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Abstract- This paper presents a portable block testbench architecture for the development of reusable SOC verification 

scenarios, and automated testbench generation by using IP-XACT. We explain how the portable block testbench is 

composed to improve the reusability of verification scenarios from the sub-system level to the SOC level.  Next, we 

describe a way to automate portable block testbench generation for entire blocks in the SOC using IP-XACT. We applied 

this framework to our verification flow of premium SOC design. As a result, we can achieve an average simulation run 

time reduction of 65%~95%. 

 

I.   INTRODUCTION 

SOC design complexity and size are continuously increasing to meet market demands such as high performance 

and various use cases. Research for functional verification trends by Wilson Research Group from 2014 to 2016 

shows that the percentage of IC/ASIC projects with design size over 40M gates was growing to 20%, 31%, and 38% 

in 2012, 2014, and 2016, respectively. Furthermore, the products over 500M gates were growing to 17%, 19% of 

2014, 2016, as well [1], [2]. In 2018, although the percentage of projects with design size over 40M and 500M gates 

has reduced to 33% and 17%, respectively, due to an increase of very small designs (less than 100k gates) for IoT or 

automatic devices. These trends in design size show that the semiconductor industry continues to move in the 

direction of larger designs [3]. 

In the event-driven simulation for design function verification, which is currently widely used, the number of 

events that occurred during the simulation process determines the simulation running time (wall clock time). This 

relationship means the more events during simulation, the more computing needs and, eventually, the longer the 

simulation run time. Two main conditions, design size and length of verification scenario, determine the number of 

events that occur during simulation under the same time precision, which are proportional under the same clock 

frequency condition. In this view, developing a verification scenario using SOC design, which is a very large scale, 

is the worst choice in terms of the development time of design verification scenarios. 

Verification scenario development time is closely related to the overall verification schedule. According to the 

research in the 2018 Wilson Research Group, 69% of projects were behind the original schedule in terms of design 

completion time, and the total verification time spent in the project was 53%. Besides, developing testbenches and 

verification scenarios, including simulation run time, accounts for 40% of the work of verification engineers [3]. 

Thus, shortening the development time for verification scenarios is an important factor in the overall verification 

schedule. 

In this paper, a portable block testbench architecture based on UVM (Universal Verification Methodology) is 

proposed to reduce development time for verification scenarios and reuse those scenarios from a block-level to an 

SOC level testbench. Verification scenarios are developed through the portable block testbench, which merged 

block testbenches into the SOC testbench. Then, the developed verification scenarios are reused in the SOC 

testbench to reduce development time for verification scenarios. This testbench is automatically generated based on 

SOC design information, which is described in IP-XACT [4], to reduce maintenance overhead. 

The rest of this paper is organized as follows: The next section briefly reviews the SOC verification scenario 

development time issue and SOC/block testbench architecture to motivate the considered work. Afterward, the 

proposed portable block testbench architecture and IP-XACT based testbench automation are described in Section 

III and Section IV. Finally, Section V presents our experimental evaluation, and Section VI concludes the work. 



II.   BACKGROUND 

A. SOC Verification Scenario Development Time Issue 

In general, a bottom-up verification approach is used, where IP level verification scenarios are reused at an upper-

level verification such as a sub-system (or a block) level as well as an SOC level [5], [6]. However, a top-down 

verification approach is required when both IP level and upper-level verifications are conducted simultaneously, 

where IP level verification scenarios are not available in advance for reuse. Besides, a top-level verification such as 

SOC level one typically uses complex testbench structures and requires a significant amount of simulation run time. 

A stub-out approach, where unused blocks are stubbed out in the SOC level testbench, is used to reduce its long 

simulation time. However, the design blocks that must be included to use basic SOC systems, such as a backbone 

bus and memory controllers, cannot be replaced by the stub-out module. Therefore, there is a limit to shorten the 

development time for verification scenarios by reducing the design size while using the basic systems of the SOC. 

Also, a single/multi-block testbench approach that uses only the required design blocks for verification purposes 

can further improve simulation performance. This approach reduces the debugging time compared to the testbench 

using an SOC design by narrowing and isolating the scopes of various issues, such as design/testbench bugs and 

register settings, that occur in the design under verification. However, this approach requires each verification 

engineer to build the appropriate testbench components, such as deployment/setup of verification IP (VIP) and 

connection with the design, for their design configuration of interest. Building testbench components demands a 

significant amount of manual effort. Moreover, further efforts are also needed to implement the verification 

scenarios developed at the single/multi-block testbench to the original SOC testbench. 

 

B. SOC Testbench and Single/Multi Block Testbench 

As shown in Fig. 1 (a), the UVM-based original SOC testbench consists of a multi-block SOC design and various 

verification components such as an SOC uvm_reg_block which models the internal registers of the SOC design, a 

master VIP which abstracts host CPU core, SOC main memory models like LPDDR memory, and UVM 

environments for block/function verification. In comparison, the testbenches using the single/multi-block design of 

Fig. 1 (b) and Fig. 1 (c) only use the design blocks required to verify the specific functions in an SOC design. Except 

for the VIPs for each design block, block-level testbench components, such as uvm_reg_blocks and block/function-

specific UVM environments, can be used as part of the SOC testbench. Therefore, proper partition and separation of 

the verification components for SOC testbench enable the development of block and SOC level verification 

scenarios in the single merged testbench. Besides, UVM environments and verification scenarios in a block-level 

testbench can be vertically reused at an SOC level testbench. 

As described earlier, keeping both block and SOC level testbenches together on a single testbench has the 

disadvantage of maintaining testbench components and verification scenarios but the advantage of reusability and 

portability. Besides, developing time for the SOC verification scenarios can be reduced by using the block-level 

testbench and the SOC level testbench in stages. 

 

 

(a)                                                                     (b)                                                               (c) 
Figure 1. SOC and Single/Multi Block testbench architecture 

 



III.   PROPOSED PORTABLE TESTBENCH ARCHITECTURE 

This section presents the proposed portable testbench architecture. This section also describes how to solve the 

reusability issue for verification scenarios and the portability of testbench components between the portable block 

testbench and the SOC testbench.  

Fig. 2 show the original SOC testbench and the portable block testbench architecture, respectively. The portable 

block testbench automatically configures the necessary testbench components, such as master/slave VIPs and block-

level uvm_reg_maps, which takes IP level uvm_reg_maps as sub-map, according to the design configuration. 
 

 
(a)                                                                                                               (b) 

Figure 2. SOC/Portable block testbench architecture 
 

A. Compiler Directives Based Testbench Component Selection 

In the portable block testbench, all design blocks that are not subject to verification according to the design 

configuration are replaced by stub-out modules. Design configurations consist of `define statements or +define 

options, which indicates real or stub-out design modules. In the portable block testbench, the design configuration 

automatically determines the components that will be included in the testbench with compiler directives, such as 

`ifdef and `ifndef. 

The design configuration in Fig. 3 shows the target and exclusion blocks for verification. The BLK_A and 

BLK_C are the target blocks, which are represented with {BLKNAME}_RTL_MT, and the BLK_B is the exclusion 

block, which is represented with {BLKNAME}_FAKE_MT. This design configuration is applied to the portable 

block testbench and the BLK_B related testbench components, such as the M2/M3 and the S2/S3 VIPS and the 

uvm_reg_maps of the BLK_B, are automatically excluded from the portable block testbench, as shown in Fig. 2 (b). 
 

 `define SOCDV_PORTABLE_BLKSIM   //Design configuration example 

`define BLK_A_RTL_MT            //*RTL_MT  : original RTL module 

`define BLK_B_FAKE_MT           //*FAKE_MT : stub-out module 

`define BLK_C_RTL_MT 

class tb_c extends uvm_env; 

   … 

`ifdef SOCDV_PORTABLE_BLKSIM  //Component selection with compiler directives 

`ifndef BLK_A_FAKE_MT 

vip_env_c blk_a_m0_env; 

vip_env_c blk_a_m1_env; 

`endif 

`ifndef BLK_B_FAKE_MT 

vip_env_c blk_b_m0_env; 

vip_env_c blk_b_m1_env; 

 `endif 

`ifndef BLK_C_FAKE_MT 

vip_env_c blk_c_m0_env; 

vip_env_c blk_c_m1_env; 

`endif 

`else 

   vip_env_c host_cpu_m_env;  

`endif 

… 

endclass 
Figure 3. Example of design configuration and VIP declaration 



 

B. Multiple Block uvm_reg_maps 

The UVM register layer class is a useful abstraction mechanism that models memory-mapped registers and 

memories of hardware design, and it can be easily reused from IP level testbenches to SOC level testbenches. This 

UVM register layer class is widely used when developing testbenches and verification scenarios. In particular, 

accessing registers using the uvm_reg class tasks, such as read(), write(), update(), and mirror(), are most frequently 

used to develop verification scenarios. In a verification scenario, accessing registers using uvm_reg class tasks is 

issued from the master VIP through the associated sequencer of the uvm_reg_map, in which the uvm_reg class 

belongs to it. 

In the case of the SOC testbench, as shown in Fig. 4 (a), a single consolidated uvm_reg_block has a single 

uvm_reg_map, and all IP-specific uvm_reg_maps construct sub-maps of the SOC uvm_reg_map. Therefore, register 

access tasks using the uvm_reg class are issued through the sequencer of the host CPU VIP, which is the associated 

sequencer of the single uvm_reg_map. 

 

 
                                                        (a)                                                                                                                 (b) 

Figure 4. uvm_reg_map structure in SOC and portable block testbench 

 

In contrast, in the portable block testbench, each design block has its own master VIPs, so the register access tasks 

using the uvm_reg class must be issued on the master VIP of the appropriate design block. Besides, considering the 

reusability of verification scenarios between both testbenches, the register access tasks using the uvm_reg class 

should be able to be reused without any modification. To address the reusability issue, we applied multiple 

uvm_reg_maps structure to the portable block testbench, considering that a single uvm_reg_block can have multiple 

uvm_reg_maps, and each address map can have a different associated sequencer. 

Fig. 4 (b) shows the multiple uvm_reg_maps structure described earlier. Each design block has its own 

uvm_reg_map, and uvm_reg_maps for all IPs inside the block are added as sub-maps. In the case of the sequencer in 

the master VIP, which is connected to the control bus interface, it is set to the associated sequencer for the 

corresponding design block. Therefore, when the register access tasks are executed in the verification scenarios, the 

appropriate VIP is automatically activated. This multiple uvm_reg_maps structure in the portable block testbench 

enables that register access tasks of uvm_reg class can be reused at the SOC testbench without any modification. 

Fig. 5 shows the example code for the single uvm_reg_map structure and the multiple uvm_reg_maps structure 

according to the SOC and portable block testbench. It also shows an example of the associated sequencer setting for 

each uvm_reg_map. 
 

class reg_blk_c extends uvm_reg_block; 

   rand reg_a_c reg_a;                 //uvm_reg_block declaration 

   rand reg_b_c reg_b; 

   rand reg_c_c reg_c; 

   … 

uvm_reg_map soc_reg_map;            //uvm_reg_map declaration and creation 

uvm_reg_map blk_a_reg_map; 

uvm_reg_map blk_b_reg_map; 

uvm_reg_map blk_c_reg_map; 

… 

 



reg_a = reg_a_c::type_id::create(“reg_a”); //uvm_reg_block creation and add_submap 

reg_b = reg_b_c::type_id::create(“reg_b”); 

reg_c = reg_c_c::type_id::create(“reg_c”); 

`ifdef SOCDV_PORTABLE_BLKSIM 

   `ifndef BLK_A_FAKE_MT 

      blk_a_reg_map.add_submap(this.reg_a.default_map,`REG_A_BASE_ADDR); 

   `endif 

`ifndef BLK_B_FAKE_MT 

      blk_b_reg_map.add_submap(this.reg_b.default_map,`REG_B_BASE_ADDR); 

   `endif 

`ifndef BLK_C_FAKE_MT 

      blk_c_reg_map.add_submap(this.reg_c.default_map,`REG_C_BASE_ADDR); 

   `endif 

`else 

soc_reg_map.add_submap(this.reg_a.default_map,`REG_A_BASE_ADDR); 

soc_reg_map.add_submap(this.reg_b.default_map,`REG_B_BASE_ADDR); 

soc_reg_map.add_submap(this.reg_c.default_map,`REG_C_BASE_ADDR); 

`endif 

endclass 

class tb_c extends uvm_env      // Associated sequencer setting for each uvm_reg_map 

`ifdef SOCDV_PORTABLE_BLKSIM 

      `ifndef BLK_A_FAKE_MT 

      reg_blk.blk_a_reg_map.set_sequencer(blk_a_m0_env.master.sequencer, blk_a_m0_reg_adp) 

      `endif 

`ifndef BLK_B_FAKE_MT 

      reg_blk.blk_b_reg_map.set_sequencer(blk_b_m0_env.master.sequencer, blk_b_m0_reg_adp) 

      `endif 

`ifndef BLK_C_FAKE_MT 

      reg_blk.blk_c_reg_map.set_sequencer(blk_c_m0_env.master.sequencer, blk_c_m0_reg_adp) 

      `endif 

   `else 

reg_blk.blk_c_reg_map.set_sequencer(host_cpu_m_env.master.sequencer, host_cpu_reg_adp) 

   `endif 

   … 

endclass 

 

Figure 5. Example code for single and multiple uvm_reg_maps structure 

 

C. Slave Memory Mirroring 

In the SOC design, data flow from each block to the main memory requires access to a bus network and memory 

controllers. In contrast, slave VIPs in the portable block testbench abstract the behavior of the bus network and 

memory controllers, so they act as sparse memories. However, multiple slave VIPs and sparse memories cause each 

block to have partial data only in their sparse memory space in case of the write transaction. To overcome this 

partial data sparsity, we configure the testbench to mirror the written data to the sparse memory of all slave VIPs. In 

this way, those data can be shared in all blocks. We call this slave memory mirroring. 

The slave memory mirroring is performed on all slave VIPs whenever the final event of a data transaction, such as 

a burst end of AXI, occurs for each slave VIP in all blocks. When a mirroring request(MirrorReq) event occurs, the 

data is stored as a backdoor in the sparse memory across all slave VIPs by referring to the transaction information 

from the slave VIP that has received the actual one. 

Slave memory mirroring occurs in the order in which the event occurred, and the real latency of the SOC bus 

network and the memory controller is not reflected. In addition, because the slave memory mirroring operates 

according to FCFS (First Come First Served) scheduling policy, it ensures that the same data is mirrored in the 

sparse memories of all slave VIPs based on the last event that occurred on the time axis. This means that the slave 

memory mirroring occurs in the order that the simulator accepts the MirrorReq event, even if the events occur 

simultaneously. 

Fig. 6 shows an example of the slave memory mirroring. As shown in Fig. 6 (a), it is assumed that the MirrorReq 

events occurred in the order of VIP S0, S4, S5, and S1. It is also assumed that the VIP S5 and S1 raise MirrorReq 

events at the same time.  

Also, if the address and data in the write transaction are issued as shown in Fig. 6 (b), the data by VIP S0 and S4 

will be stored in the order of the sparse memory of all slave VIPs. Although the MirrorReq events from VIP S5 and 

S1 occurred at the same time, the data are mirrored in the sparse memory of the slave VIP, as shown in Fig. 6 (c), in 

the order in which the simulator accepted the event. 

 



 

Figure 6. Example of slave memory mirroring 
 

D. Accessing Registers and Memories Using VIP Sequences 

In addition to the access tasks of uvm_reg or uvm_mem, there are other methods to access the registers or 

memories inside the design from a master VIP by using VIP sequences. Since VIP sequences are also frequently 

used to access registers and memories in verification scenarios, reusability between an SOC and a portable block 

testbench should be considered.  

In the original SOC testbench, a master VIP covers all accesses from a host CPU core to registers and memories 

in each block. Accessing registers and memories from the host CPU VIP is reached to the destination of each design 

block based on the address decoding information while passing through the bus network. 

In the portable block testbench, in contrast, multiple master VIPs are used since each block has its own master 

VIPs and those VIPs model the behavior of the host CPU core and the bus network. However, this portability causes 

the routing information that the host CPU core and bus networks decode to be lost. To address this routing 

information loss, we develop a VIP sequence wrapper, which decodes the base address, and activates an appropriate 

master VIP. This VIP sequence wrapper enables VIP sequences to be reused in both the SOC testbench and the 

portable block testbench. 

Fig. 7 (a) and Fig. 7 (b) show the example of the VIP sequence wrapper (rw_vseq) and its connections in the SOC 

and portable block testbench. In the SOC testbench, as shown in Fig. 7 (a), the VIP sequence in rw_vseq is 

connected directly to the sequencer in the host CPU VIP. So the host CPU VIP is always activated when rw_vseq is 

executed. In the portable block testbench, as shown in Fig. 7 (b), the VIP sequence is executed on the appropriate 

master VIP sequencer according to the input address of rw_vseq because the master VIPs in each block have their 

own address space. Below Fig. 8 shows the example code of rw_vseq as described earlier. 

 

 
                                                  (a)                                                                                                                 (b) 

Figure 7. VIP sequence wrapper in SOC/portable block testbench. 

 

 

 



class rw_vseq_c extends uvm_seq; //VIP sequence wrapper example code 

  logic [`ADDR_WIDTH-1 : 0] addr; 

… 

  vip_seq_c vip_seq; 

  … 

  virtual task body(); 

    … 

    `ifdef SOCDV_PORTABLE_BLKSIM 

      //each block VIP covers its own address space   

if (addr >= `M0_BASE_START && addr <= `M0_BASE_END) 

         `uvm_do_on_with(vip_seq, p_sequencer.m0_seqr, {vip_rw_seq.addr == addr;…}) 

if (addr >= `M1_BASE_START && addr <= `M1_BASE_END) 

         `uvm_do_on_with(vip_seq, p_sequencer.m1_seqr, {vip_rw_seq.addr == addr;…}) 

if (addr >= `M2_BASE_START && addr <= `M2_BASE_END) 

         `uvm_do_on_with(vip_seq, p_sequencer.m2_seqr, {vip_rw_seq.addr == addr;…}) 

if (addr >= `M3_BASE_START && addr <= `M3_BASE_END) 

         `uvm_do_on_with(vip_seq, p_sequencer.m3_seqr, {vip_rw_seq.addr == addr;…}) 

if (addr >= `M4_BASE_START && addr <= `M4_BASE_END) 

         `uvm_do_on_with(vip_seq, p_sequencer.m4_seqr, {vip_rw_seq.addr == addr;…}) 

if (addr >= `M5_BASE_START && addr <= `M5_BASE_END) 

         `uvm_do_on_with(vip_seq, p_sequencer.m5_seqr, {vip_rw_seq.addr == addr;…}) 

      … 

    `else 

      //host CPU VIP covers all address space   

`uvm_do_on_with(vip_seq, p_sequencer.m_seqr, {vip_rw_seq.addr == addr;…}) 

    `endif 

    … 

  endtask:body 

endclass:rw_vseq_c 
Figure 8. Example code for the VIP sequence wrapper 

E. Improved Verification Flow 

The verification flow is improved using these major testbench changes, as shown in Fig. 9. Two different 

verification flows are introduced: one using a portable block testbench and the other using an SOC level testbench. 

In the initial stage of a verification cycle, the majority of verification scenarios are developed by using a portable 

block testbench. Once those verification scenarios are prepared, they are reused in the SOC level testbench to 

complete the SOC level verification. 
 

IV.   AUTOMATED TESTBENCH GENERATION BASED ON IP-XACT 

Maintaining both testbenches, as mentioned above, requires extensive effort. However, through the metadata 

described through IP-XACT, maintenance effort can be dramatically reduced through an automated testbench that 

reflects design information. IP-XACT is an XML schema that defines and describes IPs and design blocks. Metadata 

of design over IP-XACT enables the implementation of various design automation and testbench/verification 

automation [7]. The effort presented in [8], [9], has provided SOC design information described in the IP-XACT. 

Those works are leveraged to generate our testbenches automatically. In addition, IP-XACT based design 

automation from IP packaging to SOC assemble provides robust design metadata and also enabled stable testbench 

automation. 

 
Figure 9. Improved verification flow chart 



The IP-XACT information on the SOC design includes 1) asynchronous bridges and their signals (bus interfaces) 

for each design block, 2) registers in each design block, and 3) clock and reset information. Using this IP-XACT 

information, we can automatically create verification components such as VIPs, uvm_reg_blocks, and 

uvm_reg_maps, and compose portable block-level testbenches. This IP-XACT based testbench automation 

eliminates maintenance issues in a single merged testbench. 

 

V.   EXPERIMENTAL RESULT 

The proposed portable block testbench architecture and automated testbench generation are applied to the design 

verification flow for our premium mobile SOC. Table 1 summarizes the comparison result for the simulation run 

time of three representative design blocks. We choose Cadence Xcelium 18.09 as a simulator, and server OS is Red 

Hat Enterprise Linux Server 7.3. 
TABLE I 

SIMULATION RUN TIME COMPARISON 

Block Type 
Number of 
Verification 

Scenarios 

Simulation Run Time  
With  

SOC Testbench (min) 

Simulation Run Time  
With 

Portable Block Testbench (min) 

Simulation    
Run Time 

Reduction 

Number 
Of 

Blocks 

Security 39 5,239 129 97.5% 1 

Storage 48 20,706 2,936 85.8% 1 

Display 22 10,991 3,748 65.9% 4 

  

In the security block, storage block, display blocks, 39, 48 and 22 verification scenarios, respectively, were 

developed using portable block testbenches. Comparing the simulation run times for all verification scenarios, we 

can see a 97.5% reduction of simulation time from 5,239 minutes to 129 minutes in the security block. The storage 

block shows an 85.8% reduction from 20,706 minutes to 2,936 minutes, and the display blocks show a 65.9% 

reduction from 10,991 to 3,748 minutes. 

One thing to note is that display blocks with portable block testbench show a little bit lower simulation run time 

reduction compare to the others. Because the portable block testbench for security or storage block consists of a 

single design block and, in contrast, the display block consists of four design blocks. 

Developed verification scenarios are 100% vertically reusable from the portable block testbenches to the SOC 

testbench. In generating testbenches, manually developing testbench might have taken at least three days for each 

block while our automatic testbench generation takes 30 minutes for the entire block. 

VI.   CONCLUSION 

In this research, the time to develop SOC level verification scenarios is dramatically reduced by using portable 

block testbenches and by automating a testbench generation based on IP-XACT. It is also shown that the major 

testbench structure changes improve the reusability of verification scenarios developed at block level to SOC level. 

The experimental results show that the simulation run time can be reduced by 65%~95%. This proposed approach 

has been widely used in our SOC level verification. 
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