Digital mixed-signal low power verification with Unified power format (UPF)

Srilakshmi D R
Geeta Krishna Chaitanya Puli
Problem statement

- Portable systems crave for low-power and ultra-low power solutions.
- With increase in complexity of low power design techniques, How do we verify the power intent of such systems?
- How do we mimic exact silicon behavior in design phase?

![Diagram showing Power saving techniques: Power gating, Clock gating, Freq scaling, Multi-V domain.](image-url)
Proposed Methodology

• IEEE 1801 aka UPF standard acts as a boon to verify the power intent of any complex systems, in very early design phase.

• DMS low power verification has three major components:
 • Analog SV-RNM models – replicates analog schematic behavior.
 • Digital design
 • UPF – contains power intent definition
Setup

- Supply interaction between analog and digital.
- VCT supply mapping in UPF
- Usage of $supply_on/off
- Signals interaction between analog and digital.
- Drives X ′s on the digital interface until supply ramps up
- Isolation cells clamps the signals to known values.

```vhdl
create_hdl2upf_vct VCTWR
    -hdl_type {svc ds_rnm} \
    -table {{>= 1.1 FULL_ON} \ 
        {>= 0.6 PARTIAL_ON} \ 
        (<0.6 OFF)}

void'($supply_off(VDDsupplyNet, 0.0));
void'($supply_on(VDDsupplyNet, 1.1));
```
Checkers

- Supply state check
  ```cpp
  supplyState = UPF::get_supply_state(UPF::get_supply_value(supplyNet));
  ```

- Isolation check
 - Assertions to verify Isolation clamp values against expected.

- Level Shifter
 - Signal domain checking: To ensure signals are at correct voltage levels.
 - Supply connectivity checks: Checks proper voltage domain separation

- Memory I/O timing: Checkers placed at memory interface.

- Power sequencing checks: Checks power up/down sequence
A-D signal interaction during supply ramp
Results

Wave snippet to show real supplies to UPF state conversion

Power switch control signal shuts off supply to power gated domain
Conclusion

• Advantages of using UPF in DMS:
 • Finds bugs in power architecture early in the design cycle.
 • We found bug in MBIST inserted RTL where one of the TDR in power gated domain was
 driving always-on memory interface signal.
 • DMS helps in stabilizing UPF before physical design flow is completely setup,
 That saves time at backend.
 • Helps visualizing silicon behavior and power dependencies in RTL phase.
Questions?