
TEMPLATE DESIGN © 2008

www.PosterPresentations.c
om

Distributed Simulation of UVM Testbench
Theta Yang (theta.yang@amd.com)

Advanced Micro Devices

Bldg33 River Front Harbor, Zhangjiang Hi-Tech Park, Shanghai, China

Problem Statement

Extra workload is involved in both IP and SOC
testbench development to support IP to SOC
testbench reuse. And simulation performance
factors prevent the full leverage of the
verification component from IP level to SOC
level.
 IP’s verification component needs to

support configuration options what are not
really needed at the IP level. For example,
an alternative passive mode.

 Instantiation, configuration and connection
of IP-level UVM component at the SOC
level needs significant work effort and
debug time.

 IP UVM components are compiled and
simulated, this results in huge memory
usage for the SOC simulation and
considerable degradation in the simulation
speed.

By running multiple simulation nodes in parallel
and exchanging internode TLM messages
through inter process communication (IPC), the
SOC level simulation computing load is
distributed and simulation performance gets
boosted.

Benefit of the Distributed Simulation System

Testbench Partition and Topology Mapping

SOC-level simulation is composed of a cluster
of simulation instances among which one of the
instance simulates the SOC DUT and its
testbench. Each of the other instances
simulates an IP DUT together with its
testbench.
IPC adapters are connected in point-to-point
style in order to relay the TLM transaction from
interface UVC in SOC simulation node to
interface UVC residing at the distributed
simulation node.
All of the IPC connections are between SOC
testbench and IP testbenches, and there is no
direct connection between the various IPs’
simulation nodes. The IP testbenches are
wrapped by a stub module at SOC testbench,
the stub module and the distributed IP
testbench simulation instances add together to
perform the IP’s functionality in SOC-level
simulation.
The architecture of the proposed distributed
testbench is demonstrated in Fig.1.

IPC Adapter Design

When interface UVC is a transaction completer,
it accepts a transaction request from DUT’s
originator interface and sends the request to
IPC adapter. The IPC adapter is responsible to
buffer the request and send it to external
components through IPC networking endpoint.
When the DUT is a transaction completer, the
IPC adapter receives the transaction request
by external IP through the IPC endpoint and
forwards the request to interface UVC which
will perform as a traffic originator.
The IPC adapter provides DPI routine to be
used by System Verilog based interface UVC
to send/receive transactions.
Each IPC adapter forks two background
processes to send and receive transactions
through ZeroMQ API. The receiving thread is a
“server” which accepts the connection and
request from a “client’ of the remote connected
IPC adapter.
The IPC adapter is designed as a generic
building block, different transaction type and
FIFO depth are all parameters that can be
specified when it is instantiated.

Simulation Phase Alignment

Each IP testbench needs to be setup properly
and initialized before it can originate or respond
to the transaction at the IPC adapter. And all IP
testbenches are required to reach the
functional mode before the cross node TLM
transaction can be exchanged.
A central server process is used to sync the
simulation phases between simulation nodes.
All sub phases under UVM simulation run
phases are synchronized between simulation
nodes as shown in Fig. 3.
When a simulation process wants to exit a
specific simulation phase, it will send phase
sync message to the phase server. The phase
server will acknowledge the simulation phase
requestor after the request for all simulation
nodes are received.

The phase alignment algorithm can be further
extended to support a global slow clock, we
can make all simulation instances run
synchronously on the slow clock. With this
global clock, when a simulation instance tries
to run the simulation ahead, it will get
suspended and waits for the slower simulation
node.
With the global clock, all the cross node traffic
can be constrained to complete in the same
cycle. With this extension, the simulation time
deviation between simulation nodes can be
limited to the single cycle of the slow global
clock.

Bring the script capability to UVM testbench

The distributed simulation frame work can also
be used in a single node simulation
environment. Besides to connecting the two
simulation nodes, we use a simulation control
script to control the IP simulation to develop
debug.
A backend service routine in C++ talks with the
IPC adapter in the simulation node through the
ZeroMQ API. The routine contains a queue to
buffer the transaction request or response to be
sent to the ingress FIFO of an IPC adapter.
And it also contains the list to record the
callback routine to be called when a response
or a request is received from an IPC adapter.
The script currently support generating
transaction, registering callback for response
handler or response checker function.

Prototyping System Simulation Performance

Limitation of Proposed Distribute Scheme

The top level of the prototyping system for the
distributed simulation framework contains two
simulation nodes, one simulates SOC level
testbench and another simulates IP level
testbenches.
Both the simulation nodes had testbench
already coded in the UVM implementation. A
special UVM test is developed for each UVM
testbench, and they are running separately on
each simulation node when the distributed
simulation is launched.

The proposed simulation framework doesn’t
have cycle accurate simulation timing at the IP
boundaries. The transaction buffer and inter-
node communication causes extra transaction
latency between IP’s. It cannot replace the
traditional SOC level simulation which requires
simulation to be performed at signal level or
bus protocol level.
The simulation framework only applies to
SOCs which use latency-tolerate interface for
IP connectivity. And as it involves extra latency
at IP boundaries, the simulation framework is
not suitable to run performance measurement
tests.

1) Simulation performance is scalable
SOC-level testbench is partitioned and
distributed into multiple IP level testbenches,
where the computing load and memory size
required by SOC level testbench is reduced.
Each IP-level simulation requires less
computing performance and memory size. The
framework leverages the multi-thread capability
of a modern simulation server, where each IP
has a separate simulation instance and the
number of simulation processes can be
allocated based on the required simulation
performance.
2) Fully reuse IP-level testbench at SOC level
SOC-level simulation testbench is composed of
a simulation cluster of IP-level simulation
testbenches. The IPC adapters are extra
verification components that can be added to
UVM-based testbench without changing the
existing testbench. The original verification
components such as stimulus driver’s and
checkers are still functional as usual. The
distributed simulation framework can also
support an IP testbench implemented in
different simulation language, for example a
UVM-based simulation can be connected with
a SystemC based simulation.
3) IPC adapter design is generic and can be
used by various interfaces and in multiple
projects
The IPC adapters for standard interfaces such
as SDP (AMD proprietary system bus) and
AMBA AXI can be reused for multiple projects.
The communication carrier can be either inter
process communication or network socket
provided by computer operation system, the
internal FIFO size is parameterized, and the
payload type of the communication follow
generic payload defined in standard SystemC
TLM2. Since it is based on well defined
industrial standard it is easy to develop an IPC
adapter for other interface protocols.

(Figure 1)

(Figure 2)

(Figure 3)

(Figure 4)

(Figure 5)

The below Table I shows the results including
compile time and run time performance factors.
Both the memory used to compile the
simulation image and the memory used to run
the simulation is significantly reduced. The
average simulation speed is increased from 5.4
ns sim speed per seconds to 9.6 ns sim speed
per second and it makes the simulation much
faster.

Configuration Compile Peak Mem(M) Compile Avg. Mem(M) Compile Time(S)

Single image sim 13378 8385 5548

DIST sim SOC node 8968 5674 4111.6

DIST sim IP node 4978 4820 5654.9

Single image sim

Sim Peak Mem(M) Sim Avg. Mem(M) Sim Speed(ns/s)

8884 7966 5.4

DIST sim SOC node 5458 4799 9.6

DIST sim IP node 4978 4820 8.1

TABLE I PROTOTYPING SYSTEM PERFORMANCE FACTORS

The transaction transport time is the absolute
latency involved in the distributed simulation
architecture to send transaction from one
simulation node to another. It is asynchronous
to the simulation time modeled in each
simulation node. From a specific simulation
node, the latency is presented as the cycle
number needed for sending the transaction
request at the egress FIFO to the receiving
time of the transaction response at ingress
FIFO.

Latency (cycles)

15 20 25 30 35 40 45

(Figure 6)

	Slide Number 1

