Portable systems crave for low-power and ultra-low power solutions. With increase in complexity of low power design techniques, how do we verify the power intent of such systems? How do we mimic exact silicon behavior in design phase?

Problem Statement/Introduction

Proposed Methodology/Design details

IEEE 1801 aka UPF standard acts like a boon to verify the power intent in very early phase of design.

DMS low power verification has three major components:

- Analog SV-RNM models - replicates analog schematic behavior.
- Digital design
- UPF - contains power intent definition

Implementation Details/Setup

Supply interaction between analog and digital:
- VCT supply mapping in UPF
- Usage of Supply_on/off
- Signals interaction between analog and digital:
 - Drives X's on the digital interface until supply ramps up.
 - Isolation cells clamps the signals to known values.

Implementation Details/checkers

Main Checkers:
- Supply state check
  ```
  supplyState = UPF::get_supply_state(supplyNet);
  ```
- Isolation check
- Assertions to verify isolation clamp values against expected.
- Level Shifter
 - Signal domain checking: To ensure signals are at correct voltage levels.
 - Supply connectivity checks: Checks proper voltage domain separation
- Memory I/O timing: Checkers placed at memory interface.
- Power sequencing checks: Checks power up/down sequence

Results Table

Conclusion

Advantages of using UPF in DMS:
- Finds bugs in power architecture early in the design cycle.
 - We found bug in MBIST inserted RTL where one of the TDR in power gated domain was driving always-on memory interface signal.
- DMS helps in stabilizing UPF before physical design flow is completely setup, That saves time at backend.
- Helps visualizing silicon behavior and power dependencies in RTL phase.

REFERENCES

IEEE 1801 standard LRM