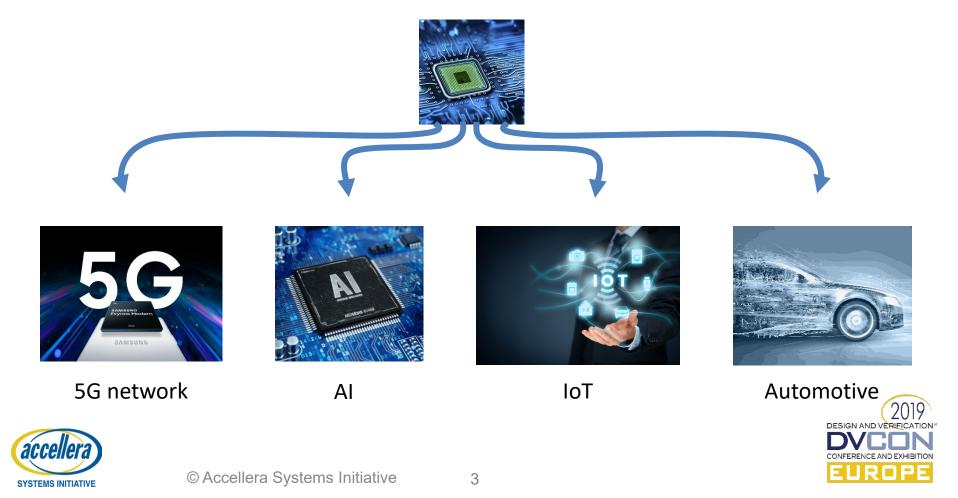
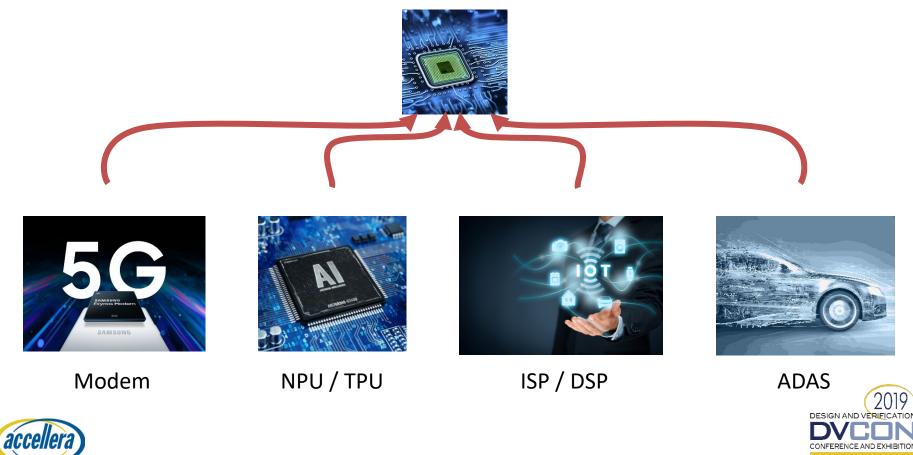
Developing Dynamic Resource Management System in SoC Emulation

Seonchang Choi, Sangwoo Noh, Seonghee Yim, Seonil Brian Choi

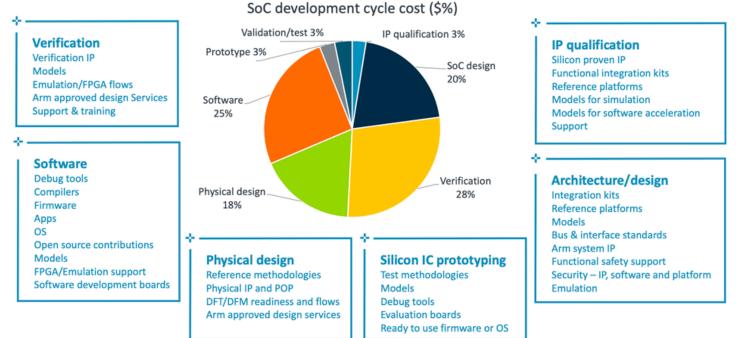

Index

- Backgrounds
- Emulator Queueing System
- Dynamic Resource Management
- Result
- Conclusions



Trends – SoCs are in EVERYWHERE!

Trends – SoCs must do EVERYTHING!

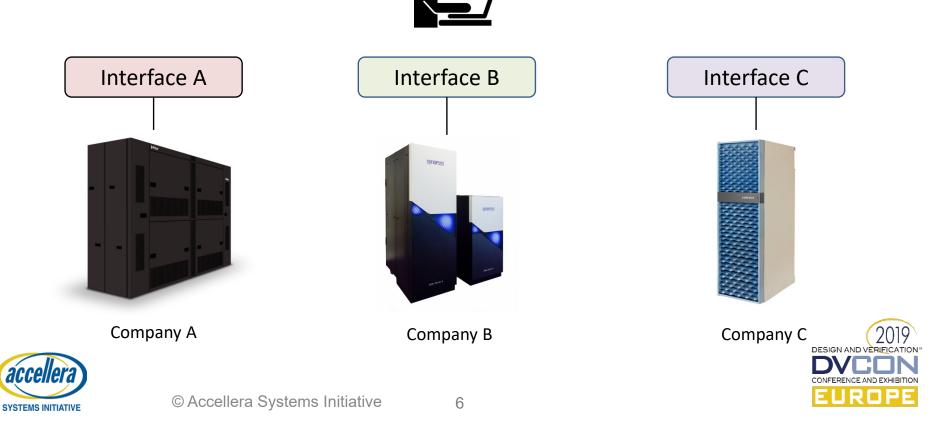

© Accellera Systems Initiative

SYSTEMS INITIATIVE

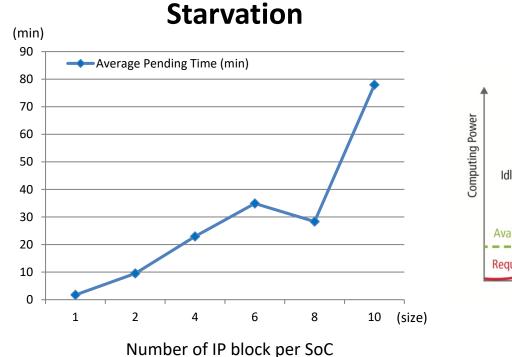
4

Trends – Verification cost takes large portion of a pie!

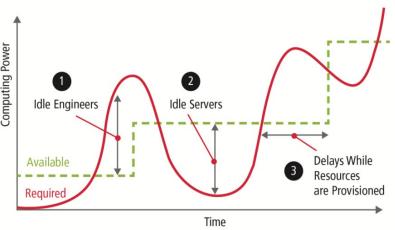
SoC development cost breakdown



Source: ARM



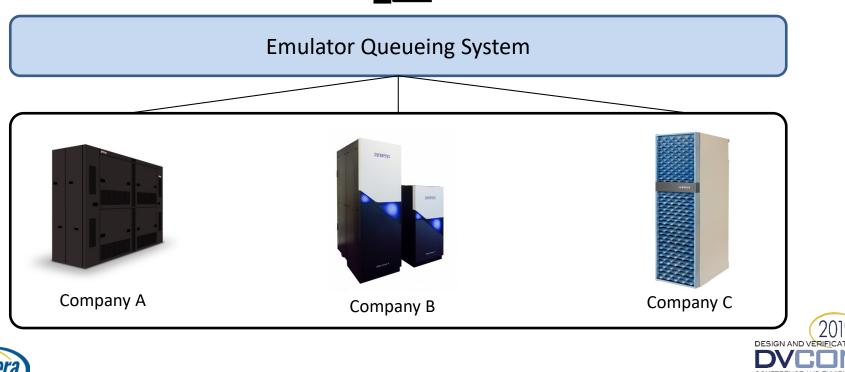
DESIGN AND


- Problems
 - Different interfaces for different types of emulators

- Problems
 - Inefficient resource sharing

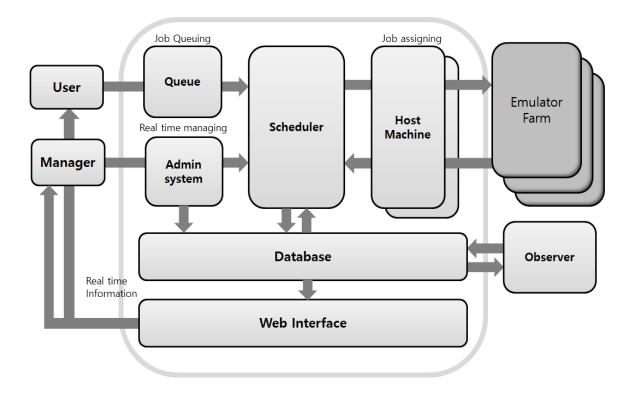
Low Utilization

Available resource and usage rate



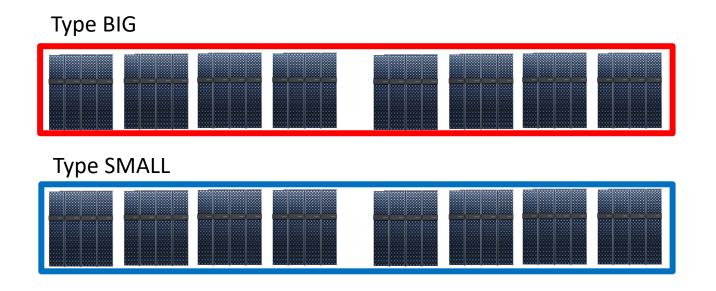
© Accellera Systems Initiative

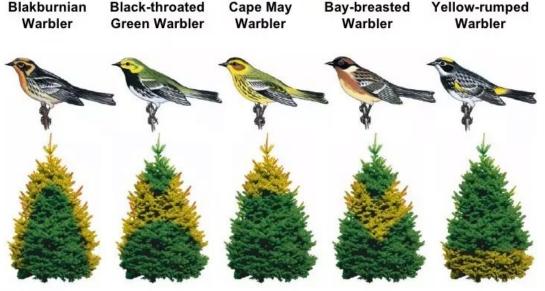
7


- Problems
 - Single interface for different types of emulators

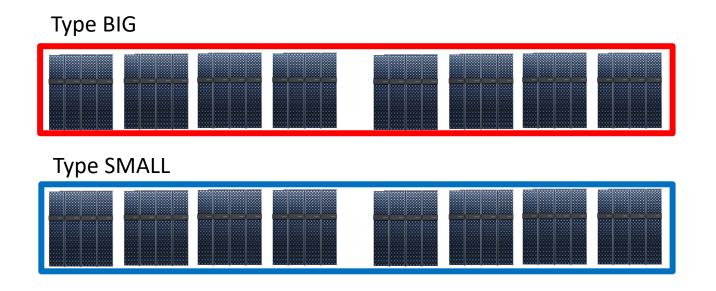
Components

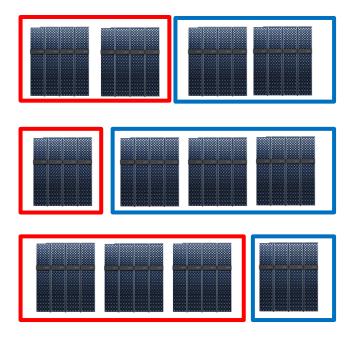
- Queue
- Scheduler
- Host Machines
- Observer
- User Interface


System Architecture


Resource Partitioning

- N Partitions with N type in an emulation farm
- Dedicated type for each partition


- Resource Partitioning
 - Solution for starvation in warblers' ecosystem
 - *"Resource partitioning acts to promote the long-term coexistence of competing species."*



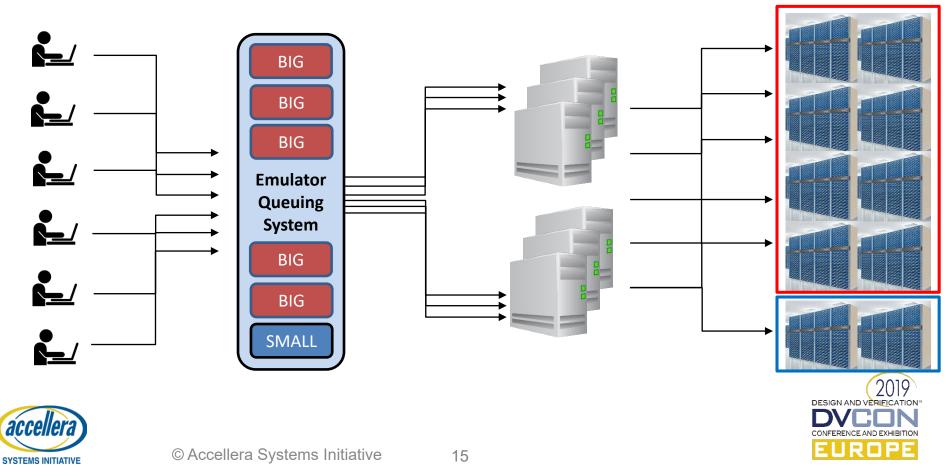
- Resource Partitioning
 - N Partitions with N types in an emulation farm
 - Dedicated type for each partition

- Dynamic Resource Management
 - Dynamically configure the size of partitions

When type A and B requires similar resources

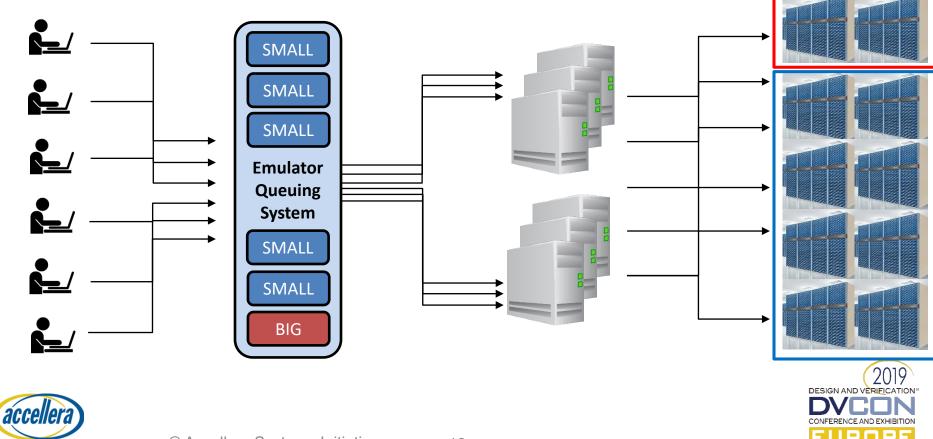
When type B requires more resources than Type A

When type A requires more resources than Type B


Advantages

SYSTEMS INITIATIVE

Easy to scale-out


- Advantages
 - Increase resource utilization

Advantages

SYSTEMS INITIATIVE

Increase resource utilization

Dynamic Resource Management

What policy should be applied to make a decision?

Dynamic Resource Management

What policy should be applied to make a decision?

- 1. Machine learning based policy
 - Reinforcement learning Deep Q Network

2. Heuristic based policies

- Quality of Service (QoS)
- Greedy
- Fair share

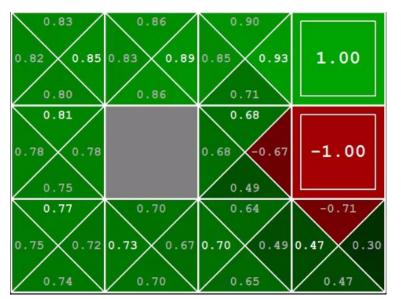
Why do we use reinforcement learning?

- Why do we use reinforcement learning?
- ✓ Markov Decision Process
 - Markov decision process (MDP) is a **discrete time** stochastic control process.
 - Mathematical framework for **modeling decision making** in situations where outcomes are partly random and partly under the control of a decision maker.
 - MDPs are useful for studying **optimization problems** solved via dynamic programming and **reinforcement learning**.

Bellman, R. (1957). "A Markovian Decision Process". Journal of Mathematics and Mechanics

© Accellera Systems Initiative

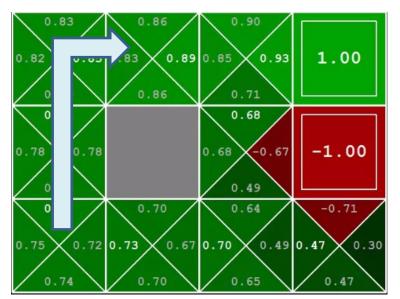
How does the reinforcement learning find out the optimal solution?



- How does the reinforcement learning find out the optimal solution?
- ✓ Bellman Equation

$$V^{\pi *}(s) = \max_{a} \{ R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi *}(s') \}$$

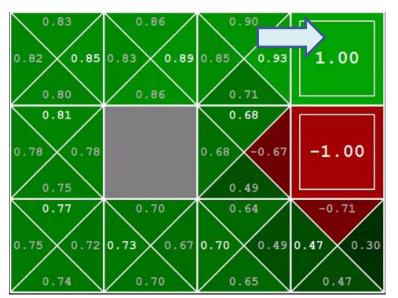
- V(s): value function
- s: state
- s': next state
- a: action
- R(s,a): reward function
- r: discounted rate
- P(s|s,a): conditional probability



- How does the reinforcement learning find out the optimal solution?
- ✓ Bellman Equation

$$V^{\pi *}(s) = \max_{a} \{ R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi *}(s') \}$$

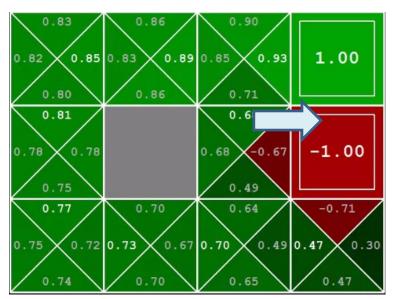
- V(s): value function
- s: state
- s': next state
- a: action
- R(s,a): reward function
- r: discounted rate
- P(s|s,a): conditional probability



- How does the reinforcement learning find out the optimal solution?
- ✓ Bellman Equation

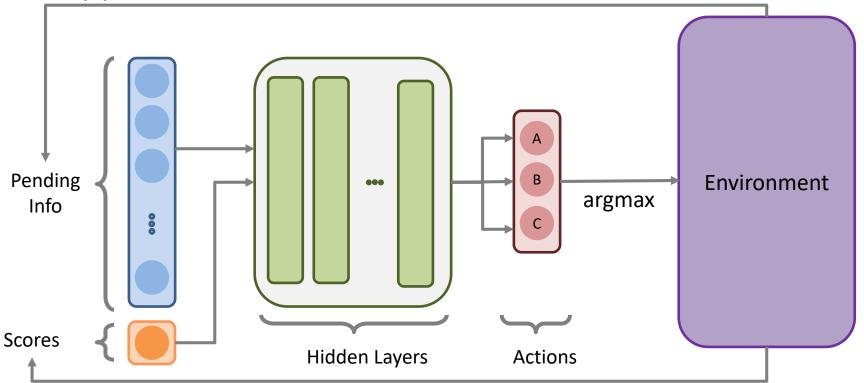
$$V^{\pi *}(s) = \max_{a} \{ R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi *}(s') \}$$

- V(s): value function
- s: state
- s': next state
- a: action
- R(s,a): reward function
- *r*: discounted rate
- P(s|s,a): conditional probability

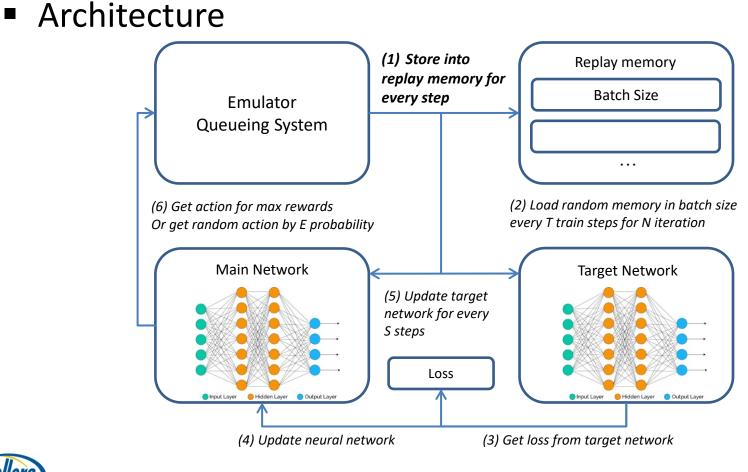


- How does the reinforcement learning find out the optimal solution?
- ✓ Bellman Equation

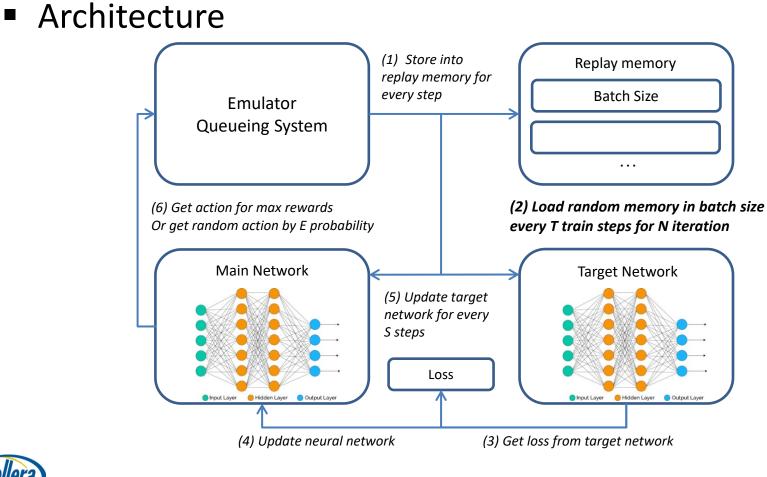
$$V^{\pi *}(s) = \max_{a} \{ R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi *}(s') \}$$

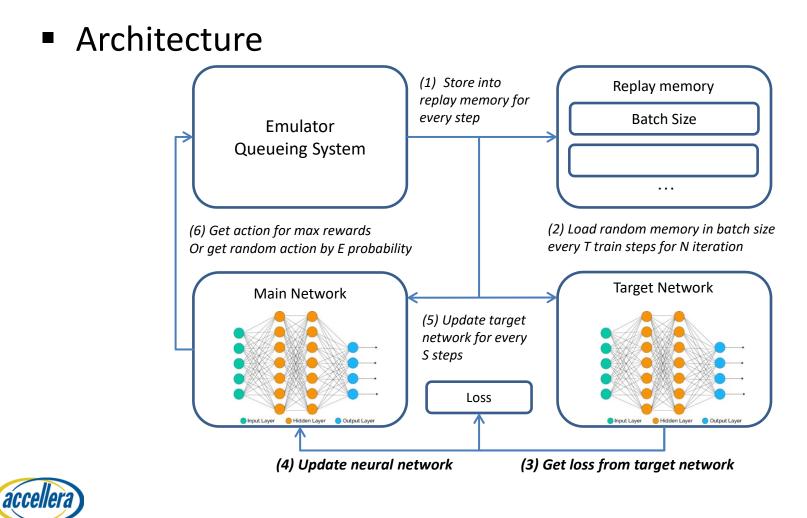

- V(s): value function
- s: state
- s': next state
- a: action
- R(s,a): reward function
- r: discounted rate
- P(s|s,a): conditional probability

Application

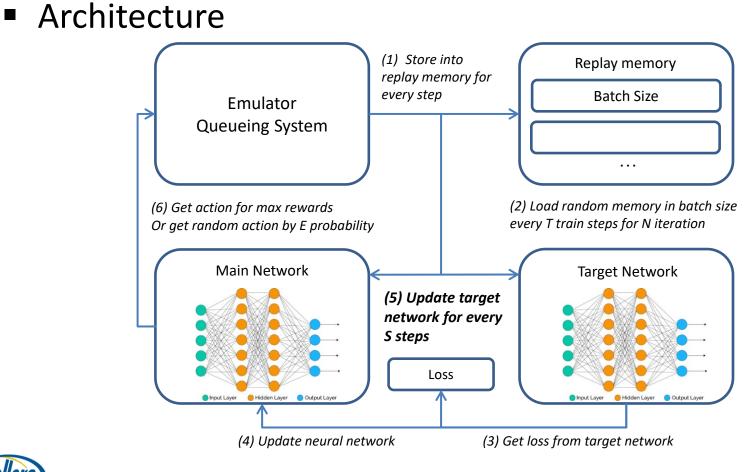

- How did we improve learning speed?
- $\checkmark\,$ Stay action when there is no pending jobs
- ✓ Replay memory & Target network

* The concept is presented in the paper 'Play Atari with deep reinforcement learning' by Deepmind





DESIGN AND



DESIGN AND

SYSTEMS INITIATIVE

DESIGN AND

- Number of trains : 10,000
 - 5,000 episodes, 10 iterations

(A) Average reward while training

(B) Average reward for 500 tests

	=	
	Ξ	
Ε		
	Qo	S

Quality of Service

Greedy

Fair Share

© Accellera Systems Initiative

• QoS – Max pending time

Algorithm 1 QoS policy

IF max(big-type job pending time) > max(small-type job pending time) THEN
IF max(big-type job pending time) > BIG MAX THEN
allocate to big

END IF

ELSE IF max(*small*-type job pending time) > SMALL MAX THEN IF max(*small*-type job) > BIG MAX THEN allocate to small

END IF

END IF * BIG MAX and SMALL MAX is a constant number.

* Allocation scheme : Max-machine, max-unit ** Decision interval : 5 min

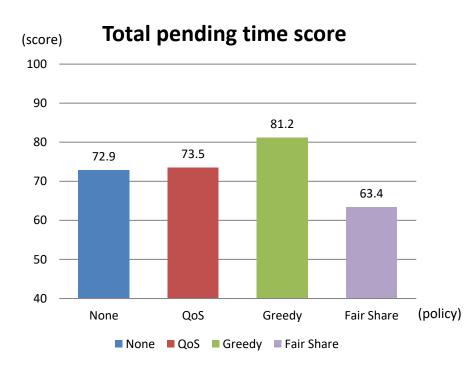
• Greedy → Current queue status

Algorithm 2 Greedy policy

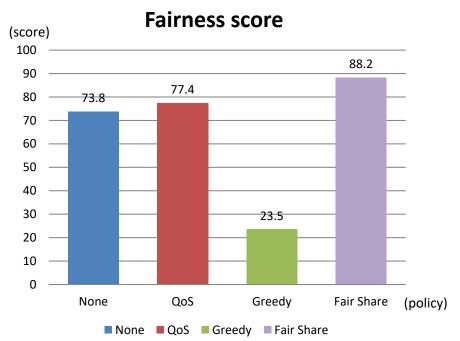
IF big/total ratio > RATIO THEN
 IF big total pending time > BIG TOTAL MAX THEN
 allocate to big
 END IF
ELSE IF small/total ratio > RATIO THEN
 IF small total time > SMALL TOTAL MAX THEN
 allocate to small
 END IF
 * BIG RATIO, SMALL RATIO, BIG TOTAL MAX and SMALL TOTAL MAX are constant numbers.

Fair Share → Average pending time

Algorithm 3 Fair share policy


IF big-type jobs' pending avg > small-type jobs' pending avg THEN
 allocate to big
ELSE
 allocate to small

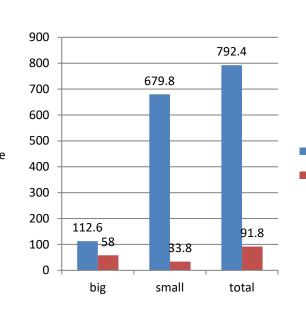
END IF


Experimental Result

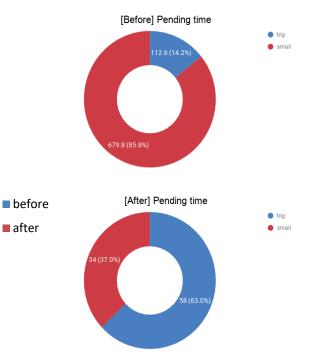
* Total pending time score = normalized value of total pending time

** Fairness score = normalized value of total pending time

,

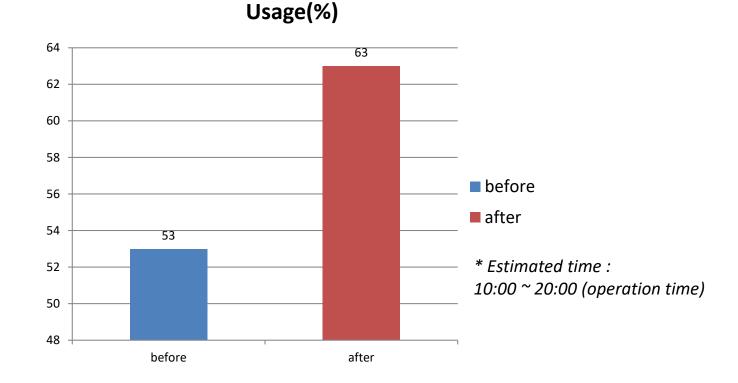

Results

Real Environment Result


Algorithm : QoS, Greedy and Fair share combination

(A) Max pending time

(B) Total pending time


(C) Average pending time ratio

© Accellera Systems Initiative

Conclusions

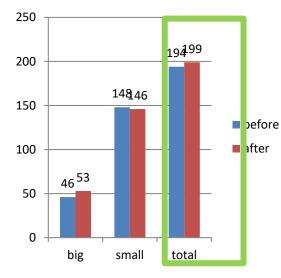
The increase in emulation resource utilization indicates the **increase in the number of jobs** to run in emulation farms (**20%**)

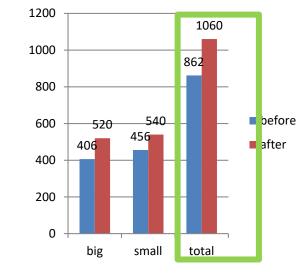
Conclusions

- Contribution
 - 1. Improve efficiency for emulator management system
 - 2. First definition for **dynamic resource management** policy on emulator management system
 - **3. First machine learning approach** on emulation management system
- Future works
 - 1. Advanced Reinforcement learning (A3C ...)
 - 2. Common computing farm with N partitions

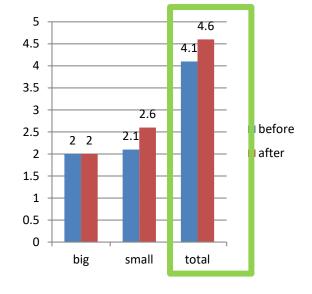
Q & A

Or send an email to sangwoo.noh@samsung.com




© Accellera Systems Initiative

Appendix : Comparison


Before – 2019.03.13 / After – 2019. 07.02

Number of jobs								
	big	small	total					
before	46	148	194					
after	53	146	199					
diff (rate)	15.2%	-1.4%	2.6 %					

Module size								
	big	small	total					
before	406	456	862					
after	520	540	1060					
diff (rate)	28.1 %	18.4%	23%					

Average Run time(hours)							
	big		small		total		
before		2		2.1	4.1		
after		2		2.6	4.6		
			DI	ESIGN			

© Accellera Systems Initiative

Implementation

ZEBU4 PZ1									
Status matrix									
Machine	UNIT	HM0	HM1	HM2	НМЗ	HM4	HM5	HM6	HM7
zebu4_10 (4/16)	U0	78869	78869						
zebu4_10 (4/16)	U1								
zebu4_10 (4/16)	U2	78539	78539			78814	78814	78814	7881
zebu4_10 (4/16)	U3(B)	78571	78571						
zebu4_20 (7/16)	U0(B)					78791	78791		
zebu4_20 (7/16)	U1	78751	78751	78862	78862	78841	78841	78841	7884
zebu4_20 (7/16)	U2(B)	78751	78751	78751	78751	78751	78751	78751	7875
zebu4_20 (7/16)	U3	78185	78185	78811	78811	78861	78861	78861	7886
zebu4_30 (4/11)	U0(B)	78860	78860	78860	78860	78860	78860	78860	7886
zebu4_30 (4/11)	U1(B)					78855	78855		
zebu4_30 (4/11)	U2(B)	78855	78855	78855	78855	78855	78855	78855	7885
zebu4_30 (4/11)	U3	78878	78878	78877	78877	78877	78877	78878	78878
zebu4_40 (5/10)	U0	78787	78787	78787	78787	78787	78787	78774	78774
zebu4_40 (5/10)	U1					78872	78872	78872	78872
zebu4_40 (5/10)	U2(B)	78831	78831	78831	78831	78831	78831	78831	7883:
zebu4_40 (5/10)	U3	78873	78873	78805	78805	78805	78805	78805	7880
zebu4_50 (5/5)	U0(B)	78766	78766	78766	78766	78766	78766	78766	78766
zebu4_50 (5/5)	U1	78875	78875	75795	75795	75795	75795	78875	7887
zebu4_50 (5/5)	U2	78870	78870	78758	78758	78758	78758	78870	7887
zebu4_50 (5/5)	U3	78871	78871	78871	78871	78871	78871	78766	78766
zebu4_60 (8/12)	U0(B)	78750	78750	78750	78750	78750	78750	78750	7875
zebu4_60 (8/12)	U1	78465	78465	77884	77884	78465	78465	78465	7846
zebu4_60 (8/12)	U2	78820	78820	78568	78568	78798	78798	77565	7756

Emulator status (ID:1), Team : Common

ZEBU Job list

JobID	Status	User	Group	Team	Host	Interactive time	Submit time	Resource
78791	RUN	hs43.park	s5e9810	IDT-DV-SV	zebu4_211	480min	2019-03-19 09:46:39.0	Module cnt : 2
78787	RUN	bho.lee	s5ahr80	PLATFOR	zebu4_410	240min	2019-03-19 09:33:33.0	Module cnt : 6
78781	RUN	lab700	s5e9830	IDT-DI	zebu4_703	480min	2019-03-19 09:24:32.0	Module cnt : 4
78777	RUN	jaeho79	artpece	FOUNDRY	zebu4_719	480min	2019-03-19 09:23:42.0	Module cnt : 2
78773	RUN	jm5870	s5e9830	IDT-DV-PV	zebu4_618	480min	2019-03-19 09:20:55.0	Module cnt : 10
78766	RUN	sh78.song	s5e9830	IDT-DV-PV	zebu4_500	480min	2019-03-19 09:02:55.0	Module cnt : 10
78758	RUN	hwls715	fimgtrym	SOCDESI	zebu4_503	0min	2019-03-19 08:38:55.0	Module cnt : 4
78751	RUN	jm5870	s5e9830	IDT-DV-PV	zebu4_209	480min	2019-03-19 08:04:39.0	Module cnt : 10
78750	RUN	hs43.park	s5e9810	IDT-DV-SV	zebu4_615	480min	2019-03-19 07:59:04.0	Module cnt : 8
78571	RUN	m.murali	m.murali	DISPLAY	zebu4_114	90min	2019-03-18 10:52:51.0	Module cnt : 2
78568	RUN	douk.nam	douk.nam	DISPLAY	zebu4_605	90min	2019-03-18 10:45:59.0	Module cnt : 2
78539	RUN	buyoung	buyoung	DISPLAY	zebu4_101	90min	2019-03-18 09:04:04.0	Module cnt : 2
78465	RUN	sangjo.lee	s5ahr80	PLATFOR	zebu4_613	240min	2019-03-16 13:31:33.0	Module cnt : 6
78414	RUN	th50.kim	th50.kim	DISPLAY	zebu4_707	90min	2019-03-15 18:19:09.0	Module cnt: 2
78185	RUN	th50.kim	th50.kim	DISPLAY	zebu4_203	90min	2019-03-14 17:59:48.0	Module cnt : 2
78125	RUN	th50.kim	th50.kim	DISPLAY	zebu4_711	90min	2019-03-14 15:15:59.0	Module cnt : 2
77884	RUN	drain.lee	drain.lee	DISPLAY	zebu4_607	90min	2019-03-13 14:37:50.0	Module cnt : 2
77647	RUN	bo.ahn	swsol	PLATFOR	zebu4_606	300min	2019-03-12 14:29:35.0	Module cnt : 4
77565	RUN	min.byun	min.byun	DISPLAY	zebu4_611	90min	2019-03-12 10:05:13.0	Module cnt : 2
77413	RUN	min.byun	min.byun	DISPLAY	zebu4_714	90min	2019-03-11 16:10:27.0	Module cnt : 2
77407	RUN	min.byun	min.byun	DISPLAY	zebu4_710	90min	2019-03-11 16:01:14.0	Module cnt : 2
<								

Emulator farm status

Job status

