
Digitizing Mixed Signal Verification  
Digital Verification Techniques Applied to Mixed Signal and Analog Blocks and System 

Level Verification 

David Brownell and Courtney Schmitt 

Analog Devices, Inc. 

Norwood, MA 

david.brownell@analog.com, courtney.schmitt@analog.com 

 

 
Abstract— Innovation in the field of functional verification 

has traditionally come from digital design teams, as these teams 

have led the move from directed test approaches to constrained-

random testing, metric-driven environments and industry 

supported languages and methodologies such as SystemVerilog 

and the Universal Verification Methodology (UVM) [5].   Analog 

and mixed signal verification teams have now followed suit, with 

the introduction of UVM-MS, real number modeling, 

randomization, and the adoption of traditionally “digital” metric 

driven verification (MDV) techniques [1,2].   

  This paper will discuss how the application of digital 

verification techniques to analog and mixed signal blocks on a 

recent design allowed for a more thorough exploration of design 

robustness, identified bugs potentially missed with traditional 

analog verification techniques and improved confidence in the 

taped out design.  With the complexity of today’s mixed signal 

designs and the capabilities of mixed signal and analog 

simulation tools it is no longer sufficient to rely primarily on 

manual inspection of waveforms for verification, MDV 

techniques must be applied as they provide the same benefits as 

they do for digital designs [3].   

Keywords—mixed signal, verification, UVM, metric driven, 

constrained random, co-simulation 

I. INTRODUCTION 

A. Background of Analog/Mixed Signal DV at ADI 

  At Analog Devices, design verification (DV) is still a 
relatively new job title, and only within the last 8 years have 
fulltime DV engineers been assigned to projects and dedicated 
DV teams been established across the organization.  Before 
this design engineers typically filled two roles, serving as both 
the designers of the chip as well as being responsible for the 
verification.   

  The lack of dedicated DV engineers has resulted in 
inconsistent adoption of modern verification methodologies 
across the company.  Within our local organization the 
processor teams have dedicated DV engineers and have moved 
fully to a UVM based metric driven verification methodology, 
while the analog/mixed signal team relies on designers for 
verification using directed tests and primarily manual 
inspection of waveforms to determine correctness.   The 
standardization, automation, and visibility that are the 
foundations of modern digital verification methodologies are 

missing from the verification methodologies of the analog 
team. 

  Our organization recognized that this lack of dedicated 
verification engineers following a consistent verification 
methodology for analog and mixed signal designs was a 
weakness in our development strategy.  The LMA project was 
the first heavily analog product where dedicated DV engineers 
were allocated to work alongside the analog designers.  These 
engineers had previously focused on DSP SOC based designs 
and brought with them experience with SystemVerilog, UVM 
and metric driven verification, but little experience with analog 
schematic based design and spice simulation.  The analog 
designers were experts in spice, verilog/spice co-simulation, 
and analog circuit debug but lacked experience with object-
oriented programming (OOP) and scripting.  This paper 
documents the results of this collaboration and how the 
collision of these two worlds resulted in the digitizing of mixed 
signal verification within our organization. 

B. Description of Project 

  Project LMA represented the development of the LMA 
processor which is intended to go into systems where up to N 
LMA chips can be daisy chained to control the 
transmission/reception of audio data throughout an automobile 
using an ADI developed protocol.  ‎Fig. 1 shows the high level 
overview of a single LMA processor, which is made up of five 
analog blocks and one large block of digital control logic.    

 

 

Fig. 1. LMA chip level block diagram 



The four major analog blocks are the phase locked loop 
(PLL), voltage regulator (VREG), downstream node detector 
(DND), and two instances of a transceiver (XCVR).  The PLL 
is responsible for generating clocks to the digital logic as well 
as the transceivers.  The VREG creates separate supplies for 
the PLL, digital logic, and DND blocks.  The transceiver 
blocks are responsible for communicating audio data and 
control data between nodes.  XVCR A receives downstream 
communication while XCVR B handles upstream 
communication.  Finally, the DND block is responsible for 
determining if downstream nodes exist and are connected 
properly before the transceivers attempt to communicate.  The 
verification effort for this project included checking that a 
single LMA chip functioned correctly as well as confirming 
that any configuration of LMA processors would function as a 
system. 

  ‎Fig. 2 shows a high level diagram of a four node LMA 
system with the slave nodes connected to various audio devices 
all controlled by a host processor connected to the LMA master 
node. 

 
Fig. 2. Four node LMA system diagram 

C. Overview of Digital Techniques Applied to Mixed Signal 

Verification 

  When we began working with the analog designers who 
were responsible for the verification of these projects in the 
past, they were able to clearly describe what tests needed to be 
written, how different variables affected device performance, 
and what needed to be checked in the design to determine if the 
devices were operating correctly.  What was lacking was any 
visibility into the process of how they had done this in the past! 

  Tests were not maintained under revision control and 
results would be recorded in notebooks to be presented at a 

design review sometime in the future.  There was absolutely no 
visibility into the verification process or status during the 
development of a project.  For our digital focused projects we 
follow a standard process as shown in ‎Fig. 3. This process 
provides consistency and visibility into the verification of a 
project through the entire development cycle. 

 

 
Fig. 3. Digital verification process 

  Completion of the LMA project required a significant 
amount of mixed signal and analog verification and coming 
from a digital verification background we applied the same 
process as we would have for one of our digital processor 
based designs.  The starting point for the mixed signal 
verification was the creation of a verification plan that would 
determine what testbenches needed to be created, what 
functionality was required in each testbench, and what metrics 
needed to be tracked to measure the progress of the overall 
verification effort [3].   

Next was the development of block, chip, and system level 
testbenches.  These could be UVM SV based testbenches or 
schematic based testbenches for analog blocks.  In both cases 
the testbenches were developed to be constrained random and 
ran self-checking tests, which enabled automated regressions 
and verification metric collection.  Some of the analog and 
mixed signal blocks were further stressed in system level spice 
co-simulations to verify the design across multiple LMA 
nodes.   

Finally, DV reviews and functional qualification software 
were used to look for holes in the verification process and 
increase the confidence in the overall verification effort. 

 

 

 



II. VERIFICATION PLANNING 

  The biggest surprise when beginning to work on the 
verification of the analog and mixed signal blocks was the lack 
of any documentation on what had been done in the past.  
Unless you could locate the designer who did the work, it was 
impossible to tell what was done to verify the block..  
Testbenches existed, but were not kept under revision control, 
and were often tweaked on a test by test basis so there was no 
guarantee that the testbench you looked at was the one used to 
run a given test.  This practice had to be fixed for knowledge 
sharing and continuous improvement of the block. 

  The first and one of the most beneficial changes we made 
was implementing the practice of keeping all testbenches and 
tests for mixed signal and analog blocks under revision control 
along with the design schematics.  This allows engineers to go 
back to any point in time and reproduce simulation results on 
any project.  This can be beneficial in terms of learning how to 
do something or ensuring that the proper verification tasks 
were done in the first place. 

  We took a two-step approach to creating the verification 
plans for LMA.  Initially, we got the digital designers, analog 
designers, and DV engineers together to answer the following 
questions: 

1. What determines if the LMA system is successful and 

how do we verify that? 

2. What blocks have the most impact on LMA system 

performance and do they need block level testbenches? 

3. Since full chip and system level simulations would run 

forever with full spice models, what can be modeled at a 

higher level of abstraction and how do we validate the 

models to ensure we can run legitimate system level 

simulations? 

 
  From this meeting we identified five separate testbenches 

that needed to be created: PLL block level, VREG block level, 
DND block level, LMA system level with models for analog 
blocks, and LMA system level with FastSpice models for most 
of the analog blocks. 

  For each of these environments we created a dedicated 
verification plan by reading the specification and talking to the 
designers directly to get information not available in the spec.  
The end result was that for each testbench we had: 

1. All the input parameters that needed to be controlled and 

their legal values 

2. All signals that needed to be checked and their correct 

behavior 

3. Required test cases 

4. Functional coverage requirements 

 
  These verification plans were updated automatically with 

each regression run and posted to our project DV website.  
This automated tracking gives managers visibility into the 
current status of a project at any time.  The planning and 
display also allows for other engineers from across the 
company to review what is being done for DV and point out 
areas that need improvement or suggest additional tests.   Most 

important of all when we begin work on the next project that 
has similar blocks we can re-use the verification plans and 
testbenches and not have to create them from scratch. 

III. SELF-CHECKING TESTS AND REGRESSIONS 

  The single most effective digital technique applied to the 
LMA project was simply making the tests in our spice based 
testbenches self-checking and enabling nightly regressions [1].  
Before this project the designers would manually inspect 
waveforms to determine correctness and while there were a 
few scripts for some tests to post-process waveforms and 
perform checks, these also needed to be invoked manually. 

Due to the inefficiency of the old manual approach 
designers would often wait to run tests until a large number of 
edits had been completed, and even then they may only run a 
small subset of the full test list as the time to check all the 
results manually was cumbersome.  This often meant that small 
changes to fix one item would break other features but this 
might not become known for several weeks until the full set of 
tests was run again. 

The lack of self-checking tests was not due to limitations in 
the tool suite, there was simply a lack of experience and trust in 
the practice of automated checking.  Without having a designer 
looking at the waveforms the team was not comfortable 
believing that the correct behavior was occurring and that real 
issues could be missed.  These same concerns exist in digital 
verification, but the productivity gains outweigh the risks so 
additional methods such as coverage and functional 
qualification have been developed to reduce these risks.   We 
discuss our initial attempts at deploying these techniques later 
in the paper, and there is a lot of room for innovation in these 
areas. 

 For this project we began automating simple checks 
identified in the verification planning session such as voltage A 
should never exceed 6.0V, or current B should always be 
between 600uA and 800uA.  We then enabled these checks for 
all tests and began running nightly regressions.  As these 
checks began to cause tests to fail and debugging the failures 
identified real circuit issues the designers quickly became more 
accepting of the automated checking methodology and started 
asking for new more complicated checks to be written.    

   With the self-checking tests in place we could then enable 
nightly regressions which would run all the available tests to 
ensure that the latest committed design changes did not break 
previously working functionality or performance requirements.   

By default the nightly regression would run all tests, but we 
also had programmable regression priorities where users could 
control which tests and how many times each test was run for a 
given priority.  This allowed designers to configure and run 
short regressions to quickly validate their fixes, or test out 
various design changes to see which performed best.  Then 
when once they committed there changes the DV team’s‎
nightly regression runs with the full test suite would fully 
validate the changes.   

   

 



IV. HIERARCHICAL VERIFICATION 

  The primary outcome of the verification planning sessions 
was the clear direction for what blocks needed dedicated block 
level environments, and what could be re-used from the block 
level environments at the system level. 

A. Block Level Environments 

1) PLL 
  The PLL was the first mixed signal block in our team to 

be verified using a UVM based testbench.  Before this, all 
analog and mixed signal blocks used schematic based 
testbenches.  We chose to do a UVM based environment for 
the PLL in order to simulate jitter within each LMA node 
which can have a negative effect on overall system 
performance.  We needed the ability to measure jitter at 
multiple points across the system and developed a UVM agent 
specifically for this.  Creating this UVM agent allowed us to 
easily instantiate and control our jitter measurements at the 
system level. Appendix A, shows the UVM monitor code we 
created to monitor period jitter, this code can be easily 
extended to measure CTC and TIE jitter for a signal as well.  

2) VREG 
   Based on some critical safety features implemented in the 

Voltage Regulator we decided that the VREG should have its 
own block level TB as well.  This testbench was a traditional 
schematic based design and simulation was done with our in 
house spice simulator.  Changes from previous projects 
included developing a verification plan for the block with all 
features to be identified and identifying all tests that needed to 
be written.  Then as these tests were developed and made self-
checking we added them to a nightly regression to ensure that 
design changes to the VREG did not break previously working 
features.  

3) DND 
  The final block level environment we chose to create was 

for the DND block which required a Verilog and spice co-
simulation.  We chose to do a block level verification of the 
DND for control and performance reasons.  This block 
contained a state machine which required the PLL to be 
running, and we did not want to verify this block only in the 
system level TB as the PLL lock sequence could consume a 
large amount of simulation time for every DND test.  With the 
block level TB it was also easier to control the faults that could 
cause the downstream nodes to not be detected when compared 
to the system level environment.  Similar to the VREG, the 
testbench was schematic based and our improvements were to 
develop a verification plan and create self-checking tests which 
enabled regression testing and verification tracking. 

B. Chip Level TB 

The chip level testbench consisted of a UVM environment 
connected to a single instance of the LMA chip.  The testbench 
environment contained a UVC agent for each of the digital 
interfaces, as shown in ‎Fig. 4.  Each of these agents had a 
sequencer, driver, and monitor for the interface, in addition to 
protocol checking assertions and coverage.   

 

Fig. 4. LMA chip level testbench architecture 

As most of the verification effort was focused at the block 
and system levels, a relatively small amount of time was spent 
on the chip level testing.  As a result, mixed signal blocks were 
exclusively simulated as RTL functional models in the chip 
level testbench.  The higher-level verification process for the 
mixed signal blocks is described in detail in the system level 
testbench description below. 

C. System level Testbench Overview 

The system level testbench was used to verify the 
functionality of multiple nodes being daisy-chained together.  
This was accomplished using a UVM testbench class that 
created multiple instances of the chip level testbench 
environment, as shown in ‎Fig. 5.  The chip level agents and 
checkers were automatically included within these chip level 
environment objects.  Additionally, several new scoreboards 
were created to check the system level interactions between the 
various nodes. 

 

Fig. 5. LMA system level testbench architecture 

  



    For analog blocks, models were created at various levels of 
abstraction in order to optimize mixed signal verification 
efficiency.  For example, system level simulations targeting the 
verification of digital functionality used RTL functional 
models of the analog blocks in order to decrease simulation 
time.  Alternatively, system level simulations targeting analog 
functionality used spice netlists for targeted blocks in order to 
get the most accuracy.  Finally, mixed signal system level 
simulations used SystemVerilog real number models to get 
moderate accuracy with a smaller simulation time impact.  ‎Fig. 
6 shows the various levels of model abstraction used in system 
level simulations along with their speed and accuracy tradeoff 
relationships [5,6]. 

 
Fig. 6. Mixed signal model abstraction tradeoffs 

The selection of which models to use in a simulation was 
controlled using command line switches to the simulation run 
script.  These command line switches set specific compile 
defines to include the correct model and any other required 
compile options.  The ease of having a single script option to 
choose between sets of simulation options was critical in 
improving the mixed signal verification efficiency. 

D. Testbench Re-use 

Testbench code re-use was critical to the success of this 
verification effort.  Testbench components were re-used 
vertically in all levels of the testbench: components developed 
for the block level were re-used at the chip level, and as 
previously mentioned, the chip level environment was re-used 
at the system level.  Code re-use relied heavily on the UVM 
testbench architecture.  From the start of the project, 
verification components were designed with re-use in mind and 
they  were created to be self-contained and configurable so that 
they could be vertically re-used. 

For the mixed signal blocks, the SV RNMs were re-used at 
all levels of the testbench hierarchy.  Since the VREG and 
DND block level testbenches were primarily spice-based, the 
amount of re-use was limited.  However, since the PLL block 
level testbench was primarily SystemVerilog, significant re-use 
of the testbench monitors and checkers at the chip and system 
levels was possible. 

V. SV RNM AND RANDOMIZATION 

The LMA product was the first project where we used 
SystemVerilog and its real number capability to model some of 
our analog blocks.  Real number models combined with the 
randomization features of SystemVerilog gave us a large boost 
in productivity based on simulation performance.   In the 
system level simulations each node comes up in series and 

there is a relatively long wait time for each successive PLL to 
lock.  We could not use spice simulations for these simulations 
as the runtimes would have been far too long. 

  Instead, we were able to model the PLL with a 
SystemVerilog real number model to reduce the lock time of 
the PLL [6].  In the model we randomized various parameters 
including temperature variation effects on jitter, skew and 
voltage settings.  We could then randomize each node in the 
system individually and ensure robust operation against a large 
number of parameters and values, which would not have been 
possible with our traditional spice simulation methods.  
Appendix B, shows a portion of the code we used to randomize 
jitter for an oscillator on the LMA chip. 

   With this method we were able to run thousands of 
simulations and identify potential areas of weakness and then 
could re-create focused spice level simulations to further debug 
the issues.  Without the real number models to increase 
efficiency we would not have been able to effectively verify 
the system level. 

In addition to using SV RNM in our digital simulation we 
also enabled randomization in our spice simulations, which had 
not been done before in our organization. An example of where 
this was used was in the DND the testbench schematic which 
included capacitor values that were required as part of the PCB 
board design when using an LMA chip.  The LMA product 
specification stated that the capacitor values could be between 
1uf and 50uf, so our testbench would randomize the value of 
each capacitor for every test run to ensure that all combinations 
would work in the system. 

In addition to the capacitor values the testbench would 
randomize process corner, temperature, input voltage, resistor 
skew and capacitor skew for each simulation run.  Beyond 
randomizing basic circuit characteristics randomized ramp 
rates, clock frequencies‎ and‎ the‎ timing‎ of‎ “fault”‎ events‎ that‎
would affect the DND control state machine.  An example of a 
fault would be disconnecting a downstream LMA node in an 
active system.  In this case the DND block is responsible for 
detecting that the downstream node was removed and driving 
an output signal to signal the LMA master node to stop 
communication.  The DND control state machine was very 
complex with a huge number of states and control signals 
going back and forth to the analog portion of the DND design.  
We needed to ensure a fault could occur at any time and still be 
properly detected and found that randomization was the most 
efficient approach to covering all the scenarios.  We could 
write a single test and use our server farm to run large number 
of simulations to cover all the cases compared to trying to 
create directed test cases for all of them. 

  The analog designers still ran traditional monte carlo and full 
corner sweep simulations, but found the randomization in our 
test patterns was beneficial and saved them development time.  
The setup and run times for traditional monte carlo and full 
corner sweep simulations were so long that they rarely ran 
these simulations, only doing so when they had made a large 
number of design changes. Whereas the randomization in our 
tests allowed them to quickly run a few cases, cover a range of 
scenarios, and gain confidence that their updates were not 
breaking the design. 



 

VI. FUNCTIONAL COVERAGE IN ANALOG BLOCKS 

  Another new technique for us on this project was using  
functional coverage with analog spice level simulations.  As 
we were using verification plans and defining tests and 
coverage metrics for the analog mixed signal blocks we also 
needed the ability to collect functional coverage.  Functional 
coverage is a SystemVerilog construct and was not supported 
in our spice level simulators.  

  To handle this we developed a post processing method to 
enable functional coverage in spice simulations.  The 
simulation was designed to print messages in the spice log file 
that reported the values of randomized object or voltage and 
current measurements throughout the simulation.  We then post 
processed this log file with a SystemVerilog program 
containing the definition of functional coverage groups for 
these analog constructs and we could collect coverage with this 
program.  This program was automatically run after every 
simulation and the coverage data was collected and merged 
into our block level verification plans.  A portion of the SV 
program we used to parse the log files to pull out functional 
coverage is shown in Appendix C. 

Once we had the capability in place we collected two 
distinct types of functional coverage, which we called 
“stimulus‎coverage”‎and‎“event‎coverage”.‎‎‎Stimulus‎coverage 
was defined for items that were fully controlled by the 
testbench, such as input voltages, capacitor values, ramp rates, 
fault type insertion and process skew.  Event coverage was 
defined as observed events in the design or testbench caused by 
input stimulus.  One of the concerns raised when we started 
using self-checking tests was how do we tell if the checks are 
actually executed?  To alleviate this concern we defined 
functional‎ “event”‎ covergroups for the checkers in the 
testbench to ensure they were being executed.  Other event 
coverage items were focused on DUT signals triggering or 
states of the block control state machines. 

  These functional coverage groups for analog simulations 
proved very useful and identified several cases where tests or 
testbenches were not randomizing values across the full range 
specified in the verification plan.  An example included the 
capacitor values for the PCB circuit in the DND block level 
testbench.   The specification stated capacitors from 1uf  to 
50uf were allowed the functional coverage showed that the 
testbench was only using values from 10uf  to 50uf.  We 
updated the testbench to randomize the capacitor values across 
the full range which caused some of our tests to fail and 
ultimately required changes in the design.  If we had not been 
using functional coverage with our analog spice simulation we 
could have missed these items and released a design that did 
not meet the performance specifications in the datasheet. 

VII. SYSTEM LEVEL SPICE CO-SIMULATIONS 

The goal of this section is to provide more detail on the 
system level mixed signal spice co-simulations that were 
performed for this project.  In the first tapeout of the LMA 
product, system level co-simulations were not included in the 

verification strategy.  It was believed that the block level 
analog and mixed signal co-simulations were sufficient for 
verification of the analog blocks.  However, a few issues with 
the analog blocks were found in the first revision of silicon.  
These bugs were not found by the block level testbenches 
because they were caused by interactions between multiple 
LMA nodes.  This prompted an investigation into running 
system level spice co-simulations before the next scheduled 
tapeout.   

A. Co-simulation Goals and Setup 

There were three goals for the system level co-simulations.  
First, to replicate the issues seen in silicon in the analog blocks.  
Second, to provide a platform for verification of any design 
fixes for these issues for the next tapeout.  And third, to stress 
the analog blocks in a system level environment in order to 
expose any other bugs that might be present in the design.  In 
order for these three goals to be accomplished, the system level 
simulation environment needed to be highly accurate, but also 
fast enough to quickly run a large number of simulations.  A 
fast spice simulator, specifically the Cadence Spectre AMSD 
flow, was selected to meet these speed and accuracy 
requirements. 

The co-simulation environment ran using the same UVM 
system level testbench described in Section ‎IV.C.  All of the 
digital blocks in the design were compiled in RTL, and specific 
analog blocks were replaced with spice netlists using the 
AMSD control files.  Additionally, spice models of the 
components on the application board PCB were included in the 
co-simulation to accurately model the entire system.  Several 
sets of AMSD control files were created in order to target the 
different analog blocks by controlling which instances used 
spice netlists. 

B. Replicating Silicon Issues 

One of the AMSD configurations focused on verification of 
the LMA node discovery sequence.  This co-simulation used 
spice netlists for the VREG and DND blocks to ensure that 
each node in the chain was detected and powered up correctly.  
This discovery process was of particular interest because there 
were related issues found in the first revision of silicon which 
required some software workarounds.  After the initial AMSD 
setup and debug, the co-simulation was able to achieve the first 
goal of replicating the failing behavior that was observed in 
silicon.  Furthermore, the co-simulation was able to replicate 
the effects of the software workaround that was being used in 
silicon, which provided a high degree of confidence in the 
accuracy of the simulation. 

C. Debugging Failures and Testing Design Fixes 

Next, the DND block designer was able to use the system 
level co-simulation results to debug the failing behavior.  The 
ability to debug this issue using a fast simulation that was able 
to provide accurate voltages and currents was extremely 
helpful.  Once the root cause of the issue was identified, the co-
simulation environment was used to test and optimize the 
design fixes.  The co-simulation of the modified design 
provided confidence that this issue will be fixed in the next 
silicon revision. 



D. Stressing Mixed signal Blocks in the Co-simulation 

After this initial success, the third goal of further stressing 
the mixed signal blocks at the system level was investigated.  
For the DND block, this meant injecting various fault types as 
in the block level within the system level co-simulation 
testbench.  This was accomplished by re-using the block level 
fault model at the system level.  The co-simulation AMSD 
control files were modified to include the spice netlist of the 
fault model to simulate the various fault conditions during the 
discovery process.  This fault co-simulation was able to expose 
two new bugs in the design that were not seen at the block 
level because they were specific to the system level 
interactions.  One of these bugs was only exposed in larger 
systems (more than five LMA nodes), so would have been 
impossible to catch without the co-simulation.  These bugs 
prompted further changes to the DND design which were again 
verified using the system level co-simulation. 

E. Co-simulation Testbench Improvements 

Once the bugs related to fault injection were resolved, 
several other improvements were added the co-simulation 
testbench.  First was the ability to run the co-simulation at 
nominal, fast, and slow process corners.  This was 
accomplished by having three versions of the spice netlists, 
each one created with a different process skew.  The testbench 
environment was then modified to choose which netlist to run 
based on a single run script option.  This same concept could 
be applied to running at various temperatures or R/C skew. 

The second testbench improvement was to add constrained 
randomization to the co-simulation.  Since the co-simulation 
re-used the existing UVM system level testbench, the digital 
portions already had constrained random variables, but the 
analog portions did not.  A PERL script was developed in order 
to apply constrained random tactics to the analog portions of 
the co-simulation.  This PERL script read in a configuration 
file, which listed the spice netlist parameters to be randomized 
in the simulation.  This configuration file provided a default 
value for each parameter as well as minimum and maximum 
constraints.  The PERL script then did a simple randomization 
of the parameters within the specified constraints and applied 
them‎ to‎ the‎ spice‎ netlists‎ using‎ the‎ Spectre‎ “alter”‎ command‎
before the start of the simulation.  This method was used to 
randomize several netlist parameters including important 
resistances and capacitances as well as the input supply voltage 
at each LMA node. 

VIII. RESULTS 

A. What worked 

The addition of traditionally digital verification techniques 
to the analog and mixed signal blocks in the LMA project had 
various benefits that improved both the efficiency and the 
quality of the DV effort.  One of the early benefits for the 
LMA project came from implementing a formal verification 
planning process.  The creation of a verification plan for each 
analog block gave a detailed starting point for developing the 
DV testbenches.  Through automated annotation and tracking 
of the verification plan we identified several issues that would 

have been potentially missed on previous projects, such as 
inadequate coverage and missing testcases. 

The most significant improvement gained from this work 
was the development of self-checking tests and regressions.      
In previous projects, designers were hesitant to change 
anything in the design because it was difficult to check that 
they‎ didn’t‎ break‎ anything,‎ where‎ now‎ the‎ automated‎
regression system gave analog designers the freedom to 
explore design changes with a quick turnaround time.  The 
hierarchical verification strategy worked well to test the LMA 
design at various levels.  The development of different models 
for each analog block was critical to this effort.  Accurate spice 
models enabled detailed block level testing, while the 
abstraction provided by RTL models allowed for very fast 
execution of large N-node system level simulations.  SV real 
number models provided a useful combination of accuracy and 
speed that allowed system level exploration that would not 
have been possible with standard co-simulation techniques. 

Once the self-checking tests for the analog blocks were 
developed, adding constrained randomization was fairly 
straightforward.  This provided the same benefits that are well 
known in the digital realm: constrained randomization reduced 
the number of required directed tests and exercised use-cases 
that had not been considered.  This prompted the addition of 
functional coverage to the analog testbenches to verify that all 
input stimulus was applied and required events were observed.  
The functional coverage collected during regressions provided 
a good metric to use for verification plan tracking. 

The development of a system level Cadence AMSD co-
simulation environment was very successful because it 
provided a high level of accuracy without a large speed 
tradeoff.  This testbench environment enabled the debug of 
some silicon issues related to LMA node interactions which 
were not seen at the block-level.  The co-simulation enabled 
design fix exploration and exposed other issues with the silicon 
that were masked by the original error, which prevented a 
potential silicon re-spin. 

B. What didn’t work 

During this process there were several notable items that 
were not successful or were especially challenging to 
implement.  First, we found that it was difficult to develop self-
checking tests for the analog spice testbenches.  The reason for 
this was not due to the complexity of coding checks, but rather 
determining checks that would be valid in all cases.  For digital 
blocks, the designer can usually describe specific scenarios that 
represent success or failure that can be translated into a check 
in the testbench.  However, in the analog designs this was not 
so straightforward, as there are so many variables that can 
slightly modify a voltage or current, such as process skew and 
temperature.  Developing checks that were valid over all 
corners was an iterative process that required close 
collaboration with the analog designers. 

Another area that provided difficult was model validation.  
The models we created for the analog blocks greatly increased 
simulation speed and overall efficiency, but caused some issues 
due to model inaccuracies.  For one of the blocks, some items 
were incorrectly modeled and were not identified before 



tapeout, resulting in silicon issues.  The model validation that 
was performed on this project was limited to some spice 
comparisons and peer review.  In the future, we need to 
develop an automated model validation system to prevent 
inaccuracies. 

A final difficultly identified in this effort during was the 
ability to run high-accuracy simulations at fast speeds.  This 
concern is not limited to the LMA project, but was very 
important due to the number of analog blocks and the 
importance of system level interactions in our multi node 
simulations.  The AMSD spice and SV co-simulation 
environment helped bridge the gap between speed and 
accuracy, but still had limitations that hindered regression 
throughput.  The tradeoffs and restrictions imposed by 
simulation tools required careful planning in order to maximize 
DV efficiency at all simulation levels. 

C. Metrics 

  The goal of integrating digital verification techniques into 

our analog and mixed signal verification process was to 

improve efficiency and ultimately find more bugs than we 

were capable of with our previous methods.  Exact 

comparisons to previous projects are not possible as before 

this project the mixed signal verification effort did not include 

tracking of bugs found, regression history or simulation 

performance.   

 

  However, there is no doubt that by using self-checking tests, 

automated regressions and randomization we were able to run 

a much larger number of simulations for the LMA project than 

on previous projects.  This was especially true at the system 

level where SV RNM allowed us to exercise many thousands 

of scenarios which would not have been possible in the past.  

The number of bugs found, simulations run counts and model 

performance comparison metrics are shown in the various 

tables below. 

 

1) Bugs Found 

 

Testbench Bugs Found 

PLL Block Level 16 

VREG Block Level 18 

DND Block Level 11 

System Level 238 

 

2) Simulation Counts 

 

Testbench Sim Count 

PLL Block Level 2463580 

VREG Block Level 249477 

DND Block Level 810281 

System Level 329702 

 

 

 

 

 

 

 

3) Simulation and Model Performance  

a) PLL Block Level Testbench 

Simulation Type Runtime 

Verilog & SV RNM 5 Minutes 

Verilog + fast spice Cosim 24 Hours 

Verilog & Spice Cosim 1 Week 

 

b) VREG & DND Block Level Testbenches 

Simulation Type Runtime 

 VREG - Spice Only 5-10 Minutes 

DND - Verilog & Spice Cosim 1-3 Minutes 

 

c) System Level Testbench 

Simulation Type 
TB 

Cfg 
Runtime 

Spice Only 1-9 
Not 

Possible 

AMSD Cosim 

(Spice for DND, PLL, VREG) 

2 Node 6 Days 

9 Node 
Not 

Possible 

AMSD Cosim 

(Verilog PLL, Spice VREG & DND) 

2 Node 13 Minutes 

9 Node 1.25 Hours 

Verilog Sim 

(SV RNM for PLL, VREG & DND) 

2 Node 9 Minutes 

9 Node 1.5 Hours 

All Verilog Models 
2 Node 30 seconds 

9 Node 2.5 Minutes 

 

IX. CONCLUSION 

While it was not always an easy road, the application of 
digital verification techniques to mixed signal and analog 
blocks proved very useful to us on the LMA project.  The 
hallmark of digital verification techniques is to automate as 
much as possible and this project demonstrated that mixed 
signal and analog verification can and should take advantage of 
the power of automation.  The positive results achieved during 
the LMA project have shown that the methods described in this 
paper represented a significant improvement over our existing 
verification strategy for analog and mixed signal blocks.  As a 
result, we plan to continue applying digital verification 
techniques to analog and mixed signal blocks in all of our 
future products at ADI. 
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APPENDIX A  

class clk_monitor extends uvm_monitor; 
 
  real first_period; //First period identified by monitor 
  real start_time;   //When clk_monitor will begin to collect information 
  real stop_time;    //stop time if needed  
  real ideal_period; //If defined then this period is used for calculations  
 
  //Period jitter specs 
  real allowed_period_jitter; 
  real allowed_max_duty_cycle; 
  real allowed_min_duty_cycle; 
 
  //Period Jitter values 
  real this_period; 
  real period_jitter; 
  real max_period; 
  real min_period; 
 
  //Duty cycle values 
  real max_duty_cycle; 
  real min_duty_cycle; 
 
  string name; 
  virtual interface clk_monitor_interface vif; 
 
  // component macro 
  `uvm_component_utils_begin(clk_monitor) 
  `uvm_component_utils_end 
 
  // component constr - required syntax for UVM automation and utilities 
  function new (string name, uvm_component parent); 
    super.new(name, parent); 
    this.name = name; 
 

    //Default check values 
    start_time = 1; 
    allowed_max_duty_cycle = 0.55; 
    allowed_min_duty_cycle = 0.45; 
    allowed_period_jitter  = 1000; 
  endfunction : new 
 
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
  endfunction: build_phase 
 
  // start_of_simulation 
  function void start_of_simulation_phase(uvm_phase phase); 
    super.start_of_simulation(); 
    `uvm_info(get_type_name(), {"start of simulation for ", get_full_name()}, 
UVM_HIGH) 
  endfunction : start_of_simulation_phase 
 
  // UVM run() phase 
  task run_phase(uvm_phase phase); 
  
    real first_posedge, first_negedge; 
    `uvm_info(get_type_name(), "Inside the run() phase", UVM_MEDIUM) 
     void'(uvm_config_db#(real)::get(this,"","start_time",start_time)); 
    `uvm_info(get_type_name(), $psprintf("start_time set to %d", start_time), 
UVM_MEDIUM) 
     #(start_time); 
 
    // Check that an interface was connected 
    if(!uvm_config_db#(virtual clk_monitor_interface)::get(this,"","vif",vif)) 
      `uvm_fatal("NOVIF", {"virtual interface must be set for: ", 
get_full_name(),".vif"}); 
       
      wait (mask_bit == 0); 
 
    `uvm_info(get_type_name(), "Starting Jitter measurement", 
UVM_MEDIUM) 
 
     @(posedge vif.clk); 
     first_posedge = $realtime; 
 
     @(negedge vif.clk); 
     first_negedge = $realtime; 
 
     @(posedge vif.clk); 
     first_period = $realtime - first_posedge;  
     max_duty_cycle = (first_negedge-first_posedge)/first_period; 
     min_duty_cycle = (first_negedge-first_posedge)/first_period; 
      
     duty_cycle_checks(); 
     `uvm_info(get_type_name(), $psprintf("start %0.4f, first_pos %0.4f, 
first_neg %0.4f, first_period %0.4f!",start_time, first_posedge, first_negedge, 
first_period), UVM_MEDIUM) 
     `uvm_info(get_type_name(), $psprintf("First period %0.4f!",first_period), 
UVM_MEDIUM) 
 
     //If no ideal period defined then first period is used as ideal. 
     if (ideal_period == 0.0)  
      begin 
       ideal_period = first_period; 
      end 
 
     `uvm_info(get_type_name(), $psprintf("Ideal Period %0.4f!",ideal_period), 
UVM_MEDIUM) 
 
 
 
 



     //Once initial period defined kick off jitter monitors 
     fork 
       monitor_period_jitter(); 
       monitor_duty_cycle(); 
     join 
  endtask : run_phase 
 
  // UVM report_phase 
  function void report_phase(uvm_phase phase); 
    `uvm_info(get_type_name(), $sformatf("Report: CLK Jitter Monitor Done"), 
UVM_MEDIUM) 
 
    `uvm_info(get_type_name(), $psprintf("Max Period = %3.4f ps", 
max_period), UVM_MEDIUM) 
    `uvm_info(get_type_name(), $psprintf("Min Period = %3.4f ps", 
min_period), UVM_MEDIUM) 
 
     if ((max_period ==0) || (min_period == 0)) `uvm_error(get_type_name(), 
$psprintf("Never observed clk toggling!")) 
 
    `uvm_info(get_type_name(), $psprintf("Max Duty Cycle = %2.4f", 
max_duty_cycle), UVM_MEDIUM) 
    `uvm_info(get_type_name(), $psprintf("Min Duty Cycle = %2.4f", 
min_duty_cycle), UVM_MEDIUM) 
 
  endfunction : report_phase 
 
  extern task monitor_period_jitter(); 
  extern task period_jitter_checks(bit max_check); 
  extern task monitor_duty_cycle(); 
  extern task duty_cycle_checks(); 
endclass : clk_monitor 
 
//////////////////////////////////////////////////////////////////////// 
task clk_monitor::monitor_period_jitter; 
 
   real last_edge, this_edge; 
   last_edge = $realtime; 
    
   max_period = ideal_period; 
   min_period = ideal_period; 
 
   forever 
    begin 
      @(posedge vif.clk); 
      this_edge = $realtime; 
      this_period = this_edge - last_edge; 
 
      if (!mask_bit) begin 
 
      //Measure period_jitter 
      if (this_period > max_period)  
       begin 
          max_period = this_period; 
        `uvm_info(get_type_name(), $psprintf("New Max Period = %3.4f ps", 
max_period), UVM_HIGH) 
        period_jitter_checks(1); 
       end 
      if (this_period < min_period)  
       begin 
   min_period = this_period; 
        `uvm_info(get_type_name(), $psprintf("New Min Period = %3.4f ps", 
min_period), UVM_HIGH) 
        period_jitter_checks(0); 
       end 
      end  
 
 

      //Prepare for next cycle 
      last_edge   = this_edge; 
       
    end 
endtask 
 
//////////////////////////////////////////////////////////////////////// 
task clk_monitor::period_jitter_checks(bit max_check); 
 
   if (!mask_bit) begin 
   //Period jitter check 1 
   if (max_check && ((max_period - ideal_period) > allowed_period_jitter))  
    begin 
     period_jitter = max_period - ideal_period;  
    `uvm_error(get_type_name(), $psprintf("Observed Pos Period Jitter of 
%3.4f ps exceeds maximum allowed of %3.4f ps in 
%s",period_jitter,allowed_period_jitter, name));  
    end 
 
   //Period jitter check 2 
   if (!max_check && ((ideal_period - min_period) > allowed_period_jitter))  
    begin 
     period_jitter = ideal_period - min_period;  
    `uvm_error(get_type_name(), $psprintf("Observed Neg Period Jitter of 
%3.4f ps exceeds maximum allowed of %3.4f ps in 
%s",period_jitter,allowed_period_jitter, name));  
    end 
   end 
 
endtask 
 
////////////////////////////////////////////////////////////////// 
task clk_monitor::monitor_duty_cycle(); 
 
   real this_dc_period; 
   real last_posedge, last_negedge; 
   real this_duty_cycle; 
    
   last_posedge = $realtime; 
 
   forever 
    begin       
      @(negedge vif.clk); 
      last_negedge = $realtime; 
 
      @(posedge vif.clk); 
      this_dc_period = $realtime - last_posedge; 
      this_duty_cycle = ($realtime - last_negedge)/this_dc_period; 
      last_posedge = $realtime; 
 
      if (!mask_bit) begin 
        if (this_duty_cycle > max_duty_cycle)  
         begin 
   max_duty_cycle = this_duty_cycle; 
        `uvm_info(get_type_name(), $psprintf("New Max duty cycle = %2.2f", 
max_duty_cycle), UVM_HIGH) 
        duty_cycle_checks(); 
       end 
      if (this_duty_cycle < min_duty_cycle)  
       begin 
   min_duty_cycle = this_duty_cycle; 
        `uvm_info(get_type_name(), $psprintf("New Min duty cycle = %2.2f", 
min_duty_cycle), UVM_HIGH) 
        duty_cycle_checks(); 
       end 
      end 
    end 
endtask 



 
//////////////////////////////////////////////////////////////////////// 
task clk_monitor::duty_cycle_checks; 
 
   if (!mask_bit) begin 
 
   //Max duty cycle check  
   if (max_duty_cycle > allowed_max_duty_cycle)  
    `uvm_error(get_type_name(), $psprintf("Observed Duty Cycle %2.4f 
exceeded maximum allowed of 
%2.4f",max_duty_cycle,allowed_max_duty_cycle));  
 
   //min duty cycle check 
   if (min_duty_cycle < allowed_min_duty_cycle) 
    `uvm_error(get_type_name(), $psprintf("Observed Duty Cycle %2.4f below 
minimum allowed of %2.4f",min_duty_cycle,allowed_min_duty_cycle)); 
     
   end 
endtask 

 

APPENDIX B 

 
module 
pll_bias_osc(oscclk,porb,ibias2p5,PLLVDD,PLLGND,DVDD,DGND,hys,osc_pc,o
sc_tc); 
   input         porb; 
   input         hys; 
   input [7:0]   osc_pc; 
   input [6:0]   osc_tc; 
   inout         PLLGND; 
   inout         PLLVDD; 
   inout         DGND; 
   inout         DVDD; 
   output        oscclk; 
   output        ibias2p5; 
    
`define OSCCLK_FREQUENCY 31.00 
`define OSCCLK_DUTY 0.5 
    
   int           oscclk_freq_int; 
   real          oscclk_freq; 
   real          oscclk_duty; 
   real          oscclk_h; 
   real          oscclk_l; 
 
   int           jitter_int; 
   real          jitter; 
   real          jitter_acc; 
   int           fh_jitter;//debug 
 
   real          drift; 
   real          wander_rate;     //period wander of pll in ps per second. 
   int           wander_freq_int; 
   real          wander_freq; 
   int           curr_wander_freq_int; 
 
   reg           oscclki; 
   reg           oscclk_int; 
   reg [8:0]     oscclk_cnt; 
   reg           porb_delayed; 
 
   //Testbench control 
   bit           allow_pll_bias_osc_jitter; 
   bit           allow_pll_bias_osc_wander; 
   int           wander_start_time; 
   int           wander_adjust_rate; 

   int           osc_seed; 
   int           oscclk_duty_cycle; 
   int           oscclk_wander_rates[25]; 
   int           oscclk_wander_rates_index; 
   bit           apply_jitter; 
   int           osc_stdev_jitter; 
 
   initial begin 
      jitter_acc = 0.0; 
      oscclk_freq = 31.00; 
      wander_freq = oscclk_freq; 
      oscclk_duty = 0.5; 
      apply_jitter = 0; 
      jitter      = 0.0; 
      oscclk_h = oscclk_duty*1e6/oscclk_freq; 
      oscclk_l = (1-oscclk_duty)*1e6/oscclk_freq; 
      porb_delayed = 0; 
 
      #3; 
 
        `uvm_info("OSC_MODEL", $sformatf("Allow pll_bia_osc jitter = %b", 
allow_pll_bias_osc_jitter), UVM_MEDIUM); 
        `uvm_info("OSC_MODEL", $sformatf("Allow pll_bia_osc wander = %b", 
allow_pll_bias_osc_wander), UVM_MEDIUM); 
        `uvm_info("OSC_MODEL", $psprintf(" %m Seed = %d", osc_seed), 
UVM_MEDIUM); 
 
      osc_seed        = $urandom(osc_seed); 
      //oscclk_freq_int = $urandom_range(3255,2945);   //in Mhz, Osc freq 
should be 31Mhz, This is +/- 5% 
      oscclk_freq     = oscclk_freq_int/100.0; 
 
      //Randomize duty cycle if either wander or jitter is allowed 
      if ((allow_pll_bias_osc_jitter) || (allow_pll_bias_osc_wander)) begin 
         oscclk_duty = oscclk_duty_cycle/100.0;       //Duty cycles 45%-55%/ 
      end 
 
      // Print osc_stdev_jitter (0 if not allowed) 
      if (!allow_pll_bias_osc_jitter) begin 
         osc_stdev_jitter = 0; 
      end 
 
      `uvm_info("OSC_MODEL", $sformatf("Oscillator Jitter Standard Deviation 
= %d pS", osc_stdev_jitter), UVM_MEDIUM); 
 
      //Wander of oscillator limited to 50Khz per second 
      if (allow_pll_bias_osc_wander) begin 
         wander_freq_int = oscclk_freq_int + 
oscclk_wander_rates[oscclk_wander_rates_index++]; 
         wander_freq     = wander_freq_int/100.0; //Wander freq +/- 50Khz of 
oscfreq 
      end 
 
        `uvm_info("OSC_MODEL", $sformatf("osc clk freq          = %0.2f Mhz", 
oscclk_freq), UVM_MEDIUM); 
        `uvm_info("OSC_MODEL", $sformatf("osc clk period        = %0.2f ns", 
(1e3/oscclk_freq)), UVM_MEDIUM); 
        `uvm_info("OSC_MODEL", $sformatf("osc clk duty          = %0.2f ", 
oscclk_duty), UVM_MEDIUM); 
 
 
      //Calculate osclk high and low pulse widths based on freq and duty cyle 
      oscclki = 0; 
      oscclk_h = $floor(oscclk_duty*1e6/oscclk_freq); 
      oscclk_l = $floor((1-oscclk_duty)*1e6/oscclk_freq); 
 
   end 
 



   ///////////////////////////////////////////////// 
   //Osc Wander control 
   ///////////////////////////////////////////////// 
   initial begin 
      #3; 
 
      if (allow_pll_bias_osc_wander) begin 
         //Start wander at time in cfg specified in ms so converted to ps 
         #(wander_start_time*1e9); 
 
         //Determine wander rate in ps and associated drift; 
         //Drift based on wander rate in ns divided by number of clock periods in 
1s 
         wander_rate = $floor(((1e6)/oscclk_freq)-((1e6)/wander_freq)); 
         drift = wander_rate / (oscclk_freq*1e6); 
 
          `uvm_info("OSC_MODEL", $sformatf("%m osc wander tgt freq   = %0.2f 
Mhz", wander_freq), UVM_MEDIUM); 
          `uvm_info("OSC_MODEL", $sformatf("%m osc wander tgt period = 
%0.2f ns", (1e3/wander_freq)), UVM_MEDIUM); 
          `uvm_info("OSC_MODEL", $sformatf("%m osc clk wander rate   = %0.4f 
ps per second", wander_rate), UVM_MEDIUM); 
          `uvm_info("OSC_MODEL", $sformatf("%m osc clk drift         = %0.12f per 
clock edge", drift), UVM_MEDIUM); 
 
         if (wander_adjust_rate > 0) begin 
            while (1) begin 
               //Move to next adjust time 
               #(wander_adjust_rate*1e9); 
 
               //Adjust target  based on current oscclk freq/period which depends 
on how much drift has taken place 
               curr_wander_freq_int = $floor((1.0/(oscclk_h + oscclk_l))*1e8); 
               wander_freq_int = curr_wander_freq_int + 
oscclk_wander_rates[oscclk_wander_rates_index++]; 
 
               if (wander_freq_int > 3235) wander_freq_int = 3235; //Do not 
exceed boundaries 
               if (wander_freq_int < 3045) wander_freq_int = 3045; //Do not 
exceed boundaries 
 
               //New drift calculation based on current oscclk_h and oscclk_l 
               curr_wander_freq_int = $floor((1.0/(oscclk_h + oscclk_l))*1e8); 
 
               wander_freq     = wander_freq_int/100.0; //Wander freq +/- 50Khz 
of oscfreq 
               wander_rate = $floor(((1e6)/(curr_wander_freq_int/100.0))-
((1e6)/wander_freq)); 
               drift = wander_rate / ((curr_wander_freq_int/100.0)*1e6); 
 
                `uvm_info("OSC_MODEL", $sformatf("%m New osc wander tgt freq   
= %0.2f Mhz", wander_freq), UVM_MEDIUM); 
                `uvm_info("OSC_MODEL", $sformatf("%m New osc wander tgt 
period = %0.2f ns", (1e3/wander_freq)), UVM_MEDIUM); 
                `uvm_info("OSC_MODEL", $sformatf("%m New osc clk wander rate   
= %0.4f ps per second", wander_rate), UVM_MEDIUM); 
                `uvm_info("OSC_MODEL", $sformatf("%m New osc clk drift         = 
%0.12f per clock edge", drift), UVM_MEDIUM); 
            end 
         end 
      end 
   end 
 
 
 
 
 
   //oscclk will not be driven for at least 500ns after porb is released 

   always @(posedge porb) 
    begin 
      #500ns; 
      if (porb === 1'b1) porb_delayed = 1'b1;  
    end 
 
   always @(negedge porb) 
    begin 
      porb_delayed = 1'b0 ; 
    end 
 
   //Clock generation with jitter 
   always begin 
      #(oscclk_l) begin 
         //oscclki = porb; 
         oscclki = porb_delayed; 
      end 
      jitter_calc(); 
      #(oscclk_h+jitter) oscclki = 0; 
      oscclk_h = oscclk_h + drift ; 
      oscclk_l = oscclk_l + drift ; 
   end 
   assign ibias2p5 = porb; 
 
   always @(posedge oscclki or negedge porb) begin 
      if (~porb) begin 
         oscclk_cnt[8:0] <= 9'h000; 
      end 
      else begin 
         if (oscclk_cnt[8:0] < 9'h1ff) 
           oscclk_cnt[8:0] <= oscclk_cnt[8:0] + 1'b1; 
      end 
   end 
 
   always @(oscclki or porb) begin 
      if (~porb) oscclk_int <= 1'b1; 
      else begin 
         if (oscclk_cnt[8:0] >= 9'h020) 
           oscclk_int <= 1'b0; 
         if (oscclk_cnt[8:0] >= 9'h02f) 
           oscclk_int <= oscclki; 
      end 
 
      if (~porb) apply_jitter <= 1'b0;    // allows monitor to measure one pefect 
period 
      else if (oscclk_cnt[8:0] >= 9'h030) 
        apply_jitter <= 1; 
   end 
 
   task jitter_calc; 
      if (allow_pll_bias_osc_jitter) begin 
         if (apply_jitter) begin 
            jitter_int = $dist_normal(osc_seed, 0, osc_stdev_jitter); 
            jitter = 1.0*(jitter_int); 
            jitter_acc = jitter_acc + jitter;                    
         end 
         else begin 
            jitter = 0; 
         end 
      end 
   endtask 
 
   assign oscclk = oscclk_int; 
 
endmodule 
 
 



APPENDIX C  

program test; 
 
typedef enum {NO_SKEW, FAST, TYP, SLOW} skew_t; 
typedef enum {NO_TEMP, COLD, NOM, HOT}  temp_t; 
 
class tb_cov; 
 
   int fh, file_status; 
   string line; 
 
   skew_t skew; 
   temp_t temp; 
   int VOUT1_cap; 
 
   covergroup cov_cg;  
  
     skew_cp : coverpoint skew { ignore_bins ign_bins = {NO_SKEW}; } 
     temp_cp : coverpoint temp      { ignore_bins ign_bins = {NO_TEMP}; } 
      
     vout1_cap_cp : coverpoint VOUT1_cap { 
       bins VOUT1_cap_vals [] = {[1:50]}; 
     } 
   endgroup 
 
   //////////////////////////////////////////////////        
   virtual function void get_cov(); 
    string temp_str;  
    string testname; 
 
    fh = $fopen(testname, "r"); 
    file_status = $fgets(line, fh); 
    while (file_status)  
     begin 
      if (line[0] == "N")  
       begin 
 
  //Check for SKEW 
        if (str_match(line, "SKEW")) 
         begin 
          if      (line[8] == "F") skew = FAST; 
          else if (line[8] == "S") skew = SLOW; 
          else if (line[8] == "N") skew = TYP; 
         end 
 
        //Check for TEMP 
        if (str_match(line, "TEMP")) 
         begin 
          if      (line[8] == "-") begin temp = COLD; $display("COLD"); end 
          else if (line[8] == "1") begin temp = HOT; $display("HOT"); end 
          else if (line[9] == "2") begin temp = NOM; $display("NOM"); end 
          $display("%s", line); 
         end 
 
        //Check for VOUT1 Cap value  
        if (str_match(line, "VOUT1")) 
         begin 
           temp_str = line.substr(21,24); 
           if (line[line.len()-2] == "5") VOUT1_cap = $floor(temp_str.atoreal*10); 
           if (line[line.len()-2] == "6") VOUT1_cap = $floor(temp_str.atoreal); 
           if (line[line.len()-2] == "7") VOUT1_cap = $floor(temp_str.atoreal/10); 
           $display("%s %s %d", line, temp_str, VOUT1_cap); 
         End 
  
      file_status = $fgets(line, fh); 
     end 
    $fclose(fh); 

 
 
    //Update coverage 
    vreg_cg.sample(); 
 
   endfunction: get_cov 
 
   function new(); 
     vreg_cg = new(); 
   endfunction 
 
endclass: tb_cov 
 
/////////////////////////////// 
tb_cov tb_cov1; 
 
initial 
begin 
 
  tb_cov1 = new(); 
  tb_cov1.get_cov(); 
 
end 
 
endprogram: test 

 

 

 

 


