Don't Forget the Protocol! A CDC Protocol Methodology to Avoid Bugs in Silicon

Abdelouahab Ayari, Mentor, a Siemens Business Sukriti Bisht, Mentor, a Siemens Business Sulabh Kumar Khare, Mentor, A Siemens Business Kurt Takara, Mentor, a Siemens Business

Introduction

• CDC issues: 2nd most common reason for silicon re-spins

- Structural CDC Verification

- Use of synchronizer to essentially reduce the probability of metastability
- Good understanding in industry (part of some industry standards like DO-252)
- Widely used in industry

- Functional CDC Verification

- Synchronizers has to meet functional requirements (CDC Protocols)
- No large awareness in industry

If CDC Protocol Verification is Skipped

- Structural CDC checking alone is not enough
- Risks
 - Lose of data
 - Propagation of metastability (\rightarrow corruption of data)

Risks: Loss of Data

- Case of a 2DFF Synchronizer Protocol Violation
 - TX Data stable for less than two (NUM_CYCLES) clock cycles

Risks: Propagation of Metastability

- Case of a Protocol Violation
 - Mux-enable is asserted and
 - TxData is changing in the critical time window of the receive clock RxClk
- Rx Data Tx Data Tx Control Rx Clk Data-Mux (DMUX) Synchronizer **Rx clock** Mux-enable Tx Data

- What happen
 - Metastability could be propagated
 - Corruption of RxData

CDC Protocol Verification is a MUST !!

CONFERENCE AND EXHIBI

Challenges with Existing Methodology

- Setup design for Formal, Simulation
 - Effort, time for translating CDC design setup to both environments
- Debug effort to review firings in Formal, Simulation
 - Technical expertise of both environments
 - Setup translation errors cause false violations
- Correlating assertions results in CDC vs. Formal vs. Simulation

 Coverage, review of CDCs is cumbersome for complex crossings
- No re-utilization of benefits, efforts of Formal, Simulation
 - Simulation: More intuitive to understand but coverage issues
 - Formal: Offers exhaustive proofs but capacity, constraint issues

2019 DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION EUROPE

Proposed Verification Methodology

- Perform static CDC analysis
- Generate:

accellera

SYSTEMS INITIATIVE

- Assertions for synchronizer protocols
- Setup for Formal
- Setup for Simulation
- Validate assertions in formal
 - Formal analysis using generated setup
- Validate assertions in simulation
 - Simulate design using generated setup
 - Only formal non-proven assertions

Verification Methodology

- Automated design setup for Formal & Simulation
 - Static analysis setup exported to formal constraints
- Reduced formal firing debug effort
 - Avoid debug of unconstrained formal firings
 - Promote non-proven assertions to simulation
- Formal & simulation results correlated to CDC paths
 - Improved review/debug of CDC paths & assertion/coverage results
 - Avoids manual aggregation/correlation of assertion results
- Leverage formal efforts in simulation
 - Prune formally proven assertions from simulation

Correlated Results View

- Formal, Simulation results correlated to CDC
 - Enables faster review of CDC paths, coverage closure
 - No manual correlation of assertion results required

Existing vs. New Methodology (Formal)

EUROPE

* Formal Coverage = ((Failed Assertions + Proven Assertions) / Total Assertions) * 100 15

Existing vs. New Methodology (Simulation)

Conclusion

- Dynamic CDC Protocol Verification is critical
 - CDC bugs missed if synchronizer protocols not validated
- Proposed methodology helps achieve faster design closure
 - Seamless to adopt
 - Significant reduction in verification time, effort
 - Reduced chances of error thru automated setup generation
 - Overcomes challenges of Formal, Simulation methods
 - Enables efficient utilization of both methods

Thank you!

Questions?

Existing Verification Methodology

- Perform static CDC analysis
- Generate assertions for protocols
 of synchronizers
- Validate assertions in formal
 - Setup design for formal
 - Perform formal analysis
- Validate assertions in simulation
 - Setup design for simulation
 - Simulate design

Setup, Debug Challenge (1)

• Example: False two DFF synchronizer protocol firing in Formal

- Data stability check firing due to change in value of 'ctrl_in' signal

Setup, Debug Challenge (2)

- False firing due to incomplete setup for Formal
 - Constraint specified on input signal 'ctrl_in' during static CDC
 - Setup issue: Stable constraint missing from formal setup
 - Debug effort required for false firing caused due to incomplete setup

Correlation Challenge

- Formal, Simulation environments very different from CDC •
- Complex synchronizers have multiple assertions ۲

accellera

- Treated as separate entities in Formal, Simulation, but relate to a single CDC sync
- Correlating results is cumbersome, time consuming
- Errors during result correlation can lead to missed bugs

