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Problem Statement

Extra workload is involved in both IP and SOC 
testbench development to support IP to SOC 
testbench reuse.  And simulation performance 
factors prevent the full leverage of the 
verification component from IP level to SOC 
level. 
 IP’s verification component needs to 

support configuration options what are not 
really needed at the IP level. For example, 
an alternative passive mode. 

 Instantiation, configuration and connection 
of IP-level UVM component at the SOC 
level needs significant work effort and 
debug time.

 IP UVM components are compiled and 
simulated, this results in huge memory 
usage for the SOC simulation and 
considerable degradation in the simulation 
speed. 

By running multiple simulation nodes in parallel 
and exchanging internode TLM messages 
through inter process communication (IPC), the 
SOC level simulation computing load is 
distributed and simulation performance gets 
boosted.

Benefit of the Distributed Simulation System 

Testbench Partition and Topology Mapping

SOC-level simulation is composed of a cluster 
of simulation instances among which one of the 
instance simulates the SOC DUT and its 
testbench. Each of the other instances 
simulates an IP DUT together with its 
testbench.
IPC adapters are connected in point-to-point 
style in order to relay the TLM transaction from 
interface UVC in SOC simulation node to 
interface UVC residing at the distributed 
simulation node. 
All of the IPC connections are between SOC 
testbench and IP testbenches, and there is no 
direct connection between the various IPs’ 
simulation nodes. The IP testbenches are 
wrapped by a stub module at SOC testbench, 
the stub module and the distributed IP 
testbench simulation instances add together to 
perform the IP’s functionality in SOC-level 
simulation. 
The architecture of the proposed distributed 
testbench is demonstrated in Fig.1. 

IPC Adapter Design

When interface UVC is a transaction completer, 
it accepts a transaction request from DUT’s 
originator interface and sends the request to 
IPC adapter. The IPC adapter is responsible to 
buffer the request and send it to external 
components through IPC networking endpoint. 
When the DUT is a transaction completer, the 
IPC adapter receives the transaction request 
by external IP through the IPC endpoint and 
forwards the request to interface UVC which 
will perform as a traffic originator. 
The IPC adapter provides DPI routine to be 
used by System Verilog based interface UVC 
to send/receive transactions. 
Each IPC adapter forks two background 
processes to send and receive transactions 
through ZeroMQ API. The receiving thread is a 
“server” which accepts the connection and 
request from a “client’ of the remote connected 
IPC adapter. 
The IPC adapter is designed as a generic 
building block, different transaction type and 
FIFO depth are all parameters that can be 
specified when it is instantiated. 

Simulation Phase Alignment

Each IP testbench needs to be setup properly 
and initialized before it can originate or respond 
to the transaction at the IPC adapter. And all IP 
testbenches are required to reach the 
functional mode before the cross node TLM 
transaction can be exchanged. 
A central server process is used to sync the 
simulation phases between simulation nodes. 
All sub phases under UVM simulation run 
phases are synchronized between simulation 
nodes as shown in Fig. 3. 
When a simulation process wants to exit a 
specific simulation phase, it will send phase 
sync message to the phase server. The phase 
server will acknowledge the simulation phase 
requestor after the request for all simulation 
nodes are received. 

The phase alignment algorithm can be further 
extended to support a global slow clock, we 
can make all simulation instances run 
synchronously on the slow clock. With this 
global clock, when a simulation instance tries 
to run the simulation ahead, it will get 
suspended and waits for the slower simulation 
node. 
With the global clock, all the cross node traffic 
can be constrained to complete in the same 
cycle. With this extension, the simulation time 
deviation between simulation nodes can be 
limited to the single cycle of the slow global 
clock. 

Bring the script capability to UVM testbench 

The distributed simulation frame work can also 
be used in a single node simulation 
environment. Besides to connecting the two 
simulation nodes, we use a simulation control 
script to control the IP simulation to develop 
debug. 
A backend service routine in C++ talks with the 
IPC adapter in the simulation node through the 
ZeroMQ API. The routine contains a queue to 
buffer the transaction request or response to be 
sent to the ingress FIFO of an IPC adapter. 
And it also contains the list to record the 
callback routine to be called when a response 
or a request is received from an IPC adapter. 
The script currently support generating 
transaction, registering callback for response 
handler or response checker function. 

Prototyping System Simulation Performance

Limitation of Proposed Distribute Scheme

The top level of the prototyping system for the 
distributed simulation framework contains two 
simulation nodes, one simulates SOC level 
testbench and another simulates IP level 
testbenches. 
Both the simulation nodes had testbench 
already coded in the UVM implementation. A 
special UVM test is developed for each UVM 
testbench, and they are running separately on 
each simulation node when the distributed 
simulation is launched. 

The proposed simulation framework doesn’t 
have cycle accurate simulation timing at the IP 
boundaries. The transaction buffer and inter-
node communication causes extra transaction 
latency between IP’s. It cannot replace the 
traditional SOC level simulation which requires 
simulation to be performed at signal level or 
bus protocol level. 
The simulation framework only applies to 
SOCs which use latency-tolerate interface for 
IP connectivity. And as it involves extra latency 
at IP boundaries, the simulation framework is 
not suitable to run performance measurement 
tests. 

1) Simulation performance is scalable
SOC-level testbench is partitioned and 
distributed into multiple IP level testbenches, 
where the computing load and memory size 
required by SOC level testbench is reduced. 
Each IP-level simulation requires less 
computing performance and memory size. The 
framework leverages the multi-thread capability 
of a modern simulation server, where each IP 
has a separate simulation instance and the 
number of simulation processes can be 
allocated based on the required simulation 
performance. 
2) Fully reuse IP-level testbench at SOC level 
SOC-level simulation testbench is composed of 
a simulation cluster of IP-level simulation 
testbenches. The IPC adapters are extra 
verification components that can be added to 
UVM-based testbench without changing the 
existing testbench. The original verification 
components such as stimulus driver’s and 
checkers are still functional as usual. The 
distributed simulation framework can also 
support an IP testbench implemented in 
different simulation language, for example a 
UVM-based simulation can be connected with 
a SystemC based simulation. 
3) IPC adapter design is generic and can be 
used by various interfaces and in multiple 
projects
The IPC adapters for standard interfaces such 
as SDP (AMD proprietary system bus) and 
AMBA AXI can be reused for multiple projects. 
The communication carrier can be either inter 
process communication or network socket 
provided by computer operation system, the 
internal FIFO size is parameterized, and the 
payload type of the communication follow 
generic payload defined in standard SystemC 
TLM2. Since it is based on well defined 
industrial standard it is easy to develop an IPC 
adapter for other interface protocols. 
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The below Table I shows the results including 
compile time and run time performance factors. 
Both the memory used to compile the 
simulation image and the memory used to run 
the simulation is significantly reduced. The 
average simulation speed is increased from 5.4 
ns sim speed per seconds to 9.6 ns sim speed 
per second and it makes the simulation much 
faster. 

Configuration Compile Peak Mem(M) Compile Avg. Mem(M) Compile Time(S) 

Single image sim 13378 8385 5548 

DIST sim SOC node 8968 5674 4111.6 

DIST sim IP node 4978 4820 5654.9 

Single image sim 

Sim Peak Mem(M) Sim Avg. Mem(M) Sim Speed(ns/s) 

8884 7966 5.4 

DIST sim SOC node 5458 4799 9.6 

DIST sim IP node 4978 4820 8.1 

TABLE I PROTOTYPING SYSTEM PERFORMANCE FACTORS  

The transaction transport time is the absolute 
latency involved in the distributed simulation 
architecture to send transaction from one 
simulation node to another. It is asynchronous 
to the simulation time modeled in each 
simulation node. From a specific simulation 
node, the latency is presented as the cycle 
number needed for sending the transaction 
request at the egress FIFO to the receiving 
time of the transaction response at ingress 
FIFO. 
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