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Abstract- A conventional SOC has different types of electrical delays. The cumulative result of electrical delays 

can cause a linear shift in each signal, which can be combined to model as board delays. This paper focuses on 

modeling external board delays, using the standard UVM (Universal Verification Methodology) multi-channel 

environment. It covers multiple approaches like fixed external board delay, configurable external board delay 

and randomized external board delay modeling. These approaches can help in training the device controller and 

modeling pre-silicon delays to catch issues at early stages of design and verification. This paper uses Low Power 

DRAM(LPDDR) and High Bandwidth Memory(HBM) to demonstrate modeling of external board delays. 
 

I.   INTRODUCTION 

A typical electronic system has different types of electrical delays, such as source delay, network delay, insertion delay, 

propagation delay, transition delays (rise time, fall time), path delay, external (wire) delays, phase delay, delays due to 

jitter, delays due to duty cycle distortion. It is always helpful if the impact of these delays can be resolved at the initial 

phase of the design. The cumulative result of these delays cause a linear shift in each signal, which can be combined to 

model as board delays. A typically verification environment, which is used in pre-silicon environment uses pin to pin 

connection via an interface and works on ideal assumption of zero transport delay between the system and external interface 

(Fig. 1). 

 

 
 

Figure 1. A Memory System 

 

The above figure demonstrates a typical memory based system where the external interface is a DDR (Double Data 

Rate) memory. In a typical memory system with high speed DDR where the clock frequency can vary up to 2133 MHz 

with a data rate support of 4267 MBPS, the interface signals do have delays w.r.t each other as well as there is a common 

path delay in the board. These external board delays along with jitter (short-term variations of signals from reference clock) 

can cause inaccurate sampling of transferred information. In the SOC design, the impact of the delays is usually realized 

during gate level simulation or in static timing analysis, which usually occurs at the end of the design cycle. Even during 

the gate level simulation, a typical SOC system will have the delayed model but the external interface, which is usually 

the Verification IP and hence do not carry the board delay information. 

 With such high-speed interfaces, the verification of a typical SOC require a framework to induce configurable delay in 

I/O signals. In this paper, we are proposing one such model which we integrated with a Verification IP(VIP) (Fig. 2). In 

this paper, we have constrained our integration model w.r.t Memory VIP (also referred in this paper as Memory model). 

We have taken couple of approaches with LPDDR4 and HBM VIP. We have also demonstrated model with taking single 

as well as multiple instances for the Verification IP. 



 

 
Figure 2. Memory System with encapsulated Board delay model. 

 

A Low Power DRAM(LPDDR)/High Bandwidth Memory(HBM) memory interface contains mainly CLK (differential 

system clock), CS (Chip Select only for LPDDR), and CA (Command-Address) as input signals and DQS (DQ_strobe), 

and DQ as bi-directional signals. A device controller initiates command transaction to a memory model through CLK, CS, 

and CA. 

These signals (CK_t/CK_c, CS, CA, DQS, DQ) can have external board delays due to interconnect delays, jitter and 

skew. Below are the steps for a typical DRAM operation. 

 For a write operation, controller sends memory address and transaction data via CA and DQS-DQ signals 

respectively to memory model. 

 For a read operation, controller requests to read data from a specific address in the memory model by sending 

memory address information on CA bus. 

 In response read data comes from model on DQS-DQ signals. 

   

    This paper is organized as follows: In section II UVM based memory VIP architecture is explained. In section III Board 

delay architecture is explained. Section IV demonstrates modelling of external board delays in LPDDR and HBM VIP 

followed by summary in section V.  

 

.II.   UVM ARCHITECTURE WITH MEMORY VIP 

 

As discussed above we took an approach for inducing board delay within a memory VIP. A typical LPDDR VIP 

architecture that we used to integrate our model is as follows (Fig. 3). 

 

 
Figure 3. VIP Architecture 



 

 

  As explained a typical UVM Memory architecture has following components: 

 

 Mem Sequencer: A typical memory is a reactive component and mem sequencer here plays a special role than a 

conventional sequencer. Mem sequencer used here is also a reactive component. It has its own inbuild sequences 

which would be called by driver based on transaction(write/read) request. When write transaction is received from 

the driver, role of reactive mem sequencer in this case is to write the data in physical memory by getting write 

transaction information from driver then calling its inbuild sequence to write the data and during a read transaction, 

the data from the memory is taken into the mem sequencer as a sequence-item and passed to the driver and driven 

on the interface. For a static memory array, user might not need a mem sequencer, but if user wants to use its own 

custom memory data array, mem sequencer is very helpful. Advantage of having mem sequencer is to allow user 

to override mem sequencer’s inbuild sequences to initialize/update memory data according to the requirement or 

to reroute its write/read access towards user’s custom memory array. 

 

 Driver: A driver sends stream of data/transactions coming from sequencer to DUT (Device Under Test) by 

converting them into pin level activity. Drivers are used to send controlled stimulus to DUT. 

 

 Monitor: A monitor captures the data/transaction information by monitoring the pin-level activity on the bus and 

converting them streams of data/transaction which can be used for comparison of data/transaction mismatch. 

Monitor is a passive component means it can’t affect the functionality/operation of the DUT in any way.  

 

 Agent: An agent encapsulates sequencer, driver, and monitor. 

 

 Environment: It’s the top-level component of the testbench architecture. It provides access to the hierarchy 

construction and testbench execution. The class-based environment has virtual interface information and it allows 

its other subordinate component to use it. 

 

 Interface: An interface is a collection of tasks that are used to interact with the classes. Virtual interface is basically 

a reference to an interface used by UVM. Since virtual interface is a reference to the actual interface to be used 

inside a class, the classes containing such virtual interface utilizes these virtual interfaces to have direct access to 

actual bus interface. 

 

UVM Configuration 

 We provide a typical configuration class to maintain a database of objects and variables to move and share parameters 

across various testbench components. With this, objects can share their variables, data, methods etc. with other objects. 

One testbench component can access the object of other component without knowing where its declared in the testbench 

hierarchy. As a typical UVM method the two main function uvm_config_db set() and get() are used to share the 

configuration between different components 

 

 

III.   BOARD DELAY ARCHITECTURE WITH UVM APPROACH 

 

The board delay approach that we are proposing takes the current VIP UVM architecture as explained in the above 

section. We have modelled these delays in couple of Memory VIP’s LPDDR4 and HBM. For inducing board delays, we 

have added two more components  

 External Board Delay Interface 

 Intermediate Interconnect class 

 

 

External Board Delay Interface 

  This interface named as external board delay interface have exactly same signal information as original device 

controller signals to be hooked to memory interface.  



  In a conventional UVM memory architecture the interface that binds memory and controller is configured as virtual 

interface as explained previously. This interface acts as a medium to pass information from controller to memory model 

and vice versa (Fig. 4). 

 

 
 

Figure 4 – Virtual Interface between Memory and Controller. 

 

  The above architecture has ideal set of signals where the signal transmitted by memory controller reaches the memory 

model without any delay. To mimic the board delays as per the use case scenarios of real world, another interface is 

introduced within the memory model itself so that the signals to memory should reach after a delay (Fig. 5). 

 

 

Figure 5. Board Delay components Interface and Interconnect 

 

  The board delay interface is a pin compatible interface with original memory interface and is instantiated inside 

original memory interface. Figure 6 shows the snippet of a board delay interface instantiated within HBM memory 

interface. 

 



 
 

Figure 6. Board Delay interface instantiation inside the original interface 

From a user perspective, the interface visible to the memory controller is original interface and board delay interface is 

completely hidden (Fig. 7). 

 

 
 

Figure 7. Board Delay interface – Memory Controller perspective 

 

  In the same test bench setup user can enable the board delay then memory model will auto configure itself to take 

board delay interface instead of non-delayed interface. The HBM snippet (Fig. 8) explains that enabling of board delay 

is controlled by a macro “HBM_EXT_BOARD_DELAY_IF”. If the board delay is enabled, virtual interface used by 

memory is hbm_if.ext_board_delay_if. So, the user configures the VIP with passing virtual interface (hbm_if). When 

board delay is enabled HBM VIP picks the board delay interface(ext_board_delay_if) which is instantiated inside the 

hbm_if. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Original memory interface replaced by board delay interface 

 

When the board delays are enabled, the only interface which is visible to memory is external board delay interface (Fig. 

9). 

 

 
 

Figure 9. Board Delay interface – Memory Model perspective 

 

 

 

 

 

 

 

`ifdef HBM_EXT_BOARD_DELAY_IF 

  virtual hbm_ext_board_delay_if vif; 

  vif = cfg.hbm_if.ext_board_delay_if; 

`else 

  virtual hbm_if vif; 

  vif = cfg.hbm_if; 

`endif 

 

 

 

 

`ifdef HBM_EXT_BOARD_DELAY_IF 

  typedef virtual hbm_ext_board_delay_if DEVICE_IF; 

  typedef virtual hbm_ext_board_delay_if.mom_port HBM_MON_PORT; 

  typedef virtual hbm_ext_board_delay_if.drv_port HBM_DRV_PORT; 

`else 

  typedef virtual hbm_if DEVICE_IF; 

  typedef virtual hbm_if.mom_port HBM_MON_PORT; 

  typedef virtual hbm_if.drv_port HBM_DRV_PORT; 

`endif 

 



 

 

 

 

Intermediate Interconnect class 

 

 

  As the name suggests, this interconnect class connects board delay interface (visible to memory) to the original 

interface (visible to controller) as shown in Figure 5. It’s a class which delays original input signals from controller to 

model and similarly signals from model to controller interface. It provides a mechanism to introduce user desired random 

delays on each pin independently. It senses any change at the interface pins to or from the model and then drives 

information after some random delay in the required direction. As this class is a UVM component encapsulated inside 

agent, so this approach provides direct flexibility to the user to calibrate delays during anytime in simulation. For this 

reason, we preferred this approach rather than using delays directly at the interface level.  

   Alternate way to introduce delay here could be to use clocking blocks but using them will restrict delays to static 

values only and therefore cannot be controlled by user. To avoid such restrictions, we have used class based object. With 

that, now user have control over these board delays as class based declaration will allow these delays to be overridden at 

run-time. 

 

A snippet of a HBM based interconnect class is shown in Figure 10. 

 

 These delays are enabled according to the type of signal that could be categorized in three groups- Input, Output and 

Inout signals. 

 

 Input Signals: For input signals, interconnect class provides the delay to ext_board_delay_if  from the hbm_if. 

For example, the clock(ck_t) signal which is input to the memory model, is delayed by tck_t_fly_by_ps value 

when it reaches board delay interface (Fig 10). 

 

 Output Signals: In case of output signals the flow of information is from memory model to controller side. Here 

hbm_if is getting delayed information from ext_board_delay_if  as depicted in the example snippet (Fig. 10). 

 

 Inout Signals: For inout signals the current infrastructure provides two different delays for different data paths. 

If we take an example of dq signal, which is bidirectional in nature so during read the data path from memory 

to controller is enabled and hbm_if.dq becomes a delayed version of ext_board_delay_if.dq while during write 

operation ext_board_delay_if.dq becomes a delayed version of hbm_if.dq. These delays are controlled through 

internal enable signals which control read or write operation (Fig. 10). 

 

 

As mentioned, the user configured delays play an important role in defining board delay setup. As described in the setup 

(Fig. 10) the delay is mentioned as <signal_name>_fly_by_delay_ps. Both the data paths have separate delays. For e.g. 

for read data path delay is dq_rd_fly_by_delay_ps while during writing, delay is described as dq_wr_fly_by_delay_ps. 

Each signal and corresponding individual pin can be assigned with independent delay. For e.g., in a HBM system where 

dq signal has a width of 128 bits, the current architecture supports delaying each pin individually. This delay is supported 

through a UVM configuration and all the delay parameters can be accessed by user through a single configuration object. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. dram_interconnect_class of snippet 

 

class hbm_dram_interconnect; 

  task hbm_dram_interconnect::run(); 

    hbm_dram_interconnect_memory_ext_board_delay_connection(); 

  endtask 

 

  task hbm_dram_interconnect::hbm_dram_interconnect_memory_ext_board_delay_connection(); 

    begin 

       // ------------------- Connecting an input signal -------------------------// 

 

       //*** Connecting ck_t from Controller to Model ***// 

       forever @(cfg.hbm_if.ck_t) 

         cfg.hbm_if.ext_board_delay_if.ck_t <= #(cfg.timing_cfg.tck_t_fly_by_delay_ps*1ps) 

(cfg.hbm_if.ext_board_delay_if.ck_t_en_d===0) ? cfg.hbm_if.ck_t : 'z; 

 

      //*** Connecting ck_c from Controller to Model ***// 

      forever @(cfg.hbm_if.ck_c) 

        cfg.hbm_if.ext_board_delay_if.ck_c <= #(cfg.timing_cfg.tck_c_fly_by_delay_ps*1ps) 

(cfg.hbm_if.ext_board_delay_if.ck_t_en_d===0) ? cfg.hbm_if.ck_c : 'z; 

 

      // -------------------- Connecting an output signal -------------------------//  

 

      //*** Connecting aerr from Model to Controller  ***// 

      forever @(cfg.hbm_if.ext_board_delay_if.aerr) 

       cfg.hbm_if.aerr <= #(cfg.timing_cfg.taerr_fly_by_delay_ps*1ps) 

cfg.hbm_if.ext_board_delay_if.aerr; 

    

     // ------------------ Connecting a bi-directional signal ---------------------//  

     

     //*** Connecting dq , considering DQ_WIDTH = 128 ***// 

     for(int i=0; i<128; i++) begin 

        automatic int j = i; 

        fork 

          forever @(cfg.hbm_if.ext_board_delay_if.dq[j]) 

            //Model to Controller 

            cfg.hbm_if.dq[j] <= #(cfg.timing_cfg.tdq_rd_fly_by_delay_ps[j]*1ps) 

(cfg.hbm_if.ext_board_delay_if.dq_en[j]===1) ? cfg.hbm_if.ext_board_delay_if.dq[j] : 'z; 

 

          //*** Delaying enable signal dq_en_d ***// 

          forever @(cfg.hbm_if.ext_board_delay_if.dq_en[j]) 

            //Model to Controller 

            cfg.hbm_if.ext_board_delay_if.dq_en_d[j] <= 

#(cfg.timing_cfg.tdq_rd_fly_by_delay_ps[j]*1ps) (cfg.hbm_if.ext_board_delay_if.dq_en[j]===1) ? 

'1 : '0; 

 

          forever @(cfg.hbm_if.dq[j]) 

            //Controller to Model 

            cfg.hbm_if.ext_board_delay_if.dq[j] <= 

#(cfg.timing_cfg.tdq_wr_fly_by_delay_ps[j]*1ps) (cfg.hbm_if.ext_board_delay_if.dq_en_d[j]===0) ? 

cfg.hbm_if.dq[j] : 'z; 

        join_none 

     end 

endtask 

 

endclass 



IV.   EXPERIMENTS and RESULTS 

As discussed we demonstrated the above explained board delay architecture with Verification IP’s LPDDR and HBM.  

 

 
 

 
 

Figure 11. HBM and LPDDR Board Delay Architecture 

 

We focused on multiple random delays as well as fixed delays which helped in more robust verification. We have 

collected the waveforms with multiple skews and delay models by using board delay architecture. 

 

Differential signals skew:  Differential signaling is a method for electrically transmitting information using two 

complementary signals. This is done to avoid any unwanted electrical noise or crosstalk to maintain the data integrity. In 

a high frequency system, there is substantial skew available between these differential signals. The current experiment 

provides a skew of 0.25UI (Unit Intervals) between differential signals, ck_t/ck_c, wdqs_t/wdsq_c and rdqs_t/rdqs_c.(Fig. 

12). 

 

 

Figure 12. Differential signal skew in HBM VIP 



Per transaction delays: As mentioned these delays are re-configurable, so in our experiments we provided different delays 

during different transactions by reconfiguring these delays in every transaction. Below is the example we took: 

 Set tdq_wr_fly_by_ps[n] as 700 ps at 0 time. 

 Activate any random bank. 

 Perform Write transaction. 

 Set tdq_wr_fly_by_ps[n] as 300ps and reconfigure the device. 

 Perform another Write transaction with the new delay value. 

 Precharge the opened bank. 

 The waveform shown describes the different delays that are configured in dq pins in multiple writing transactions (Fig.13). 

 

 

Figure 13. Per transaction delays in HBM VIP 

 

DQ skew: As mentioned earlier, there is possibility to configure delay on each signal and each corresponding pin 

independently. So, we monitored the data sampling on both reading and writing by applying data skew between individual 

DQ pins (Fig. 14). 

 

  
Figure 14. Skew between different DQ pins in HBM VIP 

DQ to DQS Skew: A typical DDR memory samples the data on strobe signal and ideal positioning of data is centrally 

aligned to the strobe. However in real scenario due to induced delay on high frequencies the position of DQ change w.r.t 



DQS and Model/Memory are expected to sample the data with given range. We implemented this skew board delay in 

LPDDR model which is demonstrated in below waveform (Fig. 15). 

 

 

Figure 15. DQ to DQS skew in LPDDR VIP 

 

DQS to CK Skew: In systems, such as LPDDR “fly-by” topology is frequently used, which causes skew between CK 

and DQS signals. This skew can be different for different DQSx signals. This is shown in the figure below. This requires 

to adjust each DQSx line separately through some mechanism (e.g. Write Leveling) (Fig. 16). 

 

 
Figure 16. DQS to CK skew in LPDDR VIP 

 

Address to CK Skew: Controller sends a command by accessing command address pins w.r.t. clock signal. We tested 

in HBM VIP, a skew delay between address to CK of 0.25 UI using the board delay model and checked if the device 

reliability is not affected. Random delays were also applied on each command bus(ca) pin independently.  

 

 

Figure 17. Address bus to CK skew in HBM VIP 



IV.   SUMMARY 

 
In this paper we have demonstrated a UVM based model to generate random board delays on each pin of a memory 

oriented interface. These delays are independent and entirely user configurable. It has also been highlighted that the user 

interface for this architecture remains unchanged as the controller still interact through the original interface. Different 

skew results were generated to describe the robustness of the proposed design. These methods could be extended to 

multi-rank and multi-channel environments as well. 

We have examined this model on a parallel memory protocol, but this approach can be extended to other parallel as well 

as serial protocols as future work. Some typical parallel protocol systems such as AMBA (Advanced Microcontroller 

Bus Architecture) and serial protocol such as PCIE (Peripheral Component Interconnect Express), USB (Universal Serial 

Bus) etc. can exercise this architecture using the UVM methodology.  
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