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Background
• Portable stimulus has becoming the emerging trend

– Reusable stimulus and test
– Aiming at faster functional coverage closure
– Uniform way of understanding and test the requirements

• Accellera System Initiatives announced the release of the Portable Test 
and Stimulus Standard (PSS) on June 2018

• Support PSS domain specific language(DSL) and C++
• PSS allow the creation of a scenario from partial definition

– Loop, branch, parallelism etc to control the activities with
– Concepts like resource, data flow object, constraint
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Motivation
• Evaluation of PSS deployment on a block level test bench

– System-level test bench are the main target of early adoption
– Few publication are found on block level test bench
– Makes good sense to start from block level test bench

• Our motivation
– Find out the effort and the challenge to migrate a UVM block level test bench 

into PSS-based solution
– Evaluate the PSS support of the tool
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Benefit for PSS in block level test bench
• Faster functional coverage closure

– By aligning stimulus generation with coverage goals
– Beneficial for projects with different parameter setups

• Reduced number of tests in the regression
– Reduced regression time
– Reduced use of regression license and machine power

• Reusability
– Vertical reuse on the sub-system and full system test

• Visualisation of the test scenario
– Improve communication across teams
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PSS tool
• Perspec is a modelling tool by Cadence

– PSS model development 
– Scenario creation
– Sceanrio randomization 
– Target code generation 
– Abstract debugging

• Perspec supports both PSS-DSL and C++,  
as well as Cadence’s own System Level 
Notation(SLN).

• PSS as a layer on top of UVM
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IP block details
• Our target DUT is a highly configurable filter chain system

– A serie of filter engine blocks which process data independently or in chain.
– A combination of generics and run-time configuration
– Benefit in closing coverage by PSS is high
– The complexity level of UVM sequence is high. Requires correct timing and 

stimuli.
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Modelling in PSS
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• Example of a PSS based test
• Configure six filter engines in 

parallel and randomize
• Schedule data stimuli 

sequence and send them to 
DUT

• Test is build up from a sequence of 
atomic actions.  

• The full valid sequence is also an 
action, called a compound action. 



Problems discussed in the paper
• Compile-time parameters

• Using Cadence SLN can simplify the coding and is a good complement to the current 
standard. 

• Run-time configuration
• Creating the model in layers and distributing the complexity into each layer 

• Inheritance
• A powerful methodology to create test cases, but it can be further improved for code reuse.

• Partial description
• Successful solving is heavily dependent on good constraint sets and coding style.

• Semantics equivalence 
• Checking the potential semantics inequivalence between the PSS model and UVM tests
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Problems discussed in the paper
Compile-time parameters
• Run-time configuration
• Inheritance
• Partial description
• Semantics equivalence 
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How to model compile-time generics
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• DUT have several different block parameter setups
– The UVM TB includes a package with ifdef around each sets of parameter
– The regression runs all different setups

• PSS also need to be generic
– Generate different test cases for each parameter setup
– Parameter sets are tedious to do in PSS-DSL
– Cadence SLN table command provides a mechanism to capture code 

repetition
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How to model compile-time generics



Problems discussed in the paper
• Compile-time parameters
Run-time configuration
• Inheritance
• Partial description
• Semantics equivalence 

© Accellera Systems Initiative 12



How to model the run-time configuration
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• Covering all the possible scenario of
the chaining of the filter engines.

• In SystemVerilog test , we rely on the
constraint random and a large number
of seeds.

• In PSS based test, we define the
coverage goal beforehand and generate
scenarios which directly cover that goal.
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How to model the run-time configuration
• Randomization should be one action per filter engine.

• Utilizing the input/output data stream in action to model a
virtual chain.

• Defining variables in the action which directly links to the
cover point, e.g. starting position, index in the chain, etc.
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• action channel

• ch_role                         ?
• npsec_in_use              ?
• chain_start_location ?
• index_in_chain           ?
• chain_size                   ?

• source                          ?
• step                              ?
• chain_start_location ?
• chain_size                   ?
• npsec_in_use              ?

• stream data_t

• source                          ?
• step                              ?
• chain_start_location ?
• chain_size                   ?
• npsec_in_use              ?

• stream data_t

in_data

out_data
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How to model the run-time configuration



Problems discussed in the paper
• Compile-time parameters
• Run-time configuration
Inheritance
• Partial description
• Semantics equivalence 
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Inheritance
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• Inheritance is supported in 
PSS LRM
– Action can be extended
– Important to plan a good 

structure before 
implementation

• One action per UVM 
sequence, and move the 
scheduling into PSS model

• Limitation in DPI function



Problems discussed in the paper
• Compile-time parameters
• Run-time configuration
• Inheritance
Partial description
• Semantics equivalence 
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PARTIAL DESCRIPTION

• No need to specify all the steps
• Rely on the data flow and the solver to get a complete test scenario.
• Difficult for multiple parallel process, with different configuration from 

action to action
• The success of abstract partial configuration is highly dependent on the 

coding style
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PARTIAL CONFIGURATION
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Problems discussed in the paper
• Compile-time parameters
• Run-time configuration
• Inheritance
• Partial description
Semantics equivalence 
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Semantics equivalence
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• Test steps:
• Configure the DUT and send data stimuli.
• And then randomize and configure the DUT 

again and send data stimuli again. 

• Problem with the second configuration 



Semantics equivalence
• Problems with the reconfiguration test

– Synchronization between C and SystemVerilog should be extended
– PSS randomization is done before the test is created. Therefore more buffer is 

needed to store the randomization results.

• Equivalence check
– Test result
– Regression result
– Unexpected coverage hole.
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Conclusion
• Realistic to add portable stimulus layer to an UVM test bench with 

reasonable effort.
• The effort is paid off by improved verification efficiency, faster 

functional coverage closure and reduced tests in the regression.
• Promotes reusability and potentially reduce redundant test 

development time in other target platforms
• Useful add-on to the existing dynamic verification techniques.
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Questions
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