
Developing Dynamic Resource
Management System in SoC Emulation

Seonchang Choi, Sangwoo Noh,
Seonghee Yim, Seonil Brian Choi

© Accellera Systems Initiative 1

Index
 Backgrounds
 Emulator Queueing System
 Dynamic Resource Management
 Result
 Conclusions

© Accellera Systems Initiative 2

Backgrounds
 Trends – SoCs are in EVERYWHERE!

© Accellera Systems Initiative 3

5G network AI IoT Automotive

Backgrounds
 Trends – SoCs must do EVERYTHING!

© Accellera Systems Initiative 4

Modem NPU / TPU ISP / DSP ADAS

Backgrounds
 Trends – Verification cost takes large portion of a pie!

© Accellera Systems Initiative 5

Source: ARM

Backgrounds
 Problems

• Different interfaces for different types of emulators

© Accellera Systems Initiative 6

Company A Company B Company C

Interface A Interface B Interface C

Backgrounds

7

Low Utilization

 Problems
• Inefficient resource sharing

© Accellera Systems Initiative

Starvation

0

10

20

30

40

50

60

70

80

90

1 2 4 6 8 10

Average Pending Time (min)

(min)

(size)

Number of IP block per SoC Available resource and usage rate

Emulator Queueing System
 Problems

• Single interface for different types of emulators

© Accellera Systems Initiative 8

Emulator Queueing System

Company A Company B Company C

Emulator Queueing System
 Components

• Queue
• Scheduler
• Host Machines
• Observer
• User Interface

© Accellera Systems Initiative 9

System Architecture

Emulator Queueing System
 Resource Partitioning

• N Partitions with N type in an emulation farm
• Dedicated type for each partition

© Accellera Systems Initiative 10

Type BIG

Type SMALL

Emulator Queueing System
 Resource Partitioning

• Solution for starvation in warblers’ ecosystem
• “Resource partitioning acts to promote the long-term

coexistence of competing species.”

11© Accellera Systems Initiative

Emulator Queueing System
 Resource Partitioning

• N Partitions with N types in an emulation farm
• Dedicated type for each partition

© Accellera Systems Initiative 12

Type BIG

Type SMALL

Emulator Queueing System

When type A and B requires similar resources

When type B requires more resources than Type A

 Dynamic Resource Management
• Dynamically configure the size of partitions

When type A requires more resources than Type B

© Accellera Systems Initiative 13

Emulator Queueing System
 Advantages

• Easy to scale-out

© Accellera Systems Initiative 14

Emulator
Queuing
System

Emulator Queueing System
 Advantages

• Increase resource utilization

© Accellera Systems Initiative 15

Emulator
Queuing
System

BIG

BIG

BIG

BIG

BIG

SMALL

Emulator Queueing System

© Accellera Systems Initiative 16

Emulator
Queuing
System

SMALL

SMALL

SMALL

SMALL

SMALL

BIG

 Advantages
• Increase resource utilization

Dynamic Resource Management
 What policy should be applied to make a decision?

© Accellera Systems Initiative 17

Dynamic Resource Management
 What policy should be applied to make a decision?

1. Machine learning based policy
• Reinforcement learning – Deep Q Network

2. Heuristic based policies
• Quality of Service (QoS)
• Greedy
• Fair share

© Accellera Systems Initiative 18

© Accellera Systems Initiative 19

 Why do we use reinforcement learning?

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 20

 Why do we use reinforcement learning?

 Markov Decision Process
• Markov decision process (MDP) is a discrete time stochastic control process.

• Mathematical framework for modeling decision making in situations
where outcomes are partly random and partly under the control of a decision
maker.

• MDPs are useful for studying optimization problems solved via dynamic

programming and reinforcement learning.

Bellman, R. (1957). "A Markovian Decision Process". Journal of Mathematics and Mechanics

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 21

 How does the reinforcement learning find out the
optimal solution?

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 22

 How does the reinforcement learning find out the
optimal solution?

 Bellman Equation

• V(s): value function
• s: state
• s’: next state
• a: action
• R(s,a): reward function
• r: discounted rate
• P(s|s,a): conditional probability

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 23

 How does the reinforcement learning find out the
optimal solution?

 Bellman Equation

• V(s): value function
• s: state
• s’: next state
• a: action
• R(s,a): reward function
• r: discounted rate
• P(s|s,a): conditional probability

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 24

 How does the reinforcement learning find out the
optimal solution?

 Bellman Equation

• V(s): value function
• s: state
• s’: next state
• a: action
• R(s,a): reward function
• r: discounted rate
• P(s|s,a): conditional probability

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 25

 How does the reinforcement learning find out the
optimal solution?

 Bellman Equation

• V(s): value function
• s: state
• s’: next state
• a: action
• R(s,a): reward function
• r: discounted rate
• P(s|s,a): conditional probability

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 26

A

B

C

Pending
Info

Scores
Hidden Layers Actions

Environment
argmax

Dynamic Resource Management:
Machine Learning Policy

 Application

 How did we improve learning speed?

 Stay action when there is no pending jobs
 Replay memory & Target network

* The concept is presented in the paper ‘Play Atari with deep reinforcement learning’ by Deepmind

Update Target

© Accellera Systems Initiative 27

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 28

Emulator
Queueing System

Batch Size

…

Replay memory(1) Store into
replay memory for
every step

(2) Load random memory in batch size
every T train steps for N iteration

(5) Update target
network for every
S steps

Loss

(3) Get loss from target network(4) Update neural network

(6) Get action for max rewards
Or get random action by E probability

Main Network Target Network

 Architecture

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 29

Emulator
Queueing System

Batch Size

…

Replay memory(1) Store into
replay memory for
every step

(2) Load random memory in batch size
every T train steps for N iteration

(5) Update target
network for every
S steps

Loss

(3) Get loss from target network(4) Update neural network

(6) Get action for max rewards
Or get random action by E probability

Main Network Target Network

 Architecture

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 30

Emulator
Queueing System

Batch Size

…

Replay memory(1) Store into
replay memory for
every step

(2) Load random memory in batch size
every T train steps for N iteration

(5) Update target
network for every
S steps

Loss

(3) Get loss from target network(4) Update neural network

(6) Get action for max rewards
Or get random action by E probability

Main Network Target Network

 Architecture

Dynamic Resource Management:
Machine Learning Policy

© Accellera Systems Initiative 31

Emulator
Queueing System

Batch Size

…

Replay memory(1) Store into
replay memory for
every step

(2) Load random memory in batch size
every T train steps for N iteration

(5) Update target
network for every
S steps

Loss

(3) Get loss from target network(4) Update neural network

(6) Get action for max rewards
Or get random action by E probability

Main Network Target Network

 Architecture

Dynamic Resource Management:
Machine Learning Policy

 Number of trains : 10,000
 5,000 episodes, 10 iterations

© Accellera Systems Initiative 32

(A) Average reward while training (B) Average reward for 500 tests

Dynamic Resource Management:
Machine Learning Policy

Quality of Service Greedy Fair Share

© Accellera Systems Initiative 33

Dynamic Resource Management:
Heuristic Policies

Dynamic Resource Management:
Heuristic Policies

© Accellera Systems Initiative 34

Algorithm 1 QoS policy

IF max(big-type job pending time) > max(small-type job pending time) THEN
 IF max(big-type job pending time) > BIG MAX THEN
 allocate to big

END IF
ELSE IF max(small-type job pending time) > SMALL MAX THEN
 IF max(small-type job) > BIG MAX THEN
 allocate to small

END IF

END IF
* BIG MAX and SMALL MAX is a constant number.

* Allocation scheme : Max-machine, max-unit
** Decision interval : 5 min

• QoS – Max pending time

© Accellera Systems Initiative 35

Algorithm 2 Greedy policy

IF big/total ratio > RATIO THEN
 IF big total pending time > BIG TOTAL MAX THEN
 allocate to big

END IF
ELSE IF small/total ratio > RATIO THEN
 IF small total time > SMALL TOTAL MAX THEN
 allocate to small

END IF
END IF
* BIG RATIO, SMALL RATIO, BIG TOTAL MAX and SMALL TOTAL MAX are constant numbers.

Algorithm 3 Fair share policy

IF big-type jobs’ pending avg > small-type jobs’ pending avg THEN
 allocate to big
ELSE
 allocate to small
END IF

• Greedy Current queue status

• Fair Share Average pending time

Dynamic Resource Management:
Heuristic Policies

* Total pending time score = normalized value of total pending time
** Fairness score = normalized value of total pending time

 Experimental Result

36

72.9 73.5

81.2

63.4

40

50

60

70

80

90

100

None QoS Greedy Fair Share

Total pending time score

None QoS Greedy Fair Share

(score)

(policy)

73.8 77.4

23.5

88.2

0

10

20

30

40

50

60

70

80

90

100

None QoS Greedy Fair Share

Fairness score

None QoS Greedy Fair Share

(policy)

(score)

© Accellera Systems Initiative

Dynamic Resource Management:
Heuristic Policies

110.7

46.4

24.3

11.7

0

20

40

60

80

100

120

big small

before

after

112.6

679.8

792.4

58 33.8
91.8

0

100

200

300

400

500

600

700

800

900

big small total

before

after

Algorithm : QoS, Greedy and Fair share combination

© Accellera Systems Initiative 37

(A) Max pending time (B) Total pending time (C) Average pending time ratio

Results
 Real Environment Result

53

63

48

50

52

54

56

58

60

62

64

before after

Usage(%)

before

after

© Accellera Systems Initiative 38

* Estimated time :
10:00 ~ 20:00 (operation time)

Conclusions

The increase in emulation resource utilization indicates
the increase in the number of jobs to run in emulation farms (20%)

Conclusions
• Contribution

1. Improve efficiency for emulator management system
2. First definition for dynamic resource management policy

on emulator management system
3. First machine learning approach on emulation

management system

• Future works
1. Advanced Reinforcement learning (A3C …)
2. Common computing farm with N partitions

© Accellera Systems Initiative 39

Q & A

40
© Accellera Systems Initiative 40

Or send an email to sangwoo.noh@samsung.com

Appendix : Comparison

46

148

194

53

146

199

0

50

100

150

200

250

big small total

before

after

Before – 2019.03.13 / After – 2019. 07.02

Module size

big small total

before 406 456 862

after 520 540 1060

diff (rate) 28.1% 18.4% 23%

Number of jobs

big small total

before 46 148 194

after 53 146 199

diff (rate) 15.2% -1.4% 2.6%

406
456

862

520 540

1060

0

200

400

600

800

1000

1200

big small total

before

after
2 2.1

4.1

2

2.6

4.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

big small total

before

after

Average Run time(hours)

big small total

before 2 2.1 4.1

after 2 2.6 4.6

© Accellera Systems Initiative 41

Implementation

Emulator farm status Job status

© Accellera Systems Initiative 42

	Developing Dynamic Resource Management System in SoC Emulation
	Index
	Backgrounds
	Backgrounds
	Backgrounds
	Backgrounds
	Backgrounds
	Emulator Queueing System
	Emulator Queueing System
	Emulator Queueing System
	Emulator Queueing System
	Emulator Queueing System
	Emulator Queueing System
	Emulator Queueing System
	Emulator Queueing System
	Emulator Queueing System
	Dynamic Resource Management
	Dynamic Resource Management
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Machine Learning Policy
	Dynamic Resource Management:�Heuristic Policies
	Dynamic Resource Management:�Heuristic Policies
	Dynamic Resource Management:�Heuristic Policies
	Dynamic Resource Management:�Heuristic Policies
	Results
	Conclusions
	Conclusions
	Q & A
	Appendix : Comparison
	Implementation

