
Copyright © 2012 Raytheon Company. All rights reserved. 

 

Dynamic and Scalable OVM Stimulus for Accelerated Functional Coverage 

Michael J Castle
 

Space and Airborne Systems, Raytheon,  

2200 E. Imperial Hwy., El Segundo, CA 90245 

Michael_Castle@Raytheon.com 

 

 

 

Abstract - The IEEE 1800
TM

 SystemVerilog [1][2] is a 

standard set language extended from Verilog. This language is 

used for both design and the development of an Open 

Verification Methodology (OVM) testing environment to 

allow developers the ability to verify a design and achieve full 

functional coverage. Importance of this paper is positioned on 

OVM’s ability to dynamically allocate and modify class 

structures without re-coding the original design to reduce out 

of phase defects to obtain functional coverage faster through 

dynamic test vectors. The goal is to identify a set of concepts 

that take advantage of OVM’s dynamic and reusable features, 

enabling designers to develop additional complex algorithms 

to achieve goals such as functional coverage and verification. 

We describe the various reusable OVM components that allow 

developers to produce code that dynamically creates real-time 

test vectors to reach full functional coverage faster in contrast 

to typical random testing. While the fact that random testing 

enables complete stimulus randomness, it does not enable the 

ability to reach full functional coverage in a timely manner. 

 

Keywords – SystemVerilog; OVM; functional verification; 

Dynamic Programming 

 

I. INTRODUCTION 

 

This paper presents a method to easily scale and parameterize 

OVM components to enable complete dynamic stimulus. In 

addition, it provides basic code illustrating the distinct 

characteristics to achieve dynamic test stimulus. The example 

will show the OVM environment rather than the Universal 

Verification Methodology (UVM) due to the UVM library 

performing the same functions as OVM for this experiment.  

Stimulus going into the design must trigger all events in the 

device under test (DUT) and the results are to verify the 

requirements were met. Implementing OVM components such 

as sequencers enable higher levels of complexity to allow 

faster achievement towards complete functional coverage 

through run-time vector manipulation. Typical testbenches are 

not structured to alter tests in real time, nor exercise the ability 

to create functions that are scalable and allocate values to 

parameters in real time (see Figure 1). However, OVM 

provides this built-in layer of abstraction for development ease.  

The goal of this paper is to suggest using many of the OVM 

constructs embedded in the methodology, as well as a few 

additional modifications to achieve the desired functional 

coverage faster. As designers become fluent in the 

methodology, they can continue to make further modifications 

to each module to achieve better results. 

II. ADVANCED OVM CONCEPTS 

To identify some of the concepts to achieve the functional 

coverage, we present the advanced concepts behind OVM. 

While presenting the concepts, we shall present the framework 

of the modules and the modifications to the existing 

SystemVerilog. The concepts presented are for verification 

engineers and designers interested in expanding their 

verification knowledge.  

The list below presents the advanced components and terms 

necessary to create models achieving fast functional coverage 

to reduce simulation time. 

 Class – Similar to C++ classes and objects, these 

instances contain variables and functions that can be 

called and reused throughout the environment. 

 Sequence – A complex bi-directional stimulus and 

reusable class that can perform creation and 

randomization of transactions at runtime. 

 Sequencer [3] – The class that synchronizes the 

transactions between the sequences and the driver. 

 Coverage – The frequency or degree to which an event 

that is recorded in the system has been tested. The data is 

recorded into Coverage Collectors. Coverage is 

interpreted by the verification engineer from the 

requirements document and implemented in the OVM 

Coverage Scoreboard component. 

 Coverage Scoreboard – Analysis component that records 

the frequency and determines the completeness of testing 

using Coverage Collectors.  

 Agent – Consists of three main class objects: Driver, 

Sequencer and Monitor. This class object allows 

engineers the ability to contain a specific protocol into a 

smaller environment that can be instantiated in multiple 

locations for reusability. 

III. SYSTEMVERILOG FOR VERIFICATION 

SystemVerilog provides engineers a more complex 

environment to further enhance their tests. Typical testbenches 

are simple, allocating the resources to directed tests and 

verification via waveform or some form of basic comparison 



Copyright © 2012 Raytheon Company. All rights reserved. 

 

logic. Since earlier designs were smaller, this method was 

sufficient for designs. However, as designs grow more 

complex, this method is not feasible any more. This is due to 

FPGAs and ASICs having a much larger gate count and more 

complex functionality.  

SystemVerilog deeply integrates Object Oriented 

Programming (OOP) to create complex reusable programming 

modules that aid in the development and verification of large 

devices. Due to the complexity of OVM and OOP components, 

designers require voluminous stages of planning and 

management of objects in order to reuse and parameterize the 

models, where each object can inherit the characteristics and 

variables from the parent model. Thus setting the OOP coding 

framework during the initial development phases is crucial to 

the achievement of advanced verification and future successes.  

Unlike typical RTL testbenches, OVM environments with 

OOP are easily ported and reused amongst various systems, 

each having minor differences such as variable types, sizes 

and naming conventions. In some aspects, it may be required 

to go through several iterations of the same code to achieve 

the greatest results. With this OVM framework, developers are 

capable of obtaining highly complex, reusable and effective 

verification models. 

IV. ACHIEVING FUNCTIONAL COVERAGE 

Designs are growing, the industry is changing and the need for 

products to enter the market prior to the competitors is 

immensely imperative to the success of the company. 

Deploying bug free products is a necessity to retain existing 

and prospective customers, whether they are the CEOs or 

investors. Paul Wilcox [5] notes that finding out of phase 

defects in the field is detrimental to the company and could 

cost millions of dollars of damage by adding additional 

engineering costs and loss of business, thus stressing 

verifications significance in the design cycle. 

Paul Wilcox [5] also states that in the past, verification was 

performed by the design team once the code was developed. 

With the designer creating the testbench, the focus of the 

testing typically focuses on the requirements using directed 

tests. A. Kumar and C. Kumar [3] explains that if the team is 

the sole verification engineers, the engineers tend to focus on 

the requirements designated in the specification thus leaving 

the interpretation of the specification left to one team rather 

than two or more. Without a second teams review, the 

requirements may not be implemented correctly and could 

leave to eventual system errors. 

It is common to perform directed tests, and corner case testing 

if time is allotted, to verify functionality. In Figure 1, we see 

that the testbench involves a task list that stimulates the 

Device Under Test (DUT) to verify the design functionality 

which may not provide enough stimulus to the design. Mentor 

Graphics tests using OVM [6] contains stimulus to use 

SystemVerilog’s constrained and unconstrained random 

stimulus. Although random testing is available, Paul Wilcox 

[5] states this does not guarantee testing will complete all of 

the coverage. Constrained random testing may not cover 

everything since it is more related to directed tests and 

requires the engineer to become familiar with the design.   

 

 

Figure 1. Traditional Verification Diagram. This traditional 

method is one dimensional and allow for testing only using 

stimulus without feedback. 

Instead, random testing allows the engineer who verifies the 

DUT to handle corner cases not originally tested by the 

designer. This allows for test cases that typically lead to 

recovery logic, a state machine reset or error handling in 

Intellectual Property (IP) modules.  

Monitor

Driver Responder

Monitor

Sequencer

Sequence

SlaveDUT

Coverage CoverageScoreboard

 

Figure 2. OVM Environment Testbench Diagram. Above is a 

typical representation of the OVM environment where the 

sequence receives feedback from the sequencer and driver. 

Random and constrained random testing may take several 

hours to cover all of the scenarios necessary to achieve full 

functional coverage. However, implementing the sequencer to 



Copyright © 2012 Raytheon Company. All rights reserved. 

 

used feedback from the driver via a response packet, test times 

can drop significantly.  

To determine whether all of the functionalities are tested, 

engineers use coverage scoreboards to analyze the results 

based on reports and coverage collector outputs. This typically 

requires the verification engineer to have some understanding 

of the system level requirements. 

A. COVERAGE ANALYSIS 

Sequences typically are driven unidirectional without 

feedback to dynamically alter the tests to verify functionality 

and increase code coverage faster. Several languages such as 

VHDL and Verilog are capable of creating such dynamic 

sequences. However, OVM and SystemVerilog utilize built in 

library functions to perform the same tests. 

OVM allows for easy development of transactions between 

the stimulus and the driver, allowing for the driver to provide 

feedback to the stimulus to allow for dynamic change in tests. 

Another feature available in OVM is the ability to have a 

response from different modules such as the coverage 

scoreboard. 

Figure 3 shows a simple diagram of the coverage scoreboard’s 

return path to the sequence. In many OVM environments, the 

driver transmits a response packet to the stimulus. Using 

coverage data over driver data allows the designer to know 

exactly what operations have been exercised. As shown in 

Figure 4, driver data does not provide very many details about 

the operation other than function X was issued to command an 

operation. 

Monitor

DriverSequencer

Sequence

DUT

Coverage

  

Figure 3. OVM Environment Test bench Diagram. The 

proposed method allows the sequence to receive feedback 

from the responder rather than the driver. This allows for the 

sequence to dynamically change the stimulus in runtime based 

on what has been covered. 

Also, as seen in Figure 4, coverage blocks add far more 

information that is relevant to the sequence. For instance, say 

we are issuing commands, in any order, to a FIFO. A 

verification engineer wants to capture write full and read 

empty errors. The driver should not be aware of these flags. 

Instead, the monitor captures, translates and forwards the data 

to the coverage scoreboard. From there, the coverage 

scoreboard information stating how many times the error flag 

was captured is placed into a packet and sent back to the 

sequence, where the sequence will appropriately adjust itself 

to send more writes in order to force the coverage scoreboard 

to meet its error flag goal.  

Coverage

Scoreboard
Monitor

Monitor

DriverSequencer

45% Overflow

25% Underflow

10% Write

15% Read

Read 

Command

Read 

Command

...

Read_En 

Read_En 

...

Seq

1

  

Figure 4. Diagram of the Data Passed between Components. 

As data progresses from driver to monitor and coverage 

scoreboard, the data becomes more detailed thus potentially 

leading to superior and clear-cut stimulus into the system. 

Functional coverage data from the coverage scoreboard class 

object can influence the stimulus drastically, thus allowing the 

test to complete much faster as seen in the FIFO example. To 

dynamically change the tests in respect to the functional 

coverage, verification engineers must account for the return 

packet and determine what stimulus is required to achieve full 

functional coverage. Verification engineers must research the 

specification document to interpret the expected results and set 

the appropriate actions for the sequence. 

V. IMPLEMENTATION 

To understand the design’s coverage analysis, structural 

details of the proposed coverage analysis response method are 

presented.  Afterwards, we discuss some aspects of the 

language and implementation. 

A. COVERAGE ANALYSIS RESPONSE 

In the proposed design, we consider the built in functions of 

the OVM libraries to return the data from the coverage 

scoreboard back to the sequence. Two packets are required for 

the operation to occur, the first is the packet necessary for the 

driver and the second is the return data. The two packets are 

illustrated below with the send_packet and rsp_packet: 



Copyright © 2012 Raytheon Company. All rights reserved. 

 

 

With this modification, the sequence can incorporate the 

rsp_packet into the sequence algorithm to dynamically adjust 

the stimulus. In the environment, this allows for two-way 

communication from the sequencer to the sequence as shown 

in figure 5. Duolos states [7] that to connect the sequence and 

sequencer, the macro `ovm_sequence_utils is used to add the 

sequence to the list belonging to the given sequencer. 

SequencerSequence

  

Figure 5. Connection of the Sequence to the Sequencer. This 

is an automatic connection between the two components. 

Next, designers need to add the incoming port from the 

sequencer with the extension shown below: 

 

 
 

This allows for incoming packets from the sequencer. To 

attach the Sequencer to the driver, a connection in the OVM 

agent is required to connect the seq_item_export of the 

sequencer to the driver seq_item_port as shown below. 

 

 
 

This allows for transactions from the sequence through the 

sequencer to the Driver and now allows the flow of data from 

the sequence to the driver depicted in figure 6. 

 

DriverSequencerSequence

 

Figure 6. Connection of the Sequence, Sequencer and the 

Driver. Currently the Sequence can flow data to the driver, but 

cannot receive data. 

To transmit a response packet back to the sequence from the 

coverage scoreboard, we require several small additions. A 

Monitor is required to gather data from the low level pins of 

the virtual interface to interpret the data. Also, in order to hold 

the data until the function is ready, an optional 

tlm_analysis_fifo can be used. Next, the Monitor packages 

and transmits the data through an analysis port as shown 

below: 

 

 
 

The Coverage Scoreboard requires two OVM ports: one to 

receive data from the Monitor and another to export the 

statistical data. The output statistical data requires a different 

packet type since this data format a higher level of abstraction 

containing integers and floating point values. A connection 

must be made in the connect function of the Agent. Figure 7 

depicts the connection of the Sequence, Sequencer, Driver, 

Monitor and Coverage Scoreboard class objects. 

 

Driver

Monitor

Coverage

Scoreboard

SequencerSequence

  

Figure 7. Connection of class objects from the Sequence to the 

Coverage Scoreboard. 

To transmit data from the coverage scoreboard, data must flow 

through an intermediate passive Monitor. The pass-through 

Monitor has the built-in response port necessary to transmit 

the analytical data from the Coverage Scoreboard to the 

rsp_port of the sequencer.  As shown earlier in Figure 4, the 

Coverage Scoreboard transmits a response packet to the 

Monitor which is then passed through to the sequencer 

through the rsp_port. The OVM pass-through Monitor 

requires a blocking port and an rsp_port.  

 

//Class/Module Name

class ex_sequence0 extends ovm_sequence #(send_packet,rsp_packet );

//Factory

`ovm_sequence_utils(ex_sequence0, ex_sequencer)    

//Packets

send_packet snd;

rsp_packet rsp;

ex_driver extends ovm_driver #(rcv_packet); 

driver.seq_item_port.connect(ex_sequencer.seq_item_export) 
 

class fifo_pass_through_monitor extends ovm_monitor  ; 
… 
  //PORTS/EXPORTS 
  ovm_analysis_export #(rsp_packet) monitor_input_export; 
  ovm_analysis_port   #(rsp_packet) my_rsp_ap; 

   
  protected tlm_analysis_fifo #(rsp_packet) monitor_pt_in_fifo;  



Copyright © 2012 Raytheon Company. All rights reserved. 

 

Driver

Monitor

Coverage

Scoreboard

SequencerSequence

Monitor

  

Figure 8. Connection of all the class objects to receive data 

from the Coverage Scoreboard to the Sequence. 

The reason for having the pass-through monitor is due to the 

limitations of the OVM libraries. According to Mentor’s 

Verification Academy reference manual [6], “the analysis 

export [is] used by drivers or monitors to send responses to the 

sequencer.” This feature is unavailable to other OVM 

components. To write data from the monitor back to the 

sequencer, the Monitor must extend the ovm_driver and 

declare the response packet that will connect to the rsp_port. 

Writing data to this port can be performed by the below: 

 

 
 

In the response packet, the analytical data can vary depending 

on the designer’s requirements and the data necessary to 

transmit back to the Sequence.  

 

Sequencer

Driver

Pass Through Monitor

Global Communication:

Sequence_ID

Transaction_ID

put

get

 
Figure 8. Global Communication Variables. Sequence_ID 

must be set on the rsp item to match the req item. This allows 

the message to return back to the proper sequence. 

The events for the Sequence will follow standard wait for 

grant, send and wait for done sequence depicted by figure 9. 

However, in the middle of this sequence, the sequence_id and 

transaction_id must be saved and read by the Pass-through 

Monitor in order to return the rsp_packet to the correct 

sequence. In figure 8, one method of storing the information is 

through a global class storing the variables. Using this 

technique, designers can perform a simple handshaking to 

transmit and receive packets in the Sequence, as well as return 

the rsp_packet to the correct sequence. 

 

T
im

e

Wait_for_

grant

Wait_for_

grant

send

send

Wait_for_

done

Wait_for_

done

Get_item

Item_

done

Get_item

Item_

done

  

Figure 9. Timeline of events for the Sequence. The Sequence 

will continue to perform the same operations whether it is the 

feedback from the Driver or pass-through Monitor. 

From this foundation, the designer must create software to 

properly transmit and receive data correctly between each 

class object while following the OVM standards. The Monitor 

between the Driver and the FIFO continues to grab data; 

therefore the designer must consider how much data to send to 

the Coverage Scoreboard. Also, the designer must consider 

when to transmit data from the Coverage Scoreboard to the 

Monitor. 

 

The Coverage Scoreboard is continuously sampling the 

packets from the Monitor, thus a flag signifying the end of an 

action is required. This end of action flag can then trigger a 

transmission packet to the pass-through Monitor and allow the 

Sequence to continue from the wait for done function. 

 

 

VI. EXPERIMENTS 

For the two proposed methods, the tests are performed on a 

standard FIFO with first-word-fall-through, a read and write 

clock for various rates and asynchronous resets using the 

QuestaSim Simulator. A full OVM environment is setup to 

monitor the stimulus into the FIFO, as well as a monitor the 

outputs from the FIFO as shown in figure 10. 

Driver

Monitor

Coverage

Scoreboard

SequencerSequence

Monitor

FIFO

Monitor

  

Figure 10. OVM Test Environment with Coverage Scoreboard 

Analysis Data Feedback. 

rsp_port.write(response_packet) 

 



Copyright © 2012 Raytheon Company. All rights reserved. 

 

A Coverage Scoreboard is implemented to capture at least 200 

successful reads and writes, 200 write full and read empty 

flags and 200 overflow and underflow flags (see Table 1). 

Each error flag can be captured multiple times on a given 

instruction. 

TABLE 1. Summary of Flags for Code Coverage. 

Test Flag Count 

Read Commands Issued 200 

Read Not Empty Error 200 

Read Program Not Empty Error 200 

Read Underflow Error 200 

Write Commands Issued 200 

Write Not Full Error 200 

Write Program Not Full 200 

Write Overflow Error 200 

 

Two tests scenarios are used for comparison depicted in table 

2, the first consisting of using only random stimulus and the 

second using random stimulus with responses from the 

coverage scoreboard.  

TABLE 2. Summary of Stimulus and Clock Rates. 

Test Clock Rate 

#1 

Clock Rate 

#2 

Stimulus 

1 1000 MHz 1000 MHz Random 

2 1000 MHz 1000 MHz Coverage 

Feedback 

 

The stimulus packet contains a data array, a command register 

for read or write and a burst size. Stimulus for both methods 

will either choose from read or write; issuing various sizes of 

read or write burst commands.  

For this test, the coverage analysis data feedback method will 

issue random stimulus as its driving input with little logic to 

determine the coverage bin containing the least frequency 

counts. The coverage analysis data feedback method will use 

the least frequency counts and issue a random data burst of 

read or write commands, while the complete random stimulus 

will issue read or write data bursts at random without order or 

constraints. 

A. ANALYSIS 

Looking at the results in table 3, the tests concluded a savings 

of more than 5000 cycles. The tests completed the coverage 

requirements stated in table 1 in a short time. The actual time 

for the simulation resulted in the following simulation 

seconds: 

TABLE 3. Summary of Results. 

Test Simulation Time Coverage (%) 

1 41626ns 100 

2 25918ns 100 

  

Figure 4. Coverage Group Report. Complete Coverage with a 

goal of 100% was achieved at 41626 nanoseconds for 

complete random stimulus, while Complete Coverage for the 

Coverage Feedback method was 25918 nanoseconds. 

Shown in figure 4 is the complete coverage of the Coverage 

Scoreboard. Both tests were able to complete the minimum 

200 count requirements. Due to the burst size not containing 

any constraints, each flag captured received well above 200 

due to the packets continuing to issue the random burst size. 

TABLE 4. Summary of Actual Flags Captured for Code 

Coverage. 

Test Random  Coverage 

Feedback 

Read Commands Issued 4544 1530 

Read Not Empty Error 3402 388 

Read Program Not Empty Error 3402 388 

Read Underflow Error 3395 383 

Write Commands Issued 5687 4925 

Write Full Error 1994 1232 

Write Program Full 5407 4645 

Write Overflow Error 1993 1231 

 

The actual flag counts captured were also significantly less 

using the coverage feedback method. This is due to the less 

redundancy of the random stimulus entering the same 

commands several times. The amount of errors captured was 

reduced significantly, whereby meeting the Coverage 

Scoreboard requirements early in the simulation. 

VII. CONCLUSIONS 

Examining the design of the two methods, the introduction of 

the coverage analysis for response showed that the amount of 

simulation time can be reduced dramatically. Our initial 

design was fairly simple, checking the coverage of a few flags 

and acting on the coverage with the least frequency counts.  

Both coverage feedback and random stimulus completed the 

tests in a reasonable time, however with more modifications 

the design can easily save hundreds more cycles by adding to 

the code complexity. The coverage feedback currently 

determines whether the entire read or write coverage bins have 

been satisfied. Instead, more logic could have been 

implemented to force specific error flags that would cause 

read empty errors, write full errors, etc.  



Copyright © 2012 Raytheon Company. All rights reserved. 

 

In the future, our tests will compare the effects of increasing 

the logic to force specific functions using coverage feedback; 

as well as another test to compare coverage feedback against 

driver feedback. 

REFERENCES 

[1] IEEE Standard for SystemVerilog - Unified Hardware 

Design, Specification, and Verification Language, IEEE 

Std 1800
TM

-2005, IEEE Computer Society, 2005. 

[2] S. Sutherland, S. Davidmann and P. Flake, 

SystemVerilog for Design, Norwell, MA: Kluwer 

Academic Publishers, 2004. 

[3] J. Aynsley, “Easier UVM for Functional Verification 

by Mainstream users,” Duolous, Ringwood, U.K. 

[4] A. Kumar and C. Kumar, “Functional Coverage 

Analysis of OVM Based Verification of H.264 CAVLD 

Slice Header Decoder,” Jharkhand, India, 

[5] P. Wilcox, Professional Verification: A Guide to 

Advanced Functional Verification, Norwell, MA: 

Kluwer Academic Publishers, 2004. 

[6] Mentor Graphics. Verification Academy: UVM / OVM 

Verification Methodology. Mentor Graphics., OR. 

[Online]. Available: 

http://verificationacademy.com/verification-

methodology 

[7] Duolos. Getting Started with OVM. [Online]. 

Available: 

http://www.doulos.com/knowhow/sysverilog/ovm/tutor

ial_2/ 

 


