
Digitizing Mixed Signal Verification
Digital Verification Techniques Applied to Mixed Signal and Analog Blocks and System

Level Verification

David Brownell and Courtney Schmitt

Analog Devices, Inc.

Norwood, MA

david.brownell@analog.com, courtney.schmitt@analog.com

Abstract— Innovation in the field of functional verification

has traditionally come from digital design teams, as these teams

have led the move from directed test approaches to constrained-

random testing, metric-driven environments and industry

supported languages and methodologies such as SystemVerilog

and the Universal Verification Methodology (UVM) [5]. Analog

and mixed signal verification teams have now followed suit, with

the introduction of UVM-MS, real number modeling,

randomization, and the adoption of traditionally “digital” metric

driven verification (MDV) techniques [1,2].

 This paper will discuss how the application of digital

verification techniques to analog and mixed signal blocks on a

recent design allowed for a more thorough exploration of design

robustness, identified bugs potentially missed with traditional

analog verification techniques and improved confidence in the

taped out design. With the complexity of today’s mixed signal

designs and the capabilities of mixed signal and analog

simulation tools it is no longer sufficient to rely primarily on

manual inspection of waveforms for verification, MDV

techniques must be applied as they provide the same benefits as

they do for digital designs [3].

Keywords—mixed signal, verification, UVM, metric driven,

constrained random, co-simulation

I. INTRODUCTION

A. Background of Analog/Mixed Signal DV at ADI

 At Analog Devices, design verification (DV) is still a
relatively new job title, and only within the last 8 years have
fulltime DV engineers been assigned to projects and dedicated
DV teams been established across the organization. Before
this design engineers typically filled two roles, serving as both
the designers of the chip as well as being responsible for the
verification.

 The lack of dedicated DV engineers has resulted in
inconsistent adoption of modern verification methodologies
across the company. Within our local organization the
processor teams have dedicated DV engineers and have moved
fully to a UVM based metric driven verification methodology,
while the analog/mixed signal team relies on designers for
verification using directed tests and primarily manual
inspection of waveforms to determine correctness. The
standardization, automation, and visibility that are the
foundations of modern digital verification methodologies are

missing from the verification methodologies of the analog
team.

 Our organization recognized that this lack of dedicated
verification engineers following a consistent verification
methodology for analog and mixed signal designs was a
weakness in our development strategy. The LMA project was
the first heavily analog product where dedicated DV engineers
were allocated to work alongside the analog designers. These
engineers had previously focused on DSP SOC based designs
and brought with them experience with SystemVerilog, UVM
and metric driven verification, but little experience with analog
schematic based design and spice simulation. The analog
designers were experts in spice, verilog/spice co-simulation,
and analog circuit debug but lacked experience with object-
oriented programming (OOP) and scripting. This paper
documents the results of this collaboration and how the
collision of these two worlds resulted in the digitizing of mixed
signal verification within our organization.

B. Description of Project

 Project LMA represented the development of the LMA
processor which is intended to go into systems where up to N
LMA chips can be daisy chained to control the
transmission/reception of audio data throughout an automobile
using an ADI developed protocol. ‎Fig. 1 shows the high level
overview of a single LMA processor, which is made up of five
analog blocks and one large block of digital control logic.

Fig. 1. LMA chip level block diagram

The four major analog blocks are the phase locked loop
(PLL), voltage regulator (VREG), downstream node detector
(DND), and two instances of a transceiver (XCVR). The PLL
is responsible for generating clocks to the digital logic as well
as the transceivers. The VREG creates separate supplies for
the PLL, digital logic, and DND blocks. The transceiver
blocks are responsible for communicating audio data and
control data between nodes. XVCR A receives downstream
communication while XCVR B handles upstream
communication. Finally, the DND block is responsible for
determining if downstream nodes exist and are connected
properly before the transceivers attempt to communicate. The
verification effort for this project included checking that a
single LMA chip functioned correctly as well as confirming
that any configuration of LMA processors would function as a
system.

 ‎Fig. 2 shows a high level diagram of a four node LMA
system with the slave nodes connected to various audio devices
all controlled by a host processor connected to the LMA master
node.

Fig. 2. Four node LMA system diagram

C. Overview of Digital Techniques Applied to Mixed Signal

Verification

 When we began working with the analog designers who
were responsible for the verification of these projects in the
past, they were able to clearly describe what tests needed to be
written, how different variables affected device performance,
and what needed to be checked in the design to determine if the
devices were operating correctly. What was lacking was any
visibility into the process of how they had done this in the past!

 Tests were not maintained under revision control and
results would be recorded in notebooks to be presented at a

design review sometime in the future. There was absolutely no
visibility into the verification process or status during the
development of a project. For our digital focused projects we
follow a standard process as shown in ‎Fig. 3. This process
provides consistency and visibility into the verification of a
project through the entire development cycle.

Fig. 3. Digital verification process

 Completion of the LMA project required a significant
amount of mixed signal and analog verification and coming
from a digital verification background we applied the same
process as we would have for one of our digital processor
based designs. The starting point for the mixed signal
verification was the creation of a verification plan that would
determine what testbenches needed to be created, what
functionality was required in each testbench, and what metrics
needed to be tracked to measure the progress of the overall
verification effort [3].

Next was the development of block, chip, and system level
testbenches. These could be UVM SV based testbenches or
schematic based testbenches for analog blocks. In both cases
the testbenches were developed to be constrained random and
ran self-checking tests, which enabled automated regressions
and verification metric collection. Some of the analog and
mixed signal blocks were further stressed in system level spice
co-simulations to verify the design across multiple LMA
nodes.

Finally, DV reviews and functional qualification software
were used to look for holes in the verification process and
increase the confidence in the overall verification effort.

II. VERIFICATION PLANNING

 The biggest surprise when beginning to work on the
verification of the analog and mixed signal blocks was the lack
of any documentation on what had been done in the past.
Unless you could locate the designer who did the work, it was
impossible to tell what was done to verify the block..
Testbenches existed, but were not kept under revision control,
and were often tweaked on a test by test basis so there was no
guarantee that the testbench you looked at was the one used to
run a given test. This practice had to be fixed for knowledge
sharing and continuous improvement of the block.

 The first and one of the most beneficial changes we made
was implementing the practice of keeping all testbenches and
tests for mixed signal and analog blocks under revision control
along with the design schematics. This allows engineers to go
back to any point in time and reproduce simulation results on
any project. This can be beneficial in terms of learning how to
do something or ensuring that the proper verification tasks
were done in the first place.

 We took a two-step approach to creating the verification
plans for LMA. Initially, we got the digital designers, analog
designers, and DV engineers together to answer the following
questions:

1. What determines if the LMA system is successful and

how do we verify that?

2. What blocks have the most impact on LMA system

performance and do they need block level testbenches?

3. Since full chip and system level simulations would run

forever with full spice models, what can be modeled at a

higher level of abstraction and how do we validate the

models to ensure we can run legitimate system level

simulations?

 From this meeting we identified five separate testbenches

that needed to be created: PLL block level, VREG block level,
DND block level, LMA system level with models for analog
blocks, and LMA system level with FastSpice models for most
of the analog blocks.

 For each of these environments we created a dedicated
verification plan by reading the specification and talking to the
designers directly to get information not available in the spec.
The end result was that for each testbench we had:

1. All the input parameters that needed to be controlled and

their legal values

2. All signals that needed to be checked and their correct

behavior

3. Required test cases

4. Functional coverage requirements

 These verification plans were updated automatically with

each regression run and posted to our project DV website.
This automated tracking gives managers visibility into the
current status of a project at any time. The planning and
display also allows for other engineers from across the
company to review what is being done for DV and point out
areas that need improvement or suggest additional tests. Most

important of all when we begin work on the next project that
has similar blocks we can re-use the verification plans and
testbenches and not have to create them from scratch.

III. SELF-CHECKING TESTS AND REGRESSIONS

 The single most effective digital technique applied to the
LMA project was simply making the tests in our spice based
testbenches self-checking and enabling nightly regressions [1].
Before this project the designers would manually inspect
waveforms to determine correctness and while there were a
few scripts for some tests to post-process waveforms and
perform checks, these also needed to be invoked manually.

Due to the inefficiency of the old manual approach
designers would often wait to run tests until a large number of
edits had been completed, and even then they may only run a
small subset of the full test list as the time to check all the
results manually was cumbersome. This often meant that small
changes to fix one item would break other features but this
might not become known for several weeks until the full set of
tests was run again.

The lack of self-checking tests was not due to limitations in
the tool suite, there was simply a lack of experience and trust in
the practice of automated checking. Without having a designer
looking at the waveforms the team was not comfortable
believing that the correct behavior was occurring and that real
issues could be missed. These same concerns exist in digital
verification, but the productivity gains outweigh the risks so
additional methods such as coverage and functional
qualification have been developed to reduce these risks. We
discuss our initial attempts at deploying these techniques later
in the paper, and there is a lot of room for innovation in these
areas.

 For this project we began automating simple checks
identified in the verification planning session such as voltage A
should never exceed 6.0V, or current B should always be
between 600uA and 800uA. We then enabled these checks for
all tests and began running nightly regressions. As these
checks began to cause tests to fail and debugging the failures
identified real circuit issues the designers quickly became more
accepting of the automated checking methodology and started
asking for new more complicated checks to be written.

 With the self-checking tests in place we could then enable
nightly regressions which would run all the available tests to
ensure that the latest committed design changes did not break
previously working functionality or performance requirements.

By default the nightly regression would run all tests, but we
also had programmable regression priorities where users could
control which tests and how many times each test was run for a
given priority. This allowed designers to configure and run
short regressions to quickly validate their fixes, or test out
various design changes to see which performed best. Then
when once they committed there changes the DV team’s‎
nightly regression runs with the full test suite would fully
validate the changes.

IV. HIERARCHICAL VERIFICATION

 The primary outcome of the verification planning sessions
was the clear direction for what blocks needed dedicated block
level environments, and what could be re-used from the block
level environments at the system level.

A. Block Level Environments

1) PLL
 The PLL was the first mixed signal block in our team to

be verified using a UVM based testbench. Before this, all
analog and mixed signal blocks used schematic based
testbenches. We chose to do a UVM based environment for
the PLL in order to simulate jitter within each LMA node
which can have a negative effect on overall system
performance. We needed the ability to measure jitter at
multiple points across the system and developed a UVM agent
specifically for this. Creating this UVM agent allowed us to
easily instantiate and control our jitter measurements at the
system level. Appendix A, shows the UVM monitor code we
created to monitor period jitter, this code can be easily
extended to measure CTC and TIE jitter for a signal as well.

2) VREG
 Based on some critical safety features implemented in the

Voltage Regulator we decided that the VREG should have its
own block level TB as well. This testbench was a traditional
schematic based design and simulation was done with our in
house spice simulator. Changes from previous projects
included developing a verification plan for the block with all
features to be identified and identifying all tests that needed to
be written. Then as these tests were developed and made self-
checking we added them to a nightly regression to ensure that
design changes to the VREG did not break previously working
features.

3) DND
 The final block level environment we chose to create was

for the DND block which required a Verilog and spice co-
simulation. We chose to do a block level verification of the
DND for control and performance reasons. This block
contained a state machine which required the PLL to be
running, and we did not want to verify this block only in the
system level TB as the PLL lock sequence could consume a
large amount of simulation time for every DND test. With the
block level TB it was also easier to control the faults that could
cause the downstream nodes to not be detected when compared
to the system level environment. Similar to the VREG, the
testbench was schematic based and our improvements were to
develop a verification plan and create self-checking tests which
enabled regression testing and verification tracking.

B. Chip Level TB

The chip level testbench consisted of a UVM environment
connected to a single instance of the LMA chip. The testbench
environment contained a UVC agent for each of the digital
interfaces, as shown in ‎Fig. 4. Each of these agents had a
sequencer, driver, and monitor for the interface, in addition to
protocol checking assertions and coverage.

Fig. 4. LMA chip level testbench architecture

As most of the verification effort was focused at the block
and system levels, a relatively small amount of time was spent
on the chip level testing. As a result, mixed signal blocks were
exclusively simulated as RTL functional models in the chip
level testbench. The higher-level verification process for the
mixed signal blocks is described in detail in the system level
testbench description below.

C. System level Testbench Overview

The system level testbench was used to verify the
functionality of multiple nodes being daisy-chained together.
This was accomplished using a UVM testbench class that
created multiple instances of the chip level testbench
environment, as shown in ‎Fig. 5. The chip level agents and
checkers were automatically included within these chip level
environment objects. Additionally, several new scoreboards
were created to check the system level interactions between the
various nodes.

Fig. 5. LMA system level testbench architecture

 For analog blocks, models were created at various levels of
abstraction in order to optimize mixed signal verification
efficiency. For example, system level simulations targeting the
verification of digital functionality used RTL functional
models of the analog blocks in order to decrease simulation
time. Alternatively, system level simulations targeting analog
functionality used spice netlists for targeted blocks in order to
get the most accuracy. Finally, mixed signal system level
simulations used SystemVerilog real number models to get
moderate accuracy with a smaller simulation time impact. ‎Fig.
6 shows the various levels of model abstraction used in system
level simulations along with their speed and accuracy tradeoff
relationships [5,6].

Fig. 6. Mixed signal model abstraction tradeoffs

The selection of which models to use in a simulation was
controlled using command line switches to the simulation run
script. These command line switches set specific compile
defines to include the correct model and any other required
compile options. The ease of having a single script option to
choose between sets of simulation options was critical in
improving the mixed signal verification efficiency.

D. Testbench Re-use

Testbench code re-use was critical to the success of this
verification effort. Testbench components were re-used
vertically in all levels of the testbench: components developed
for the block level were re-used at the chip level, and as
previously mentioned, the chip level environment was re-used
at the system level. Code re-use relied heavily on the UVM
testbench architecture. From the start of the project,
verification components were designed with re-use in mind and
they were created to be self-contained and configurable so that
they could be vertically re-used.

For the mixed signal blocks, the SV RNMs were re-used at
all levels of the testbench hierarchy. Since the VREG and
DND block level testbenches were primarily spice-based, the
amount of re-use was limited. However, since the PLL block
level testbench was primarily SystemVerilog, significant re-use
of the testbench monitors and checkers at the chip and system
levels was possible.

V. SV RNM AND RANDOMIZATION

The LMA product was the first project where we used
SystemVerilog and its real number capability to model some of
our analog blocks. Real number models combined with the
randomization features of SystemVerilog gave us a large boost
in productivity based on simulation performance. In the
system level simulations each node comes up in series and

there is a relatively long wait time for each successive PLL to
lock. We could not use spice simulations for these simulations
as the runtimes would have been far too long.

 Instead, we were able to model the PLL with a
SystemVerilog real number model to reduce the lock time of
the PLL [6]. In the model we randomized various parameters
including temperature variation effects on jitter, skew and
voltage settings. We could then randomize each node in the
system individually and ensure robust operation against a large
number of parameters and values, which would not have been
possible with our traditional spice simulation methods.
Appendix B, shows a portion of the code we used to randomize
jitter for an oscillator on the LMA chip.

 With this method we were able to run thousands of
simulations and identify potential areas of weakness and then
could re-create focused spice level simulations to further debug
the issues. Without the real number models to increase
efficiency we would not have been able to effectively verify
the system level.

In addition to using SV RNM in our digital simulation we
also enabled randomization in our spice simulations, which had
not been done before in our organization. An example of where
this was used was in the DND the testbench schematic which
included capacitor values that were required as part of the PCB
board design when using an LMA chip. The LMA product
specification stated that the capacitor values could be between
1uf and 50uf, so our testbench would randomize the value of
each capacitor for every test run to ensure that all combinations
would work in the system.

In addition to the capacitor values the testbench would
randomize process corner, temperature, input voltage, resistor
skew and capacitor skew for each simulation run. Beyond
randomizing basic circuit characteristics randomized ramp
rates, clock frequencies‎ and‎ the‎ timing‎ of‎ “fault”‎ events‎ that‎
would affect the DND control state machine. An example of a
fault would be disconnecting a downstream LMA node in an
active system. In this case the DND block is responsible for
detecting that the downstream node was removed and driving
an output signal to signal the LMA master node to stop
communication. The DND control state machine was very
complex with a huge number of states and control signals
going back and forth to the analog portion of the DND design.
We needed to ensure a fault could occur at any time and still be
properly detected and found that randomization was the most
efficient approach to covering all the scenarios. We could
write a single test and use our server farm to run large number
of simulations to cover all the cases compared to trying to
create directed test cases for all of them.

 The analog designers still ran traditional monte carlo and full
corner sweep simulations, but found the randomization in our
test patterns was beneficial and saved them development time.
The setup and run times for traditional monte carlo and full
corner sweep simulations were so long that they rarely ran
these simulations, only doing so when they had made a large
number of design changes. Whereas the randomization in our
tests allowed them to quickly run a few cases, cover a range of
scenarios, and gain confidence that their updates were not
breaking the design.

VI. FUNCTIONAL COVERAGE IN ANALOG BLOCKS

 Another new technique for us on this project was using
functional coverage with analog spice level simulations. As
we were using verification plans and defining tests and
coverage metrics for the analog mixed signal blocks we also
needed the ability to collect functional coverage. Functional
coverage is a SystemVerilog construct and was not supported
in our spice level simulators.

 To handle this we developed a post processing method to
enable functional coverage in spice simulations. The
simulation was designed to print messages in the spice log file
that reported the values of randomized object or voltage and
current measurements throughout the simulation. We then post
processed this log file with a SystemVerilog program
containing the definition of functional coverage groups for
these analog constructs and we could collect coverage with this
program. This program was automatically run after every
simulation and the coverage data was collected and merged
into our block level verification plans. A portion of the SV
program we used to parse the log files to pull out functional
coverage is shown in Appendix C.

Once we had the capability in place we collected two
distinct types of functional coverage, which we called
“stimulus‎coverage”‎and‎“event‎coverage”.‎‎‎Stimulus‎coverage
was defined for items that were fully controlled by the
testbench, such as input voltages, capacitor values, ramp rates,
fault type insertion and process skew. Event coverage was
defined as observed events in the design or testbench caused by
input stimulus. One of the concerns raised when we started
using self-checking tests was how do we tell if the checks are
actually executed? To alleviate this concern we defined
functional‎ “event”‎ covergroups for the checkers in the
testbench to ensure they were being executed. Other event
coverage items were focused on DUT signals triggering or
states of the block control state machines.

 These functional coverage groups for analog simulations
proved very useful and identified several cases where tests or
testbenches were not randomizing values across the full range
specified in the verification plan. An example included the
capacitor values for the PCB circuit in the DND block level
testbench. The specification stated capacitors from 1uf to
50uf were allowed the functional coverage showed that the
testbench was only using values from 10uf to 50uf. We
updated the testbench to randomize the capacitor values across
the full range which caused some of our tests to fail and
ultimately required changes in the design. If we had not been
using functional coverage with our analog spice simulation we
could have missed these items and released a design that did
not meet the performance specifications in the datasheet.

VII. SYSTEM LEVEL SPICE CO-SIMULATIONS

The goal of this section is to provide more detail on the
system level mixed signal spice co-simulations that were
performed for this project. In the first tapeout of the LMA
product, system level co-simulations were not included in the

verification strategy. It was believed that the block level
analog and mixed signal co-simulations were sufficient for
verification of the analog blocks. However, a few issues with
the analog blocks were found in the first revision of silicon.
These bugs were not found by the block level testbenches
because they were caused by interactions between multiple
LMA nodes. This prompted an investigation into running
system level spice co-simulations before the next scheduled
tapeout.

A. Co-simulation Goals and Setup

There were three goals for the system level co-simulations.
First, to replicate the issues seen in silicon in the analog blocks.
Second, to provide a platform for verification of any design
fixes for these issues for the next tapeout. And third, to stress
the analog blocks in a system level environment in order to
expose any other bugs that might be present in the design. In
order for these three goals to be accomplished, the system level
simulation environment needed to be highly accurate, but also
fast enough to quickly run a large number of simulations. A
fast spice simulator, specifically the Cadence Spectre AMSD
flow, was selected to meet these speed and accuracy
requirements.

The co-simulation environment ran using the same UVM
system level testbench described in Section ‎IV.C. All of the
digital blocks in the design were compiled in RTL, and specific
analog blocks were replaced with spice netlists using the
AMSD control files. Additionally, spice models of the
components on the application board PCB were included in the
co-simulation to accurately model the entire system. Several
sets of AMSD control files were created in order to target the
different analog blocks by controlling which instances used
spice netlists.

B. Replicating Silicon Issues

One of the AMSD configurations focused on verification of
the LMA node discovery sequence. This co-simulation used
spice netlists for the VREG and DND blocks to ensure that
each node in the chain was detected and powered up correctly.
This discovery process was of particular interest because there
were related issues found in the first revision of silicon which
required some software workarounds. After the initial AMSD
setup and debug, the co-simulation was able to achieve the first
goal of replicating the failing behavior that was observed in
silicon. Furthermore, the co-simulation was able to replicate
the effects of the software workaround that was being used in
silicon, which provided a high degree of confidence in the
accuracy of the simulation.

C. Debugging Failures and Testing Design Fixes

Next, the DND block designer was able to use the system
level co-simulation results to debug the failing behavior. The
ability to debug this issue using a fast simulation that was able
to provide accurate voltages and currents was extremely
helpful. Once the root cause of the issue was identified, the co-
simulation environment was used to test and optimize the
design fixes. The co-simulation of the modified design
provided confidence that this issue will be fixed in the next
silicon revision.

D. Stressing Mixed signal Blocks in the Co-simulation

After this initial success, the third goal of further stressing
the mixed signal blocks at the system level was investigated.
For the DND block, this meant injecting various fault types as
in the block level within the system level co-simulation
testbench. This was accomplished by re-using the block level
fault model at the system level. The co-simulation AMSD
control files were modified to include the spice netlist of the
fault model to simulate the various fault conditions during the
discovery process. This fault co-simulation was able to expose
two new bugs in the design that were not seen at the block
level because they were specific to the system level
interactions. One of these bugs was only exposed in larger
systems (more than five LMA nodes), so would have been
impossible to catch without the co-simulation. These bugs
prompted further changes to the DND design which were again
verified using the system level co-simulation.

E. Co-simulation Testbench Improvements

Once the bugs related to fault injection were resolved,
several other improvements were added the co-simulation
testbench. First was the ability to run the co-simulation at
nominal, fast, and slow process corners. This was
accomplished by having three versions of the spice netlists,
each one created with a different process skew. The testbench
environment was then modified to choose which netlist to run
based on a single run script option. This same concept could
be applied to running at various temperatures or R/C skew.

The second testbench improvement was to add constrained
randomization to the co-simulation. Since the co-simulation
re-used the existing UVM system level testbench, the digital
portions already had constrained random variables, but the
analog portions did not. A PERL script was developed in order
to apply constrained random tactics to the analog portions of
the co-simulation. This PERL script read in a configuration
file, which listed the spice netlist parameters to be randomized
in the simulation. This configuration file provided a default
value for each parameter as well as minimum and maximum
constraints. The PERL script then did a simple randomization
of the parameters within the specified constraints and applied
them‎ to‎ the‎ spice‎ netlists‎ using‎ the‎ Spectre‎ “alter”‎ command‎
before the start of the simulation. This method was used to
randomize several netlist parameters including important
resistances and capacitances as well as the input supply voltage
at each LMA node.

VIII. RESULTS

A. What worked

The addition of traditionally digital verification techniques
to the analog and mixed signal blocks in the LMA project had
various benefits that improved both the efficiency and the
quality of the DV effort. One of the early benefits for the
LMA project came from implementing a formal verification
planning process. The creation of a verification plan for each
analog block gave a detailed starting point for developing the
DV testbenches. Through automated annotation and tracking
of the verification plan we identified several issues that would

have been potentially missed on previous projects, such as
inadequate coverage and missing testcases.

The most significant improvement gained from this work
was the development of self-checking tests and regressions.
In previous projects, designers were hesitant to change
anything in the design because it was difficult to check that
they‎ didn’t‎ break‎ anything,‎ where‎ now‎ the‎ automated‎
regression system gave analog designers the freedom to
explore design changes with a quick turnaround time. The
hierarchical verification strategy worked well to test the LMA
design at various levels. The development of different models
for each analog block was critical to this effort. Accurate spice
models enabled detailed block level testing, while the
abstraction provided by RTL models allowed for very fast
execution of large N-node system level simulations. SV real
number models provided a useful combination of accuracy and
speed that allowed system level exploration that would not
have been possible with standard co-simulation techniques.

Once the self-checking tests for the analog blocks were
developed, adding constrained randomization was fairly
straightforward. This provided the same benefits that are well
known in the digital realm: constrained randomization reduced
the number of required directed tests and exercised use-cases
that had not been considered. This prompted the addition of
functional coverage to the analog testbenches to verify that all
input stimulus was applied and required events were observed.
The functional coverage collected during regressions provided
a good metric to use for verification plan tracking.

The development of a system level Cadence AMSD co-
simulation environment was very successful because it
provided a high level of accuracy without a large speed
tradeoff. This testbench environment enabled the debug of
some silicon issues related to LMA node interactions which
were not seen at the block-level. The co-simulation enabled
design fix exploration and exposed other issues with the silicon
that were masked by the original error, which prevented a
potential silicon re-spin.

B. What didn’t work

During this process there were several notable items that
were not successful or were especially challenging to
implement. First, we found that it was difficult to develop self-
checking tests for the analog spice testbenches. The reason for
this was not due to the complexity of coding checks, but rather
determining checks that would be valid in all cases. For digital
blocks, the designer can usually describe specific scenarios that
represent success or failure that can be translated into a check
in the testbench. However, in the analog designs this was not
so straightforward, as there are so many variables that can
slightly modify a voltage or current, such as process skew and
temperature. Developing checks that were valid over all
corners was an iterative process that required close
collaboration with the analog designers.

Another area that provided difficult was model validation.
The models we created for the analog blocks greatly increased
simulation speed and overall efficiency, but caused some issues
due to model inaccuracies. For one of the blocks, some items
were incorrectly modeled and were not identified before

tapeout, resulting in silicon issues. The model validation that
was performed on this project was limited to some spice
comparisons and peer review. In the future, we need to
develop an automated model validation system to prevent
inaccuracies.

A final difficultly identified in this effort during was the
ability to run high-accuracy simulations at fast speeds. This
concern is not limited to the LMA project, but was very
important due to the number of analog blocks and the
importance of system level interactions in our multi node
simulations. The AMSD spice and SV co-simulation
environment helped bridge the gap between speed and
accuracy, but still had limitations that hindered regression
throughput. The tradeoffs and restrictions imposed by
simulation tools required careful planning in order to maximize
DV efficiency at all simulation levels.

C. Metrics

 The goal of integrating digital verification techniques into

our analog and mixed signal verification process was to

improve efficiency and ultimately find more bugs than we

were capable of with our previous methods. Exact

comparisons to previous projects are not possible as before

this project the mixed signal verification effort did not include

tracking of bugs found, regression history or simulation

performance.

 However, there is no doubt that by using self-checking tests,

automated regressions and randomization we were able to run

a much larger number of simulations for the LMA project than

on previous projects. This was especially true at the system

level where SV RNM allowed us to exercise many thousands

of scenarios which would not have been possible in the past.

The number of bugs found, simulations run counts and model

performance comparison metrics are shown in the various

tables below.

1) Bugs Found

Testbench Bugs Found

PLL Block Level 16

VREG Block Level 18

DND Block Level 11

System Level 238

2) Simulation Counts

Testbench Sim Count

PLL Block Level 2463580

VREG Block Level 249477

DND Block Level 810281

System Level 329702

3) Simulation and Model Performance

a) PLL Block Level Testbench

Simulation Type Runtime

Verilog & SV RNM 5 Minutes

Verilog + fast spice Cosim 24 Hours

Verilog & Spice Cosim 1 Week

b) VREG & DND Block Level Testbenches

Simulation Type Runtime

 VREG - Spice Only 5-10 Minutes

DND - Verilog & Spice Cosim 1-3 Minutes

c) System Level Testbench

Simulation Type
TB

Cfg
Runtime

Spice Only 1-9
Not

Possible

AMSD Cosim

(Spice for DND, PLL, VREG)

2 Node 6 Days

9 Node
Not

Possible

AMSD Cosim

(Verilog PLL, Spice VREG & DND)

2 Node 13 Minutes

9 Node 1.25 Hours

Verilog Sim

(SV RNM for PLL, VREG & DND)

2 Node 9 Minutes

9 Node 1.5 Hours

All Verilog Models
2 Node 30 seconds

9 Node 2.5 Minutes

IX. CONCLUSION

While it was not always an easy road, the application of
digital verification techniques to mixed signal and analog
blocks proved very useful to us on the LMA project. The
hallmark of digital verification techniques is to automate as
much as possible and this project demonstrated that mixed
signal and analog verification can and should take advantage of
the power of automation. The positive results achieved during
the LMA project have shown that the methods described in this
paper represented a significant improvement over our existing
verification strategy for analog and mixed signal blocks. As a
result, we plan to continue applying digital verification
techniques to analog and mixed signal blocks in all of our
future products at ADI.

ACKNOWLEDGMENTS

We would like to thank Stuart Patterson, Ara Arakelian,
Lew Lahr and William Hooper for their help and support on
the LMA project.

REFERENCES

[1]‎ N.‎ Khan,‎ Y.‎ Kashai,‎ and‎ H.‎ Fang,‎ “Metric‎ driven‎
verification of mixed-signal‎designs,”‎DVCON‎2011.

[2]‎ N.‎ Khan‎ and‎ Y.‎ Kashai,‎ “From‎ spec to verification
closure: a case study of applying UVM-MS for first pass
success to a complex mixed-signal‎ SoC‎ design,”‎ DVCON‎
2012.

[3]‎N.‎Khan,‎G.‎Glennon,‎and‎D.‎Romaine,‎“MS-SoC best
practices – advanced modeling & verification techniques for
first-pass‎success,”‎DVCON‎2013.

[4]‎ S.‎ Balasubramanian‎ and‎ P.‎ Hardee,‎ “Solutions‎ for‎
mixed-signal‎ SoC‎ verification‎ using‎ real‎ number‎ models,”‎
Cadence white paper,
http://www.cadence.com/rl/Resources/white_papers/Mixed_Si
gnal_Verification_wp.pdf, 2013.

[5] A. Milne and‎D.‎Roberts,‎ “Utilizing‎digital‎ techniques‎
for analog and mixed-signal‎ verification,”‎ Synopsys‎ white‎
paper,
http://www.synopsys.com/tools/verification/amsverification/ca
psulemodule/customsim-utidigitaltech-wp.pdf, 2010.

[6]‎F.‎Strumble,‎“Advanced‎verification techniques for the
mixed-signal‎domain,”‎CDNLive‎EMEA‎2012.

APPENDIX A

class clk_monitor extends uvm_monitor;

 real first_period; //First period identified by monitor
 real start_time; //When clk_monitor will begin to collect information
 real stop_time; //stop time if needed
 real ideal_period; //If defined then this period is used for calculations

 //Period jitter specs
 real allowed_period_jitter;
 real allowed_max_duty_cycle;
 real allowed_min_duty_cycle;

 //Period Jitter values
 real this_period;
 real period_jitter;
 real max_period;
 real min_period;

 //Duty cycle values
 real max_duty_cycle;
 real min_duty_cycle;

 string name;
 virtual interface clk_monitor_interface vif;

 // component macro
 `uvm_component_utils_begin(clk_monitor)
 `uvm_component_utils_end

 // component constr - required syntax for UVM automation and utilities
 function new (string name, uvm_component parent);
 super.new(name, parent);
 this.name = name;

 //Default check values
 start_time = 1;
 allowed_max_duty_cycle = 0.55;
 allowed_min_duty_cycle = 0.45;
 allowed_period_jitter = 1000;
 endfunction : new

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction: build_phase

 // start_of_simulation
 function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation();
 `uvm_info(get_type_name(), {"start of simulation for ", get_full_name()},
UVM_HIGH)
 endfunction : start_of_simulation_phase

 // UVM run() phase
 task run_phase(uvm_phase phase);

 real first_posedge, first_negedge;
 `uvm_info(get_type_name(), "Inside the run() phase", UVM_MEDIUM)
 void'(uvm_config_db#(real)::get(this,"","start_time",start_time));
 `uvm_info(get_type_name(), $psprintf("start_time set to %d", start_time),
UVM_MEDIUM)
 #(start_time);

 // Check that an interface was connected
 if(!uvm_config_db#(virtual clk_monitor_interface)::get(this,"","vif",vif))
 `uvm_fatal("NOVIF", {"virtual interface must be set for: ",
get_full_name(),".vif"});

 wait (mask_bit == 0);

 `uvm_info(get_type_name(), "Starting Jitter measurement",
UVM_MEDIUM)

 @(posedge vif.clk);
 first_posedge = $realtime;

 @(negedge vif.clk);
 first_negedge = $realtime;

 @(posedge vif.clk);
 first_period = $realtime - first_posedge;
 max_duty_cycle = (first_negedge-first_posedge)/first_period;
 min_duty_cycle = (first_negedge-first_posedge)/first_period;

 duty_cycle_checks();
 `uvm_info(get_type_name(), $psprintf("start %0.4f, first_pos %0.4f,
first_neg %0.4f, first_period %0.4f!",start_time, first_posedge, first_negedge,
first_period), UVM_MEDIUM)
 `uvm_info(get_type_name(), $psprintf("First period %0.4f!",first_period),
UVM_MEDIUM)

 //If no ideal period defined then first period is used as ideal.
 if (ideal_period == 0.0)
 begin
 ideal_period = first_period;
 end

 `uvm_info(get_type_name(), $psprintf("Ideal Period %0.4f!",ideal_period),
UVM_MEDIUM)

 //Once initial period defined kick off jitter monitors
 fork
 monitor_period_jitter();
 monitor_duty_cycle();
 join
 endtask : run_phase

 // UVM report_phase
 function void report_phase(uvm_phase phase);
 `uvm_info(get_type_name(), $sformatf("Report: CLK Jitter Monitor Done"),
UVM_MEDIUM)

 `uvm_info(get_type_name(), $psprintf("Max Period = %3.4f ps",
max_period), UVM_MEDIUM)
 `uvm_info(get_type_name(), $psprintf("Min Period = %3.4f ps",
min_period), UVM_MEDIUM)

 if ((max_period ==0) || (min_period == 0)) `uvm_error(get_type_name(),
$psprintf("Never observed clk toggling!"))

 `uvm_info(get_type_name(), $psprintf("Max Duty Cycle = %2.4f",
max_duty_cycle), UVM_MEDIUM)
 `uvm_info(get_type_name(), $psprintf("Min Duty Cycle = %2.4f",
min_duty_cycle), UVM_MEDIUM)

 endfunction : report_phase

 extern task monitor_period_jitter();
 extern task period_jitter_checks(bit max_check);
 extern task monitor_duty_cycle();
 extern task duty_cycle_checks();
endclass : clk_monitor

//
task clk_monitor::monitor_period_jitter;

 real last_edge, this_edge;
 last_edge = $realtime;

 max_period = ideal_period;
 min_period = ideal_period;

 forever
 begin
 @(posedge vif.clk);
 this_edge = $realtime;
 this_period = this_edge - last_edge;

 if (!mask_bit) begin

 //Measure period_jitter
 if (this_period > max_period)
 begin
 max_period = this_period;
 `uvm_info(get_type_name(), $psprintf("New Max Period = %3.4f ps",
max_period), UVM_HIGH)
 period_jitter_checks(1);
 end
 if (this_period < min_period)
 begin
 min_period = this_period;
 `uvm_info(get_type_name(), $psprintf("New Min Period = %3.4f ps",
min_period), UVM_HIGH)
 period_jitter_checks(0);
 end
 end

 //Prepare for next cycle
 last_edge = this_edge;

 end
endtask

//
task clk_monitor::period_jitter_checks(bit max_check);

 if (!mask_bit) begin
 //Period jitter check 1
 if (max_check && ((max_period - ideal_period) > allowed_period_jitter))
 begin
 period_jitter = max_period - ideal_period;
 `uvm_error(get_type_name(), $psprintf("Observed Pos Period Jitter of
%3.4f ps exceeds maximum allowed of %3.4f ps in
%s",period_jitter,allowed_period_jitter, name));
 end

 //Period jitter check 2
 if (!max_check && ((ideal_period - min_period) > allowed_period_jitter))
 begin
 period_jitter = ideal_period - min_period;
 `uvm_error(get_type_name(), $psprintf("Observed Neg Period Jitter of
%3.4f ps exceeds maximum allowed of %3.4f ps in
%s",period_jitter,allowed_period_jitter, name));
 end
 end

endtask

//
task clk_monitor::monitor_duty_cycle();

 real this_dc_period;
 real last_posedge, last_negedge;
 real this_duty_cycle;

 last_posedge = $realtime;

 forever
 begin
 @(negedge vif.clk);
 last_negedge = $realtime;

 @(posedge vif.clk);
 this_dc_period = $realtime - last_posedge;
 this_duty_cycle = ($realtime - last_negedge)/this_dc_period;
 last_posedge = $realtime;

 if (!mask_bit) begin
 if (this_duty_cycle > max_duty_cycle)
 begin
 max_duty_cycle = this_duty_cycle;
 `uvm_info(get_type_name(), $psprintf("New Max duty cycle = %2.2f",
max_duty_cycle), UVM_HIGH)
 duty_cycle_checks();
 end
 if (this_duty_cycle < min_duty_cycle)
 begin
 min_duty_cycle = this_duty_cycle;
 `uvm_info(get_type_name(), $psprintf("New Min duty cycle = %2.2f",
min_duty_cycle), UVM_HIGH)
 duty_cycle_checks();
 end
 end
 end
endtask

//
task clk_monitor::duty_cycle_checks;

 if (!mask_bit) begin

 //Max duty cycle check
 if (max_duty_cycle > allowed_max_duty_cycle)
 `uvm_error(get_type_name(), $psprintf("Observed Duty Cycle %2.4f
exceeded maximum allowed of
%2.4f",max_duty_cycle,allowed_max_duty_cycle));

 //min duty cycle check
 if (min_duty_cycle < allowed_min_duty_cycle)
 `uvm_error(get_type_name(), $psprintf("Observed Duty Cycle %2.4f below
minimum allowed of %2.4f",min_duty_cycle,allowed_min_duty_cycle));

 end
endtask

APPENDIX B

module
pll_bias_osc(oscclk,porb,ibias2p5,PLLVDD,PLLGND,DVDD,DGND,hys,osc_pc,o
sc_tc);
 input porb;
 input hys;
 input [7:0] osc_pc;
 input [6:0] osc_tc;
 inout PLLGND;
 inout PLLVDD;
 inout DGND;
 inout DVDD;
 output oscclk;
 output ibias2p5;

`define OSCCLK_FREQUENCY 31.00
`define OSCCLK_DUTY 0.5

 int oscclk_freq_int;
 real oscclk_freq;
 real oscclk_duty;
 real oscclk_h;
 real oscclk_l;

 int jitter_int;
 real jitter;
 real jitter_acc;
 int fh_jitter;//debug

 real drift;
 real wander_rate; //period wander of pll in ps per second.
 int wander_freq_int;
 real wander_freq;
 int curr_wander_freq_int;

 reg oscclki;
 reg oscclk_int;
 reg [8:0] oscclk_cnt;
 reg porb_delayed;

 //Testbench control
 bit allow_pll_bias_osc_jitter;
 bit allow_pll_bias_osc_wander;
 int wander_start_time;
 int wander_adjust_rate;

 int osc_seed;
 int oscclk_duty_cycle;
 int oscclk_wander_rates[25];
 int oscclk_wander_rates_index;
 bit apply_jitter;
 int osc_stdev_jitter;

 initial begin
 jitter_acc = 0.0;
 oscclk_freq = 31.00;
 wander_freq = oscclk_freq;
 oscclk_duty = 0.5;
 apply_jitter = 0;
 jitter = 0.0;
 oscclk_h = oscclk_duty*1e6/oscclk_freq;
 oscclk_l = (1-oscclk_duty)*1e6/oscclk_freq;
 porb_delayed = 0;

 #3;

 `uvm_info("OSC_MODEL", $sformatf("Allow pll_bia_osc jitter = %b",
allow_pll_bias_osc_jitter), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("Allow pll_bia_osc wander = %b",
allow_pll_bias_osc_wander), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $psprintf(" %m Seed = %d", osc_seed),
UVM_MEDIUM);

 osc_seed = $urandom(osc_seed);
 //oscclk_freq_int = $urandom_range(3255,2945); //in Mhz, Osc freq
should be 31Mhz, This is +/- 5%
 oscclk_freq = oscclk_freq_int/100.0;

 //Randomize duty cycle if either wander or jitter is allowed
 if ((allow_pll_bias_osc_jitter) || (allow_pll_bias_osc_wander)) begin
 oscclk_duty = oscclk_duty_cycle/100.0; //Duty cycles 45%-55%/
 end

 // Print osc_stdev_jitter (0 if not allowed)
 if (!allow_pll_bias_osc_jitter) begin
 osc_stdev_jitter = 0;
 end

 `uvm_info("OSC_MODEL", $sformatf("Oscillator Jitter Standard Deviation
= %d pS", osc_stdev_jitter), UVM_MEDIUM);

 //Wander of oscillator limited to 50Khz per second
 if (allow_pll_bias_osc_wander) begin
 wander_freq_int = oscclk_freq_int +
oscclk_wander_rates[oscclk_wander_rates_index++];
 wander_freq = wander_freq_int/100.0; //Wander freq +/- 50Khz of
oscfreq
 end

 `uvm_info("OSC_MODEL", $sformatf("osc clk freq = %0.2f Mhz",
oscclk_freq), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("osc clk period = %0.2f ns",
(1e3/oscclk_freq)), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("osc clk duty = %0.2f ",
oscclk_duty), UVM_MEDIUM);

 //Calculate osclk high and low pulse widths based on freq and duty cyle
 oscclki = 0;
 oscclk_h = $floor(oscclk_duty*1e6/oscclk_freq);
 oscclk_l = $floor((1-oscclk_duty)*1e6/oscclk_freq);

 end

 ///
 //Osc Wander control
 ///
 initial begin
 #3;

 if (allow_pll_bias_osc_wander) begin
 //Start wander at time in cfg specified in ms so converted to ps
 #(wander_start_time*1e9);

 //Determine wander rate in ps and associated drift;
 //Drift based on wander rate in ns divided by number of clock periods in
1s
 wander_rate = $floor(((1e6)/oscclk_freq)-((1e6)/wander_freq));
 drift = wander_rate / (oscclk_freq*1e6);

 `uvm_info("OSC_MODEL", $sformatf("%m osc wander tgt freq = %0.2f
Mhz", wander_freq), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("%m osc wander tgt period =
%0.2f ns", (1e3/wander_freq)), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("%m osc clk wander rate = %0.4f
ps per second", wander_rate), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("%m osc clk drift = %0.12f per
clock edge", drift), UVM_MEDIUM);

 if (wander_adjust_rate > 0) begin
 while (1) begin
 //Move to next adjust time
 #(wander_adjust_rate*1e9);

 //Adjust target based on current oscclk freq/period which depends
on how much drift has taken place
 curr_wander_freq_int = $floor((1.0/(oscclk_h + oscclk_l))*1e8);
 wander_freq_int = curr_wander_freq_int +
oscclk_wander_rates[oscclk_wander_rates_index++];

 if (wander_freq_int > 3235) wander_freq_int = 3235; //Do not
exceed boundaries
 if (wander_freq_int < 3045) wander_freq_int = 3045; //Do not
exceed boundaries

 //New drift calculation based on current oscclk_h and oscclk_l
 curr_wander_freq_int = $floor((1.0/(oscclk_h + oscclk_l))*1e8);

 wander_freq = wander_freq_int/100.0; //Wander freq +/- 50Khz
of oscfreq
 wander_rate = $floor(((1e6)/(curr_wander_freq_int/100.0))-
((1e6)/wander_freq));
 drift = wander_rate / ((curr_wander_freq_int/100.0)*1e6);

 `uvm_info("OSC_MODEL", $sformatf("%m New osc wander tgt freq
= %0.2f Mhz", wander_freq), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("%m New osc wander tgt
period = %0.2f ns", (1e3/wander_freq)), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("%m New osc clk wander rate
= %0.4f ps per second", wander_rate), UVM_MEDIUM);
 `uvm_info("OSC_MODEL", $sformatf("%m New osc clk drift =
%0.12f per clock edge", drift), UVM_MEDIUM);
 end
 end
 end
 end

 //oscclk will not be driven for at least 500ns after porb is released

 always @(posedge porb)
 begin
 #500ns;
 if (porb === 1'b1) porb_delayed = 1'b1;
 end

 always @(negedge porb)
 begin
 porb_delayed = 1'b0 ;
 end

 //Clock generation with jitter
 always begin
 #(oscclk_l) begin
 //oscclki = porb;
 oscclki = porb_delayed;
 end
 jitter_calc();
 #(oscclk_h+jitter) oscclki = 0;
 oscclk_h = oscclk_h + drift ;
 oscclk_l = oscclk_l + drift ;
 end
 assign ibias2p5 = porb;

 always @(posedge oscclki or negedge porb) begin
 if (~porb) begin
 oscclk_cnt[8:0] <= 9'h000;
 end
 else begin
 if (oscclk_cnt[8:0] < 9'h1ff)
 oscclk_cnt[8:0] <= oscclk_cnt[8:0] + 1'b1;
 end
 end

 always @(oscclki or porb) begin
 if (~porb) oscclk_int <= 1'b1;
 else begin
 if (oscclk_cnt[8:0] >= 9'h020)
 oscclk_int <= 1'b0;
 if (oscclk_cnt[8:0] >= 9'h02f)
 oscclk_int <= oscclki;
 end

 if (~porb) apply_jitter <= 1'b0; // allows monitor to measure one pefect
period
 else if (oscclk_cnt[8:0] >= 9'h030)
 apply_jitter <= 1;
 end

 task jitter_calc;
 if (allow_pll_bias_osc_jitter) begin
 if (apply_jitter) begin
 jitter_int = $dist_normal(osc_seed, 0, osc_stdev_jitter);
 jitter = 1.0*(jitter_int);
 jitter_acc = jitter_acc + jitter;
 end
 else begin
 jitter = 0;
 end
 end
 endtask

 assign oscclk = oscclk_int;

endmodule

APPENDIX C

program test;

typedef enum {NO_SKEW, FAST, TYP, SLOW} skew_t;
typedef enum {NO_TEMP, COLD, NOM, HOT} temp_t;

class tb_cov;

 int fh, file_status;
 string line;

 skew_t skew;
 temp_t temp;
 int VOUT1_cap;

 covergroup cov_cg;

 skew_cp : coverpoint skew { ignore_bins ign_bins = {NO_SKEW}; }
 temp_cp : coverpoint temp { ignore_bins ign_bins = {NO_TEMP}; }

 vout1_cap_cp : coverpoint VOUT1_cap {
 bins VOUT1_cap_vals [] = {[1:50]};
 }
 endgroup

 //
 virtual function void get_cov();
 string temp_str;
 string testname;

 fh = $fopen(testname, "r");
 file_status = $fgets(line, fh);
 while (file_status)
 begin
 if (line[0] == "N")
 begin

 //Check for SKEW
 if (str_match(line, "SKEW"))
 begin
 if (line[8] == "F") skew = FAST;
 else if (line[8] == "S") skew = SLOW;
 else if (line[8] == "N") skew = TYP;
 end

 //Check for TEMP
 if (str_match(line, "TEMP"))
 begin
 if (line[8] == "-") begin temp = COLD; $display("COLD"); end
 else if (line[8] == "1") begin temp = HOT; $display("HOT"); end
 else if (line[9] == "2") begin temp = NOM; $display("NOM"); end
 $display("%s", line);
 end

 //Check for VOUT1 Cap value
 if (str_match(line, "VOUT1"))
 begin
 temp_str = line.substr(21,24);
 if (line[line.len()-2] == "5") VOUT1_cap = $floor(temp_str.atoreal*10);
 if (line[line.len()-2] == "6") VOUT1_cap = $floor(temp_str.atoreal);
 if (line[line.len()-2] == "7") VOUT1_cap = $floor(temp_str.atoreal/10);
 $display("%s %s %d", line, temp_str, VOUT1_cap);
 End

 file_status = $fgets(line, fh);
 end
 $fclose(fh);

 //Update coverage
 vreg_cg.sample();

 endfunction: get_cov

 function new();
 vreg_cg = new();
 endfunction

endclass: tb_cov

///////////////////////////////
tb_cov tb_cov1;

initial
begin

 tb_cov1 = new();
 tb_cov1.get_cov();

end

endprogram: test

