
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Free block

Allocated block

Allocated block

Allocated block

Free block

Free block

Detoxify Your Schedule With A Low-Fat UVM Environment
A success story on using self-checking stimulus instead of a scoreboard to reduce development time.

Executive Summary

The True Cost of Portability

Let’s Talk About Self-Checking Stimulus! Stimulus Implementation Is Self-Checking Stimulus Right For Me?

Results

Contact information
Nihar Shah
Hardware Advanced Development
Oracle Labs

5300 Riata Park Court
Austin, TX 78727

Email:
nihar.shah@oracle.com

What is self-checking stimulus?

Why should I use self-checking stimulus?

Self-checking stimulus brings together all aspects of the life of a
DUT operation from transaction generation to checking of results
under one encapsulation. This paper proposes self-checking
stimulus using UVM sequences.

Using self-checking stimulus instead of a transaction-level
scoreboard reduces development time by avoiding the
complexities of maintaining and porting the scoreboard.

How does self-checking stimulus avoid incurring
the same maintenance costs?

A transaction-level scoreboard must predict all the possible ways to
get to the correct results. Self-checking stimulus only checks the final
result, and therefore avoids the churn from false fails due to multiple
correct ways to arrive at the final result.

If a bench isn't portable, and uses self checking
stimulus, as you propose, how do you deal with
system issues that may not be exposed because
there is no longer a reference model for that block
at the system level?

It is not necessary to port a transaction-level scoreboard to verify the
connectivity and integration of a verified block into a system. The bus
protocol checkers/monitors used in block verification are portable to
the system level when using self-checking stimulus, and already
address one of the biggest risks of block integration: compatibility of
the interfaces.

Will it take more effort to make each individual
system level test self-checking?

Checking of low-level
transactions is not
required to prove
correct operation.

There is
a clear

separation
between

results of
operations.

It is not
practical to
accurately
predict every
transaction
from the DUT.

If these characteristics apply to your DUT, then consider the
self-checking stimulus as your verification strategy!

YES!

Development

Maintenance

New and creative ways
to arrive at the correct
result may appear
whenever the RTL is
changed to fix bugs or fix
timing, or when intensive
random simulations are
run to close coverage.
These activities happen
late in the project when
schedule pressure is the
highest, and cause the
transaction-level
scoreboard to break if it
did not account for all
possible ways to get the
correct answer.

The true cost of making a unit environment portable to higher
levels of integration is often underestimated.
Portability requires a transaction-level scoreboard. Maintaining a
transaction-level scoreboard can consume considerable time in a
project schedule.

0
2
4
6
8

10
12
14
16

Planned Actual*

Maintanence
Development

The chart below compares the planned and actual weeks for
developing and maintaining the transaction-level scoreboard.
*Note that the maintenance of the scoreboard was not fully
complete when it was replaced with self-checking stimulus
after 14 weeks of effort.

0%
5%

10%
15%
20%
25%
30%

Transaction-Level
Scoreboard

Self-Checking Stimulus

Percentage Time Spent on Fixing
"Checkers"

After moving to self-checking stimulus, the time spent to
maintain the checking capability of the block environment
was reduced by about 80%. This time includes debugging
of failures due to the false firings of checkers.

•Identify the basic
operations and
implement using
UVM sequences.

•Build checking
capabilities in the
basic operation
sequences and
extend/reuse
upwards.

•Test cases are
UVM sequences
that mix simple
and/or complex
operations.

•The decision to port a block-level environment to the system
level is often made without considering the true cost and the
real benefits
•Maintaining the transaction-level scoreboard is one of the
biggest development costs when creating a portable block-
level environment
•Significant time can be saved in maintaining verification
infrastructure by using self-checking stimulus based on UVM
sequences instead of a transaction-level scoreboard
•Concerns about non-portability of the block-level checkers
to the system level can be addressed by focusing system-
level verification goals on connectivity and integration of the
verified parts
•Self-checking stimulus is implemented using UVM
sequences to maximize reuse within the block
•Risks associated with using self-checking stimulus can
usually be easily mitigated
•A DUT must meet certain criteria to benefit from self-
checking stimulus, and not all DUT’s are well-suited for this
•Considerable time was saved on our project by moving
away from a transaction-level scoreboard to self-checking
stimulus while still meeting our verification objectives

Mitigating Risks of Self-Checking Stimulus

No. At the system level, the checking needs to focus on connectivity
and integration, so are not as detailed as the block. Furthermore,
system level tests may be reused in post-silicon validation. In that
case, the reusable tests would have to be self-checking regardless.

Self-checking stimulus comes with inherent risks. Quite often
though, these risks can be easily mitigated. As with any
checking methodology, it is important to carefully consider the
risks and risk mitigation plan in the context of your DUT and
system before committing.

Example: Rogue transactions.

The Problem: Results are correct, but the DUT issued an extra
‘write’ transaction to an incorrect memory address , thereby
corrupting the memory contents outside the range of addresses
containing results. How can self-checking stimulus detect this?

The Solution: Stimulus should utilize a memory manager to
maintain a list of free/allocated address blocks and couple this
with a memory interface monitor to flag errors when the RTL
accesses a free space.

Writes from DUT
are allowed here
only

	Slide Number 1

