register say PAGE. So, if PAGE is set to 1111 (binary), a

single write to 0x1234 will result in an access to all 4 instances, hence reducing the effective programming time of

the chip. Controlling the PAGE register value will help us to target any required instance independently also. This

independent control is where the standard usage of the backdoor access has got issues.

II. PROBLEM STATEMENT

UVM backdoor access works with DPI calls which operate on the hierarchy strings set from the top.

The register hierarchy is set in the build phase of the top RAL model.

reg_blk.configure (this, “<Design Hierarchy up to Register top>”);

The final endpoint is mentioned in the register block’s build phase. The offset and size determine the position of

the bitfield node in the bigger reg bus.

reg.add_hdl_path_slice (“<final bitfield node name>", <offset>, <size>);

With more paged registers, we can always add more HDL path slices corresponding to multiple nodes. But if we

try to access one of these registers though backdoor, all the mentioned slices will get updated with the same value

which is not desirable. Therefore, we need to dynamically edit the slice hierarchy according to the page control

register values. This dynamic control is not inherent with the normal backdoor access.

Figure 2

As shown in figure 2, mentioning slice hierarchy ‘output signal[0]’ and ‘output signal[1]’ during the build phase

will make issues while trying to access these registers individually during simulation runtime.

III. IMPLEMENTATION

The register call back methods are used to implement the node hierarchy edits dynamically during simulation

runtime. One major assumption or requirement for the whole setup to work is that the paged registers should provide

the outputs in the arrayed format as shown in figure 2. This helps the hierarchy edits through easy indexing, based

on paging value. UVM may not allow altering the hierarchies added during the build phase. Therefore, we need to

create a new section under a different uvm_reg_item::bd_kind, add the edited slice node hierarchies to it and execute

the backdoor access on the newly created bd_kind. In general, write access is where the problem lies. For read

access, we do have a paging based decoded data node which can be probed. Separate classes are autogenerated to

get the info related to register and paging register linkage.

The flow chart in figure 3 explains how callbacks are used in the backdoor write.

Figure 3

IV. SOURCE CODES

Following is a set of source code with appropriate comments to show how the hierarchy edits are attained.

The above code is put inside the pre_write task. Also, at the end of the pre_write task, the bd_kind of

uvm_reg_item need to be changed to “NEW_PAGED_HIER”. Now the write operation will happen as per the new

bd_kind. Any traces to be deleted before next register access can be done inside post_write.

V. RESULT

We are already familiar with the simulation time improvements with the backdoor access. The practical limitation

of using it for paged registers is being satisfactorily solved by the above method. We have seen around 50%

reduction in the simulation time for some of our long-running tests by implementing this method in our project.

These long running tests are having many configuration registers programmed though a slow peripheral. Moreover,

these tests are required to be iterated multiple times with the reset in between for many consistency checks which

naturally makes the test duration really long. The backdoor approach really helped us in appreciably reducing the

test duration and regression time.

ACKNOWLEDGMENT

CAD team of Analog Devices Inc. for the internal tool developments for many registers related automation

