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Backgrounds
 Trends – SoCs are in EVERYWHERE!
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Backgrounds
 Trends – SoCs must do EVERYTHING!
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Backgrounds
 Trends – Verification cost takes large portion of a pie!
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Source: ARM



Backgrounds
 Problems

• Different interfaces for different types of emulators
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Backgrounds
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Low Utilization

 Problems
• Inefficient resource sharing 
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Emulator Queueing System
 Problems

• Single interface for different types of emulators
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Emulator Queueing System
 Components

• Queue
• Scheduler
• Host Machines
• Observer
• User Interface
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System Architecture



Emulator Queueing System
 Resource Partitioning

• N Partitions with N type in an emulation farm
• Dedicated type for each partition
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Emulator Queueing System
 Resource Partitioning

• Solution for starvation in warblers’ ecosystem
• “Resource partitioning acts to promote the long-term 

coexistence of competing species.”
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Emulator Queueing System
 Resource Partitioning

• N Partitions with N types in an emulation farm
• Dedicated type for each partition
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Emulator Queueing System

When type A and B requires similar resources

When type B requires more resources than Type A

 Dynamic Resource Management
• Dynamically configure the size of partitions

When type A requires more resources than Type B
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Emulator Queueing System
 Advantages

• Easy to scale-out
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Emulator Queueing System
 Advantages

• Increase resource utilization
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Emulator Queueing System
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Dynamic Resource Management
 What policy should be applied to make a decision?
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Dynamic Resource Management
 What policy should be applied to make a decision?

1. Machine learning based policy
• Reinforcement learning – Deep Q Network

2. Heuristic based policies
• Quality of Service  (QoS)
• Greedy
• Fair share
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 Why do we use reinforcement learning?

Dynamic Resource Management:
Machine Learning Policy
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 Why do we use reinforcement learning?

 Markov Decision Process
• Markov decision process (MDP) is a discrete time stochastic control process. 

• Mathematical framework for modeling decision making in situations 
where outcomes are partly random and partly under the control of a decision 
maker.

• MDPs are useful for studying optimization problems solved via dynamic 

programming and reinforcement learning.

Bellman, R. (1957). "A Markovian Decision Process". Journal of Mathematics and Mechanics

Dynamic Resource Management:
Machine Learning Policy
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 How does the reinforcement learning find out the
optimal solution?
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 How does the reinforcement learning find out the
optimal solution?

 Bellman Equation

• V(s): value function
• s: state
• s’: next state
• a: action
• R(s,a): reward function
• r: discounted rate
• P(s|s,a): conditional probability

Dynamic Resource Management:
Machine Learning Policy
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 How did we improve learning speed?

 Stay action when there is no pending jobs
 Replay memory & Target network

* The concept is presented in the paper ‘Play Atari with deep reinforcement learning’ by Deepmind

Update Target
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 Number of trains : 10,000
 5,000 episodes, 10 iterations
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(A) Average reward while training (B) Average reward for 500 tests
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Quality of Service Greedy Fair Share
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Dynamic Resource Management:
Heuristic Policies
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Algorithm 1 QoS policy 
 

IF max(big-type job pending time) > max(small-type job pending time) THEN 
    IF max(big-type job pending time) > BIG MAX  THEN 
        allocate to big  

END IF 
ELSE IF max(small-type job pending time) > SMALL MAX THEN 
    IF max(small-type job) > BIG MAX THEN 
        allocate to small 

END IF 
 
END IF 
* BIG MAX and SMALL MAX is a constant number. 

 
 
* Allocation scheme : Max-machine, max-unit
** Decision interval : 5 min

• QoS – Max pending time
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Algorithm 2 Greedy policy 

 
IF big/total ratio > RATIO THEN 
    IF big total pending time > BIG TOTAL MAX THEN 
        allocate to big  

END IF 
ELSE IF small/total ratio > RATIO THEN 
    IF small total time > SMALL TOTAL MAX THEN 
        allocate to small 

END IF 
END IF 
* BIG RATIO, SMALL RATIO, BIG TOTAL MAX and SMALL TOTAL MAX are constant numbers.

 
  

 
Algorithm 3 Fair share policy 

 
IF big-type jobs’ pending avg > small-type jobs’ pending avg  THEN 
    allocate to big  
ELSE 
    allocate to small 
END IF

 

• Greedy Current queue status

• Fair Share Average pending time

Dynamic Resource Management:
Heuristic Policies



* Total pending time score = normalized value of total pending time
** Fairness score = normalized value of total pending time

 Experimental Result
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* Estimated time : 
10:00 ~ 20:00 (operation time)

Conclusions

The increase in emulation resource utilization indicates 
the increase in the number of jobs to run in emulation farms (20%)



Conclusions
• Contribution

1. Improve efficiency for emulator management system
2. First definition for dynamic resource management policy 

on emulator management system
3. First machine learning approach on emulation 

management system

• Future works
1. Advanced Reinforcement learning (A3C …)
2. Common computing farm with N partitions

© Accellera Systems Initiative 39



Q & A

40
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Or send an email to sangwoo.noh@samsung.com



Appendix : Comparison
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Implementation

Emulator farm status Job status
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