
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Do You Verify Your Verification Components?

Why Verify Components?

Today’s verification requires significant ramp up to build an
environment. There is the huge learning curve of the standards;
both SystemVerilog and UVM require a large amount of time
investment in order to master. Not only that, but all too often
verification engineers take the approach of using the RTL design
to validate the correct functionality of a verification component.
Now testing is being done on the verification environment and the
RTL at the same time. This leads to a couple of issues. One issue
is a potential delay. Both the design and the verification
environment need to have the same feature up and running to
test them against each other. The second issue is doing this
introduces two variables into testing, the RTL and its
corresponding verification environment. This expands the state
space of where bugs reside. Is the bug in the RTL, verification,
documentation or specification? There is a better method to
develop verification code in a systematic way. Creating a
systematic approach is the reason behind the development of
SVUnit. Using the concept of Unit Testing from Test Driven
Development, SVUnit is a way to develop verification building
blocks. First step is to build a failing testcase, and then write the
code that makes that test pass. This allows the verification of
your verification components before the RTL design is ready as
well as isolating the bugs. This paper will discuss Test Driven
Development, Unit Testing and how to setup and use SVUnit.

What is TDD?

Why Refactor Code?

The focus of the first two steps of the TDD flow is creating a
passing test case. These steps may produce code that is not
readable, straight forward or even commented. Common
examples of issues fixed in the refactoring stage include breaking
down large classes, removing duplicate code, or splitting a
method that is simply too long.
Refactoring these sections will make the code easier to work with
by making it not only easier to read, but also resolving hidden or
dormant issues that may exist within the code. The beauty of the
TDD flow is that testing the code after a refactoring exercise is a
simple process, since the tests have already been created.

What is a Unit Test?
A Unit is the smallest piece of your code to be tested. In design, it
would be the modules that make up the design. In UVM, it would
be individual verification components. So unit testing is just
testing individual pieces of a design or verification component.
But to do that, TDD requires that each piece is tested in isolation.
For example, in UVM, normally a driver works in concert with a
UVM sequencer. In TDD, testing the driver should be
independent of the sequencer. This means some sort of
framework is needed to build these tests quickly. It would make it
so much simpler to automate the whole process. A Unit Test is a
testing framework used to implement TDD and it does just that. It
relies on automation to make the testing quicker and simpler.

Using SV Unit Real World Results

Conclusion

In order to test SVUnit, an experiment was needed. What better
way to test SVUnit than on the code most environments were
created with? UVM-UTest is an open-source initiative that
demonstrates the value of unit testing relative to an industry
standard code library. In UVM-UTest, unit test suites were written
for several core components of UVM. The intent was to rigorously
verify the functionality of each component in isolation, an
approach uncommon in hardware verification.

Writing code is challenging and it’s not getting easier; not only
from a technical standpoint but also because it’s more of an art
than engineers would care to admit. Engineers are thrown into
the fire, asked to complete a verification task with little to no
planning or documentation - forced to peek at the design code in
order to determine what should be tested. Everyone wants to
create high quality code that is bug free and easy to read. If that
is the case, the tests should not just test that the design behaves
as coded; instead tests should target desired behavior. Agile
software techniques such as TDD and Unit Testing offer a
different approach for developing more robust verification
environments.
To be fair, TDD and thereby SVUnit may not be the best solution
for every project, but they both bring along a very systematic
approach to developing verification environments that is sorely
lacking in current approaches. It gives structure to the art of
coding, making it possible to create cleaner code. TDD has been
in use in the software world for some time now and it continues to
be utilized to help create more complicated code with fewer bugs,
and on tighter schedules.

Josh Rensch
Superion Technology

Josh.Rensch@superiontech.com

Neil Johnson
XtremeEDA

njohnson@xtreme-eda.com

The concept of TDD comes from the software world’s Agile
Development. Unlike in the Waterfall process, with TDD flow, the
Verification stage is before the Implementation stage. The idea is
to first determine a feature of the code (in this case a verification
component) and then write a test to test that feature. This test
must fail. Only after the testcase fails, is the verification
component feature written that the test was checking. After the
test is passing, the code is refactored. Refactoring is the process
of improving the code’s readability and quality. Then, a new failing
testcase is created for the next feature. This process is
sometimes referred to as RED-GREEN-REFACTOR.

Figure 1: TDD Flow

Acknowledgements

2 engineers + 6 weeks = 500 UVM unit tests

500 UVM unit tests + ~14 seconds (in simulation) =

10 UVM Defects!

UVM-Utest core UVM components :
uvm_object, uvm_misc, uvm_printer, uvm_component

Figure 3: UVM Defect List

Using SVUnit - Overview

SVUnit is a Unit Test framework for SystemVerilog and UVM. This
simple verification framework is intended for design and
verification engineers writing and running tests against Verilog
modules, classes or interfaces, as well as against UVM
components and objects. SVUnit uses a 3-level hierarchical
structure. At the lowest level, SVUnit is built from a unit test
template which contains a simple unit test along with the Unit
Under Test (UUT). In UVM, individual pieces would go to Unit
Test, grouping pieces to make a Testsuite would be like an agent
and a whole protocol tester would be testrunner. Let’s go back to
our earlier idea of creating an agent. The components of an agent
are the driver, the monitor, the sequence item and the interface.
Each one of these would have their own unit test template. These
would be grouped together in the next level of hierarchy where
there is a test suite.

Figure 2: SVUnit Test Structure

We would like to thank both Superion Technology and XtremeEDA for
giving us the opportunity to work on this. We’d like to thank all those of
you using SVUnit.

`SVTEST(get_port_not_null_test)
`FAIL_IF(my_simple_model.get_port == null);

`SVTEST_END

These macros register the test with the SVUnit test runner. In this case
the test is checking if the get port is not null. For behavior that is
repeated before and after every test, the setup() and teardown() tasks
in the unit test template are intended to group any logic that is repeated
before and/or after every test, respectively.

How to setup up and configure SVUnit can be found at
http://www.agilesoc.com/open-source-projects/svunit/svunit-user-guide/
or in our full paper. The example demonstrates testing a unit called
simple_model. The UUT is a simple component which has a put and a
get port. The sequence item has only one random field. Each test inside
of SVUnit has a macro at it’s beginning and end. Inside the
parentheses is the name of the testcase.

//===================================
// Setup for running the Unit Tests
//===================================
task setup();
svunit_ut.setup();

//---
// activate the component (i.e. add the component to
// the default uvm_domain)
//---
svunit_activate_uvm_component(my_simple_model);

//-----------------------------
// start the testing phase
//-----------------------------
svunit_uvm_test_start();

endtask

In order to verify UVM components, svunit_uvm_test_start() must be
called. This will kick off the running of the UVM phases. SVUnit has run
and been tested on the big four simulators and comes with scripts and
helper functions to help you get started.

Benefits of TDD and Unit Testing
• Applying TDD helps to limit scope creep. By creating an upfront

list of exactly what the RTL and corresponding verification
components are supposed to do and creating a test for each
feature, unplanned or unnecessary tests can be avoided.

• Having these little tests that all pass allows changes in the code to
be made with assurances that a change doesn’t break any
previous functionality.

• Due to the bottom up approach to testing, you know your building
blocks are in great shape so integration testing becomes easier.

• As engineers, we traditionally balk at documentation. It’s sort of in
our DNA. Unit tests that are created correspond to the critical
parts of the components and therefore are a sort of living
document that can be extracted and used to create more formal
documentation later.

• These unit tests are small and therefore run faster than the
traditional full random simulation.

• With SVUnit test cases packaged with the VIP, you can make
small changes in the agent and make sure they don’t break the
overall functionality of the agent.

• TDD is very systematic and structured. At first, the rigidity of it
feels constraining and time consuming. This process makes not
only cleaner code but a more productive coder.

http://www.agilesoc.com/open-source-projects/svunit/svunit-user-guide/

	Slide Number 1

