
Does It Pay Off To Add Portable Stimulus
Layer On Top Of UVM IP Block Test Bench?

Xia Wu, Team Lead, Syosil ApS, Taastrup, Denmark (xia@syosil.com)
Jacob Sander Andersen, CTO, Syosil ApS, Taastrup, Denmark (jacob@syosil.com)

Ole Kristoffersen, Project Manager, Ericsson Lund, Sweden
(ole.kristoffersen@ericsson.com)

© Accellera Systems Initiative 1

mailto:xia@syosil.com
mailto:jacob@syosil.com

Background
• Portable stimulus has becoming the emerging trend

– Reusable stimulus and test
– Aiming at faster functional coverage closure
– Uniform way of understanding and test the requirements

• Accellera System Initiatives announced the release of the Portable Test
and Stimulus Standard (PSS) on June 2018

• Support PSS domain specific language(DSL) and C++
• PSS allow the creation of a scenario from partial definition

– Loop, branch, parallelism etc to control the activities with
– Concepts like resource, data flow object, constraint

© Accellera Systems Initiative 2

Motivation
• Evaluation of PSS deployment on a block level test bench

– System-level test bench are the main target of early adoption
– Few publication are found on block level test bench
– Makes good sense to start from block level test bench

• Our motivation
– Find out the effort and the challenge to migrate a UVM block level test bench

into PSS-based solution
– Evaluate the PSS support of the tool

© Accellera Systems Initiative 3

Benefit for PSS in block level test bench
• Faster functional coverage closure

– By aligning stimulus generation with coverage goals
– Beneficial for projects with different parameter setups

• Reduced number of tests in the regression
– Reduced regression time
– Reduced use of regression license and machine power

• Reusability
– Vertical reuse on the sub-system and full system test

• Visualisation of the test scenario
– Improve communication across teams

© Accellera Systems Initiative 4

PSS tool
• Perspec is a modelling tool by Cadence

– PSS model development
– Scenario creation
– Sceanrio randomization
– Target code generation
– Abstract debugging

• Perspec supports both PSS-DSL and C++,
as well as Cadence’s own System Level
Notation(SLN).

• PSS as a layer on top of UVM

© Accellera Systems Initiative 5

Perspec
Scenario
C-code

Agent 1

DUT

checkers

Coverage
collector

Agent 2

DPI-C

verification environment

UVM test

sequence sequence

interfaceinterface

SV domain

PSS model

PSS-DSL domain

Perspec test

IP block details
• Our target DUT is a highly configurable filter chain system

– A serie of filter engine blocks which process data independently or in chain.
– A combination of generics and run-time configuration
– Benefit in closing coverage by PSS is high
– The complexity level of UVM sequence is high. Requires correct timing and

stimuli.

© Accellera Systems Initiative 6

Fi l ter
engine

Fi l ter
engine

Fi l ter
engine

coefficients
/config

data in

data out data out

m
u
x

... m
u
x

data out

DUT

Modelling in PSS

© Accellera Systems Initiative 7

• Example of a PSS based test
• Configure six filter engines in

parallel and randomize
• Schedule data stimuli

sequence and send them to
DUT

• Test is build up from a sequence of
atomic actions.

• The full valid sequence is also an
action, called a compound action.

Problems discussed in the paper
• Compile-time parameters

• Using Cadence SLN can simplify the coding and is a good complement to the current
standard.

• Run-time configuration
• Creating the model in layers and distributing the complexity into each layer

• Inheritance
• A powerful methodology to create test cases, but it can be further improved for code reuse.

• Partial description
• Successful solving is heavily dependent on good constraint sets and coding style.

• Semantics equivalence
• Checking the potential semantics inequivalence between the PSS model and UVM tests

© Accellera Systems Initiative 8

Problems discussed in the paper
Compile-time parameters
• Run-time configuration
• Inheritance
• Partial description
• Semantics equivalence

© Accellera Systems Initiative 9

How to model compile-time generics

© Accellera Systems Initiative 10

• DUT have several different block parameter setups
– The UVM TB includes a package with ifdef around each sets of parameter
– The regression runs all different setups

• PSS also need to be generic
– Generate different test cases for each parameter setup
– Parameter sets are tedious to do in PSS-DSL
– Cadence SLN table command provides a mechanism to capture code

repetition

© Accellera Systems Initiative 11

How to model compile-time generics

Problems discussed in the paper
• Compile-time parameters
Run-time configuration
• Inheritance
• Partial description
• Semantics equivalence

© Accellera Systems Initiative 12

How to model the run-time configuration

© Accellera Systems Initiative 13

• Covering all the possible scenario of
the chaining of the filter engines.

• In SystemVerilog test , we rely on the
constraint random and a large number
of seeds.

• In PSS based test, we define the
coverage goal beforehand and generate
scenarios which directly cover that goal.

Filter
chain

Filter
chain

Filter
chain

Filter
chain

Filter
chain

Filter
chain

Filter
chain

Filter
chain

Filter
chain

Configuration 1: Two filter chains run independently

Configuration 3: Four filter chains in cascade

Configuration 2: Three filter chains, partly cascaded

How to model the run-time configuration
• Randomization should be one action per filter engine.

• Utilizing the input/output data stream in action to model a
virtual chain.

• Defining variables in the action which directly links to the
cover point, e.g. starting position, index in the chain, etc.

© Accellera Systems Initiative 14

• action channel

• ch_role ?
• npsec_in_use ?
• chain_start_location ?
• index_in_chain ?
• chain_size ?

• source ?
• step ?
• chain_start_location ?
• chain_size ?
• npsec_in_use ?

• stream data_t

• source ?
• step ?
• chain_start_location ?
• chain_size ?
• npsec_in_use ?

• stream data_t

in_data

out_data

© Accellera Systems Initiative 15

How to model the run-time configuration

Problems discussed in the paper
• Compile-time parameters
• Run-time configuration
Inheritance
• Partial description
• Semantics equivalence

© Accellera Systems Initiative 16

Inheritance

© Accellera Systems Initiative 17

• Inheritance is supported in
PSS LRM
– Action can be extended
– Important to plan a good

structure before
implementation

• One action per UVM
sequence, and move the
scheduling into PSS model

• Limitation in DPI function

Problems discussed in the paper
• Compile-time parameters
• Run-time configuration
• Inheritance
Partial description
• Semantics equivalence

© Accellera Systems Initiative 18

PARTIAL DESCRIPTION

• No need to specify all the steps
• Rely on the data flow and the solver to get a complete test scenario.
• Difficult for multiple parallel process, with different configuration from

action to action
• The success of abstract partial configuration is highly dependent on the

coding style

© Accellera Systems Initiative 19

PARTIAL CONFIGURATION

© Accellera Systems Initiative 20

Problems discussed in the paper
• Compile-time parameters
• Run-time configuration
• Inheritance
• Partial description
Semantics equivalence

© Accellera Systems Initiative 21

Semantics equivalence

© Accellera Systems Initiative 22

• Test steps:
• Configure the DUT and send data stimuli.
• And then randomize and configure the DUT

again and send data stimuli again.

• Problem with the second configuration

Semantics equivalence
• Problems with the reconfiguration test

– Synchronization between C and SystemVerilog should be extended
– PSS randomization is done before the test is created. Therefore more buffer is

needed to store the randomization results.

• Equivalence check
– Test result
– Regression result
– Unexpected coverage hole.

© Accellera Systems Initiative 23

Conclusion
• Realistic to add portable stimulus layer to an UVM test bench with

reasonable effort.
• The effort is paid off by improved verification efficiency, faster

functional coverage closure and reduced tests in the regression.
• Promotes reusability and potentially reduce redundant test

development time in other target platforms
• Useful add-on to the existing dynamic verification techniques.

© Accellera Systems Initiative 24

Questions

© Accellera Systems Initiative 25

	Does It Pay Off To Add Portable Stimulus Layer On Top Of UVM IP Block Test Bench?
	Background
	Motivation
	Benefit for PSS in block level test bench
	 PSS tool
	IP block details
	Modelling in PSS
	Problems discussed in the paper
	Problems discussed in the paper
	How to model compile-time generics
	Slide Number 11
	Problems discussed in the paper
	How to model the run-time configuration
	How to model the run-time configuration
	How to model the run-time configuration
	Problems discussed in the paper
	Inheritance
	Problems discussed in the paper
	Partial Description
	Partial configuration
	Problems discussed in the paper
	Semantics equivalence
	Semantics equivalence
	Conclusion
	Questions

