
Determining Test Quality through Dynamic Runtime

Monitoring of SystemVerilog Assertions

Kelly D. Larson

Nvidia Corp.

Austin, TX

klarson@nvidia.com

Abstract—At times it’s hard to know that a test is doing what

it’s supposed to do. As long as nothing ‘bad’ happens which

causes a design failure, a test which no longer achieves its

intended purpose can easily slip under the radar, consuming

valuable resources and providing a false, and sometimes

dangerous, sense of security. This paper describes how to use the

SystemVerilog assertion API in conjunction with a UVM

testbench to dynamically ‘instruct’ the testbench what the

intended behavior of a particular test is at runtime. By using this

technique, one is able to tell immediately if the test is ‘broken,’ as

it will now report a failure in much the same manner as when the

design is ‘broken.’ Using these techniques will help minimize

wasted simulation cycles caused by running broken tests, and

help mitigate risks by eliminating unwanted coverage holes.

Keywords—verification; assertions; SVA; UVM; ABV;

SystemVerilog; coverage

I. INTRODUCTION

The SystemVerilog Assertion language (SVA) has proven
to be an effective tool to verify correct design behavior. The
SVA syntax features a very concise way to describe expected
behavior at a low level. SystemVerilog assertions will cause an
immediate failure if the design violates the specified behavior,
and they can be efficient to debug because the reported failure
is typically very close to the error.

This paper describes an entirely different way to use these
same SVA assertions during simulation. While the more
typical use of SystemVerilog assertions is often targeted
towards DESIGN QUALITY, this paper describes how to
effectively use assertions to target individual TEST
QUALITY.

Test quality is an important concept in the verification of
modern SoC (System-On-a-Chip) designs, as it helps insure
that limited verification resources are being directed towards
high-value activities. Besides wasting simulation cycles, tests
which fail to completely test what they are supposed to might
also introduce unwanted coverage holes, and increase the
likelihood of bugs making it to silicon. While many tests are
written to be self-checking in terms of detecting when a design
failure occurs, many times these tests are not written to be self-
checking in terms of whether or not they successfully create
the condition that they are trying to test. Tests which work well
initially may, during the course of the project, no longer reach
the condition that they were trying to test by the end of the
project, or when ported to the next project. Because of the

complexity of many designs, the sheer number of tests
involved, and because each individual test might target
completely different features, efficiently determining whether
or not each test is performing correctly can be a difficult task to
accomplish.

Luckily, the SystemVerilog language itself provides
facilities which allow us to dynamically monitor test behavior
by providing an assertion API [1]. When used properly, this
API can allow us to employ the powerful SVA language to
help track the behavior of individual tests. In many cases the
same SystemVerilog assertions which were written for
measuring design quality can also be used to measure test
quality, but it's important to realize that the fundamental goal is
quite different.

This paper will describe how to write such an assertion
monitor, and tie it into a UVM verification environment. An
example implementation will be detailed, along with selected
code examples.

II. TARGETTING TEST QUALITY

The key to using assertions to target test quality is to
enhance the runtime testbench environment by providing the
ability to tie the pass/fail condition of an individual test to
whether or not one or more specific assertions were actually
checked, or perhaps whether one or more specific coverpoints
were hit during the course of the test. This in itself actually has
nothing to do with the correct behavior of the design itself. If a
design assertion fails, we are still expecting that the simulation
will also fail. What we are interested in here, however, is
whether or not the specific assertion itself was ever actively
checked during the test. This is similar to analyzing assertion
coverage reports, except the focus is on an individual test, and
done while the simulation is running. This helps answer the
important question of ‘Is this test actually doing what I want it
to do?’

 This can be helpful for situations such as:

 My test was supposed to hit a specific coverage point or
fail. Did it?

 I know my test was supposed to make condition 'X'
happen exactly five times or fail. Did it?

 Because of the way that I wrote my test, I should never
see 'Y' happen, and if it does I want the test to fail even
though ‘Y’ itself is not illegal. Will it?

By doing this dynamically during runtime, we are able to
immediately flag an error during a simulation, and fail the
simulation through ordinary means, such as the standard UVM
(Universal Verification Methodology) testbench failure
mechanism [2]. UVM also provides facilities for parsing
command line options for dynamic configuration of the
assertion monitoring routines, as demonstrated later in this
paper.

In addition to being useful for specifying the runtime
characteristics of directed-style tests, this technique can also be
used to provide dynamic feedback to constrained random
sequences during the simulation to indicate completion of a
goal, or to guide the generation of new stimulus.

III. EXAMPLE USE CASE

To help illustrate how one would use runtime assertion
monitoring, let’s look at a simple example. For this example,
let’s assume we are testing an arbiter block as shown in Figure
1. This arbiter has three request inputs for high, medium and
low priorities, and three corresponding grant outputs.

To help verify this block, the verification engineer might
also write some assertions to describe the desired behavior, as
shown in Figure 2. (Please note that even for this very simple
example, this set of assertions alone is not sufficient to
completely describe the desired behavior.)

check_hi: assert property(@(posedge clk) disable iff (reset)

 req_hi |=> gnt_hi);

check_med: assert property(@(posedge clk) disable iff (reset)

 (req_med & !req_hi) |=> gnt_med);

check_low: assert property(@(posedge clk) disable iff (reset)

 (req_low & !req_med & !req_hi) |=> gnt_low);

Figure 2 – Example SVA syntax

These assertions are helpful in that they will fail if illegal
activity is observed, but they are not very helpful in
determining whether or not the arbiter was tested correctly. If
you had written a test that was supposed to generate
simultaneous requests on all of the request lines, these
assertions will not help you determine if that case was actually
tested. To insure proper testing in this example, you might
need to write a cover point, such as shown in Figure 3.

check_arb: cover property(@(posedge clk) disable iff (reset)

 (req_hi & req_med & req_low));

Figure 3 – Example cover point syntax

With this cover property, you will now be able to see in a

coverage report if this case was ever hit. This is helpful, but
many times coverage is generated over an entire regression
suite. While this will at least tell you that you did indeed hit the
desired test condition, it may not be immediately apparent if
the individual test you wrote to hit the condition was successful
in hitting it or not. If the test has been broken for some reason,
you might be wasting simulation cycles running a useless test
without realizing it. This test itself might also be combining
this coverage point with some other unique conditions, and in
reality you now have a coverage hole that could go unnoticed.

What would be nice would be if every time we ran the test,
we could add something like a simple plusarg to the simulation
command line which would tell the simulation environment to
fail the test if the required cover point was not hit. This
capability would then immediately flag a test as ‘broken’ if for
some reason it quit functioning correctly. This plusarg might
look something like Figure 4.

+RequireAssert=check_arb

Figure 4 – Proposed syntax for requiring an assert/cover

This runtime monitoring capability could also be extended

well beyond the capabilities of a coverage report. What if you
wrote a test which, because of the way you wrote it, you know
you should never get a high priority request. This same runtime
monitoring capability could then be used to indicate which
cover points should not be hit during simulation, as seen in
Figure 5.

+ProhibitAssert=check_hi

Figure 5 – Proposed syntax for prohibiting an assert/cover

In this case the test would fail if the assertion ‘check_hi’

passed. Of course ‘check_hi’ passing is not illegal from the
RTL design point of view, we have simply made it illegal from
the point of view of this particular test.

IV. HOW IS THIS DONE?

Now that we’ve explored some of the rationale behind
monitoring assertions, the rest of this paper will describe how a
runtime assertion monitor can be written. In order to
accomplish all of this, the technique described in the paper
makes use of both the SystemVerilog Assertion API, along
with a UVM testbench framework.

Figure 1 – Example Arbiter Block Diagram

The SystemVerilog language specification includes an
Assertion API which provides a rich set of routines and access
functions that allow us to dynamically interact with the
assertions and coverpoints within the RTL at runtime. We will
make use of two key features of this API:

1. The ability to iterate through a design to find specific
assertions.

2. The ability to attach our own callback (subroutine) to
an assertion which will get called whenever the
assertion (or cover point) passes successfully.

V. ASSERTION MONITOR

To create the assertion monitor we’ll need two basic pieces.
One piece is coded in SystemVerilog as part of the UVM
testbench, and the other piece is a collection of C routines
which will track the assertion activity during the simulation
through the SystemVerilog assertion API.

A. UVM Portion of Assertion Monitor

The UVM portion of the assertion monitor consists of a
class object, which is written in SystemVerilog and extended
from a UVM component object. In UVM, all components are
aware of the ‘phase’ of the test being run, or in other words
they are aware of when the test is initializing, when the test is
progressing, and when the test has finished. This is important
to us, as our assertion monitor has various activities which it
needs to perform before, during, and after the test. The primary
responsibilities of this UVM class are:

 Before the main test phase begins, parse any command
line directives which specify specific behavior for the
simulation run, and call the appropriate assertion
monitor DPI routines to instrument the required
behavior.

 At the end of the test, do any final checks which are
required to see that observed assertion and cover point
behavior was within the specified parameters.

 Provide several utility functions that will allow the
assertion monitor DPI routines to register warnings and
errors through the UVM logging facilities.

B. C DPI Portion of Assertion Monitor

The DPI portion of the assertion monitor is a set of routines
written in C. The reason these routines are written in C is that it
allows access to key information about the simulation at
runtime through programming API’s, which are part of the
SystemVerilog standard. The primary responsibilities of this
set of C routines are:

 Provide a data structure to store runtime information
about the assertions and cover points that we have
chosen to monitor.

 Provide the mechanism to attach a callback routine to
any assertion or cover point that we have chosen to
monitor.

 Provide the callback routine which will be run every
time a monitored assertion or cover point successfully
passes. This routine will track assertion behavior, and
generate a UVM error if the assertion behavior is
outside of the limits that we have specified for the test.

 Provide an ‘end of test’ routine which will do a final
check of the behavior of all monitored assertions and
cover points, and generate a UVM error if any assertion
behavior is outside of specified limits.

C. Plusarg Interface of Assertion Monitor

To utilize the assertion monitor, we need to be able to
associate specific runtime behavior to a specific test. One way
to do this is through the use of ‘plusargs’ on the simulation
commandline. The advantage of this approach is that the set of
assertions which are being monitored, and their parameters, are
completely dynamic, and do not require recompilation of the
simulation when the desired behavior changes. This can be
extremely useful in testbenches such as those which contain an
embedded processor, and whose tests consist of compiled code
which is loaded into memory at the beginning of the
simulation. In this type of environment, many different tests
can be developed and run without recompilation of the model.
For each test which is run, a different set of plusargs can be
used to describe the required behavior of assertions and cover
points in order for the test to pass.

This paper will describe one possible approach to defining
a set of ‘plusargs’ to accomplish our goals, though the exact
syntax used here is arbitrary. For the assertion monitor
described in this paper, we will use two different plusargs,
+RequireAssert and +ProhibitAssert. These plusargs are used
to indicate which assertions to monitor, along with additional
arguments to further specify desired boundaries and ranges.

Type #

Args

Example & Description When

Checked

R
eq

u
ir

e

0 +RequireAssert=myassert.

Assertion must fire at least once

during the test.

End of test

1 +RequireAssert=myassert:x,

Assertion must fire at least ‘x’

times during the test.

End of test

2 +RequireAssert=myassert:x:y,

Assertion must fire in the range

greater than or equal to ‘x’, and

less than or equal to ‘y’ times.

During (too

many), End

(too few)

P
ro

h
ib

it

0 +ProhibitAssert=myassert,

Assertion must never fire during

the simulation.

During Test

1 +ProhibitAssert=myassert:x,

Assertion must not fire ‘x’ or

more times (less is OK).

During Test

2 +ProhibitAssert=myassert:x:y,

Assertions cannot fire in the range

of [x:y] inclusive (less or more is

OK).

End of test

Figure 6 – Assertion monitor plusarg interface

Figure 6 summarizes the plusarg usage with the assertion
monitor, along with the meanings of the various arguments.
Where possible, the specified assertion behavior will be
checked during the simulation with failing conditions reported
immediately. Some checks, however, must be held until the
end of the simulation to determine whether or not they are
within the established bounds, as indicated in the table.

Other points to note:

 The assertion specification (shown in the table as
myassert) does not need to be a full hierarchical path to
the assertion, and for robustness should only contain
enough of the path to insure its uniqueness. The
assertion monitor is able to detect and warn if the
assertion specification is not unique.

 Multiple plusargs can be used, and multiple comma-
delimited assertions can be specified with a single
plusarg.

D. Procedural Interface of Assertion Monitor

In addition to the plusarg interface, the assertion monitor
should provide the same functionality through a procedural
interface as well. This type of interface is not as flexible, as it
is determined at compile time rather than runtime, but it allows
access to assertion monitoring by things such as constrained
random tests and sequences. (See Figure 16 for an example.)

VI. UVM/VERIFICATION MONITOR TEST FLOW

Figure 7 shows a high-level overview of the interaction of
the both the SystemVerilog and C DPI portions of the assertion

monitor with the RTL design during the different phases of the
simulation.

At the beginning of the simulation, before time starts to
advance and the actual test begins, the SV testbench parses the
commandline plusargs to see what the expected behavior is for
any assertions or coverpoints which the verification engineer
would like to monitor during the test. If there are any requests
to monitor, the appropriate C DPI routine is called to attach a
callback to the assertion or coverpoint.

Once the test begins, every time the assertion passes non-
vacuously, or every time the coverpoint condition is reached,
this callback is executed, and the C DPI portion of the assertion
monitor will update its tracking information. If the behavior is
outside of the required range, the SV testbench is called to
produce a UVM simulation error at the time of failure.

At the end of the test, the SV testbench will call one final
end-of-test routine in the C DPI portion of the assertion
monitor to check for any remaining errors.

VII. DETAILED CODE DESCRIPTION

This section will examine the assertion monitor source code
in more detail. A complete code listing is not included here for
the sake of brevity, however the most crucial sections will be
discussed. First the SystemVerilog portion will be examined,
followed by the C DPI portion.

A. UVM Testbench Object Code

The UVM portion of the assertion monitor is a UVM
component with two primary functions, handling plusargs, and
cleaning up at the end. First, at the beginning of the test it will
parse any applicable plusargs. Figure 8 shows the assertion
monitor calling the plusarg parsing routines during the
end_of_elaboration phase, though any phase occurring before
the run phase, where the test actually starts, would work fine.

Figure 7 – High-level verification monitor test flow

// Called automatically during the end_of_elaboration

// phase. Parses any runtime requests for assertion monitoring

// via the plusargs.

function void assert_mon::end_of_elaboration_phase(uvm_phase phase);

 // Parse plusargs for runtime assertion monitoring requests
 // and parameters

 parse_assertion_arg("+ProhibitAssert=", PROHIBIT);

 parse_assertion_arg("+RequireAssert=", REQUIRED);

endfunction: end_of_elaboration_phase

Figure 8 – UVM end of elaboration phase routine

Figure 9 shows the routine to parse the plusargs and extract

the assertion name and optional arguments. Here we make use
of the UVM commandline processor to help us out. Once it has
extracted the information for each assertion, it makes a call to
‘register_assert’. This is of our DPI functions, described later,
which will do the actual work of attaching a callback to the
specified assertion.

// Routine to parse plusargs and extract assertion name and
// arguments.

// * Multiple plusargs of the same type can be used.

// * Multiple assertions can be used with the same plusarg by
// using a ',' delimiter.

// * It is legal to have zero, one or two numerical parameters

// with each assertion.
// * Numerical parameters are delimited by a ':' character.

function void assert_mon::parse_assertion_arg(string arg_string,

 ast_type_e ast_type);
 int num_values;

 int assert_param1;

 int assert_param2;
 string arg_values[$];

 string multi_values[$];

 string param_values[$];

 num_values =

 uvm_cmdline_proc.get_arg_values(arg_string,arg_values);
 foreach(arg_values[i]) begin

 // Separate multiple comma delimited assertions

 uvm_split_string(arg_values[i],",",multi_values);
 foreach(multi_values[j]) begin

 // Now separate out any colon delimited assertion parameters

 uvm_split_string(multi_values[j],":",param_values);
 if (param_values.size() > 3) begin

 // Can't have more than two numerical parameters

 `uvm_warning("ASSERT/BADPARM",
 $psprintf("Bad assertion plusarg: '%s'",

 multi_values[j]));

 end
 else begin

 // Set parameters (Default -1), then register assertion

 assert_param2 = (param_values.size() == 3)?
 param_values[2].atoi():-1;

 assert_param1 = (param_values.size() >= 2)?

 param_values[1].atoi():-1;
 register_assert(param_values[0],assert_param1,

 assert_param2,ast_type);

 end
 end

 end

endfunction: parse_assertion_arg

Figure 9 – UVM plusarg parsing

The same register_assert() function which is being called
here can also be called directly from a UVM test or sequence
as a procedural way to monitor assertions, without going
through the plusarg interface. An example of this is shown later
in this paper.

// Runs automatically during the report phase. Does the end of

// test checking for specified trigger limits, generating errors

// if any check fails.
function void assert_mon::report_phase(uvm_phase phase);

 super.report_phase(phase);

 assert_end_of_test();

endfunction: report_phase

Figure 10 – UVM Report phase routine

Finally, at the end of the test we call another DPI routine,

assert_end_of_test() (Figure 10), which does a final check of
the collected assertion statistics, reporting any errors as
appropriate.

B. C DPI Code

The DPI portion of the assertion monitor is where the bulk
of the real work is done. Here we have the responsibility to
generate and maintain a data structure that contains
information about the activity of all assertions that we are
actively tracking.

While the specific data structure used could be
implemented in a variety of ways, for the assertion monitor
described here we will use a simple linked list of struct
variables, as shown in Figure 11.

// Structure to store assertion monitoring information

struct mon_assert_s {

 char* name; // Full pathname of assertion

 int handle; // Unique assertion handle

 int required; // Monitor Type: Req=1, Prohib=0

 int monarg1; // Monitor limit argument 1

 int monarg2; // Monitor limit argument 2

 int trigger_cnt; // How many times assertion fired

 struct mon_assert_s* next; // Pointer to next assertion

};

typedef struct mon_assert_s mon_assert;

Figure 11 – C DPI assertion tracking struct

One of these structures will be created for each assertion

that we are actively monitoring. Figure 12 shows the code for
the register_assert() routine, which is the routine called by the
testbench when an assertion is to be monitored.

// register_assert()

// Will attempt to find an assertion at the given path, create an

// assertion monitor for it, and register it with a callback.

int register_assert(char* assert_path, int assert_parm1,

 int assert_parm2, int required) {

 vpiHandle matched;
 int matches;

 int succeeded = 0;

 mon_assert* new_assert;

 // Scan through existing assertions to find a unique name match
 matches = scan_for_matching_assertion(assert_path, &matched);

 // Did we get a unique match?
 if (matches == 1) {

 // Found the requested assertion, register the structure with an

 // assertion 'success' type callback. Every time this assertion
 // 'fires', the callback is called with the assertion monitor

 // structure pointer passed to it as 'user data'

 new_assert =
 init_new_mon_assert(vpi_get_str(vpiFullName,matched),

 assert_parm1, assert_parm2, required);

 add_assert_cb(matched,cbAssertionSuccess,new_assert);
 succeeded = new_assert->handle;

 }

 return(succeeded);

}

// add_assert_cb()

// Does VPI call to register a callback with an assertion
int add_assert_cb(vpiHandle cb_assert, int cb_type, mon_assert* assmon)

{

 if (vpi_register_assertion_cb(cb_assert, cb_type, assertCBRtn,
 (PLI_BYTE8*) assmon) == NULL) {

 vpi_printf("Failed to add %d on %s\n",

 cb_type, vpi_get_str(vpiFullName, cb_assert));
 }

}

Figure 12 – C DPI assertion registration

In this routine the design is first scanned for the assertion

which we want to monitor. If the assertion is found,
init_new_mon_assert() is called. This routine, not shown here,
simply creates and initializes a new mon_assert_s struct object.

The most important part of our assertion monitor then
follows, adding a callback routine through the
vpi_register_assertion_cb() function. This not only allows us to
add a callback routine to the assertion which gets called every
single time the assertion successfully passes, but it also allows
us to attach a pointer to the struct object that we’ve just
created. This is extremely useful, since this pointer is passed
back to the callback itself, so when the callback gets called we
already have the pointer to the corresponding data structure
where we are keeping our tracking information. This saves us
from having to search the data structure ourselves every time
the callback gets called.

// scan_for_matching_assertion()

// Will attempt to find an assertion at the given path. Will cause

// an error if nothing matches, or if more than one assertion matches.

int scan_for_matching_assertion(char* assert_path,

 vpiHandle* vhandle) {

 vpiHandle a,b;
 int matches = 0;

 // Iterate through all design assertions & cover points
 a = vpi_iterate(vpiAssertion, NULL);

 while (b = vpi_scan(a)) {

 if (name_match(vpi_get_str(vpiFullName,b),assert_path)) {
 matches++;

 *vhandle = b;

 }
 }

 if (matches > 1) {
 // Found more than one match

 sprintf(nae_buffer,"More than one assertion matches '%s', you must

specify more of the pathname.", assert_path);

 display_error(nae_buffer);

 } else if (matches == 0) {

 // Didn't find any matches
 sprintf(nae_buffer,"No match for specified assertion: %s",

 assert_path);
 display_error(nae_buffer);

 }

 return(matches);
}

Figure 13 – C DPI assertion search routine

Figure 13 shows the code for our

scan_for_matching_assertion() routine that register_assert()
uses to see if we can find an assertion with the specified name.
This routine makes use of iterators which are part of the
SystemVerilog API, and which make it relatively easy to
search through all of the assertions and cover points which are
contained within the design.

This routine also checks to see if there are multiple name
matches for the specified assertions, which usually means that
more of the hierarchical path needs to be specified to uniquely
identify which assertion you are trying to monitor.

The display_error() function implementation is not shown,
but it simply calls a DPI routine in our UVM testbench which
uses the standard UVM reporting mechanism to register an
error with the provided description string.

The callback routine that we register on monitored
assertions, assertCBRtn(), is also interesting to look at (see
Figure 14).

// assertCBRtn()

// Callback routine which is registered with all monitored

// assertions. This routine will automatically be called whenever the

// requested event is observed (i.e. cbAssertionSuccess). When this

// routine is called, it will have a pointer to the specific assertion

// monitor struct object in the user_data field.
// Checks are made during this routine to insure that trigger

// behavior falls within the specified ranges for this test. Other

// checks are done at the end of the test within the
// assert_end_of_test() routine.

static PLI_INT32 assertCBRtn(PLI_INT32 reason,

 p_vpi_time ct,
 vpiHandle assert,

 p_vpi_attempt_info info,

 PLI_BYTE8* user_data
) {

 int i;

 mon_assert* assmon = (mon_assert*) user_data;

 if (reason != cbAssertionSuccess) display_error("Invalid CB Reason");

 assmon->trigger_cnt++;

 // RequireAssert Handling
 if (assmon->required) {

 // If both parms are set, we have a specific limit
 if ((assmon->monarg1 != -1) &&

 (assmon->monarg2 != -1) &&

 (assmon->trigger_cnt > assmon->monarg2)) {
 sprintf(nae_buffer,

 "Required Assert \'%s\' fired %0d times, exceeds [%0d:%0d]",

 assmon->name,assmon->trigger_cnt,
 assmon->monarg1,assmon->monarg2);

 display_error(nae_buffer);

 }
 // ProhibitAssert Handling

 } else {

 if (assmon->monarg1 == -1) {
 sprintf(nae_buffer,"Prohibited Assert \'%s\' fired %0d times",

 assmon->name,assmon->trigger_cnt);

 display_error(nae_buffer);
 } else if ((assmon->monarg2 == -1) &&

 (assmon->trigger_cnt >= assmon->monarg1)) {

 sprintf(nae_buffer,
 "Prohibited Assert \'%s\' fired %0d times, exceeds %0d",

 assmon->name,assmon->trigger_cnt,assmon->monarg1);

 display_error(nae_buffer);
 }

 }

 return 0;
}

Figure 14 – C DPI assertion callback routine

This routine will be called every time the assertion or cover

point that it is attached to successfully passes. The pointer to
the corresponding mon_assert object is passed in through the
user_data parameter, so we are saved the trouble of having to
search the linked list for the correct entry ourselves.

The callback routine now updates its information, and
generates any runtime errors if any parameters are seen to be
outside of the specified behavior.

The last piece of the assertion monitor is the final checking
routine called at the end of the test (Figure 15).

// assert_end_of_test()

// Should be called by the Assert SV object at the end of a test. At

// this time the list of all assertion monitors is scanned, and checks

// are made to insure that the assertion triggers fell within the

// specified limits for the test. Anything that that does not will

// cause an error at the end of the test.
// Other checks are done while the test is progressing within the

// assertCBRtn() callback routine.

int assert_end_of_test() {
 mon_assert* cur_assert = assert_head;

 while (cur_assert) {
 // RequireAssert Handling

 if (cur_assert->required) {

 if ((cur_assert->monarg1 == -1) &&
 (!cur_assert->trigger_cnt)) {

 sprintf(nae_buffer,"Required Assert \'%s\' did not fire",

 cur_assert->name);
 display_error(nae_buffer);

 } else if ((cur_assert->monarg1 != -1) &&

 (cur_assert->monarg2 == -1) &&

 (cur_assert->trigger_cnt < cur_assert->monarg1)) {

 sprintf(nae_buffer,

 "Required Assert \'%s\' only fired %0d times, it did not meet
specified limit of %0d",

 cur_assert->name,cur_assert->trigger_cnt,
 cur_assert->monarg1);

 display_error(nae_buffer);

 } else if ((cur_assert->monarg1 != -1) &&
 (cur_assert->monarg2 != -1) &&

 (cur_assert->trigger_cnt < cur_assert->monarg1)) {

 sprintf(nae_buffer,
 "Required Assert \'%s\' only fired %0d times, it did not meet

specified range of [%0d:%0d]",

 cur_assert->name,cur_assert->trigger_cnt,
 cur_assert->monarg1,cur_assert->monarg2);

 display_error(nae_buffer);

 }

 // ProhibitAssert Handling

 } else {
 if ((cur_assert->monarg1 != -1) &&

 (cur_assert->monarg2 != -1) &&

 (cur_assert->trigger_cnt >= cur_assert->monarg1) &&
 (cur_assert->trigger_cnt <= cur_assert->monarg2)) {

 sprintf(nae_buffer,

 "Prohibited Assert \'%s\' only fired %0d times, within prohibited
range of [%0d:%0d]",

 cur_assert->name,cur_assert->trigger_cnt,

 cur_assert->monarg1,cur_assert->monarg2);
 display_error(nae_buffer);

 }

 }
 cur_assert = cur_assert->next;

 }

}

Figure 15 – C DPI end of test routine

In this routine we scan through all of the collected assertion

behavior, and check that everything is within the designated
boundaries.

VIII. ASSERTION MONITORING WITH RANDOM STIMULUS

In addition to providing value to more directed style
testing, the type of active assertion monitoring described in this
paper can also be used to provide dynamic feedback to help
guide constrained random approaches as well. Figure 16
shows an simple example of this type of use.

// Sequence will attach a monitor to design overflow detection

// cover point, then randomize continuous transactions until the
// overflow condition is hit three times.

class bus_seq extends uvm_sequence #(bus_txn);

 bus_txn tr;
 int ahandle;

 int successes;

 `uvm_object_utils(bus_seq);

 virtual task body();

 // Instrument cover point for tracking

 ahandle = register_assert("upper.overflow_detect",-1,-1,1);

 // Keep looping until cover point has been triggered 3 times

 while (successes < 3) begin
 `uvm_do(tr);

 successes = num_assert_successes(ahandle);

 end

 endtask: body

endclass: bus_seq

Figure 16 – Using assertion monitoring with a UVM sequence

Here from within a UVM sequence body, we are

registering an assertion (or cover point) to be actively
monitored by our assertion monitor. We then continuously
generate a random transaction stream until the assertion is hit at
least three times, at which time we exit the sequence.
num_assert_successes() is a DPI routine (not shown) which
simply searches our assertion monitor data structure for the
matching handle and returns the number of times that assertion
has fired.

While this is a fairly simple example, this approach could
be extended to include much more complicated feedback that
could guide the stimulus in interesting ways.

IX. SPECIFIC TOOL CAVEATS

All of the code shown in this paper is based upon the IEEE
SystemVerilog standard, and has been tested to work on three
major simulators, with the following caveats:

A. Synopsys

An issue existed in the VCS tool from Synopsys prior to
version 2012.09-SP1-1 which prevented accurate monitoring
of assertion passes using the Assertion API. Newer versions
have addressed this issue, however the “-assert
cbSuccessOnlyNonVacuous” flag must be used at runtime. At
the time of this writing, Synopsys’ plan is to make this
behavior default in the 2014.03 release, after which the flag
would no longer be required.

B. Cadence

On the Cadence Incisive simulator you need to use the “-
abvrecordcoverall” option to insure accurate monitoring
results. If this switch is not used, callbacks are only triggered a
single time for each assertion during the simulation for all
passing conditions as a way of optimization.

C. Mentor

There are no known issues or additional options required
for the Mentor simulator.

X. SUMMARY

With today’s increasingly complex designs and ever
tightening design schedules, it’s more important than ever to
make sure that every simulation cycle is well spent. Being able
to dynamically monitor test quality by insuring that each test
continues to function properly throughout the course of the
project is a good way to help prevent wasted cycles and
unwanted coverage holes by running broken tests.

The SystemVerilog language has built-in facilities that
allow us to dynamically track which assertions and coverpoints
have been hit during the course of a specific test. Using the
techniques outlined in this paper can go a long ways towards
helping to insure the quality of each test, maximize simulation
resources, and achieve the desired coverage goals throughout
the course of a project.

REFERENCES

[1] “1800-2012 IEEE Standard for SystemVerilog: Unified Hardware
Design, Specification, and Verification Language,” IEEE, New York,
NY, 2013, Chapter 39.

[2] “Universal Verification Methodology (UVM) 1.1 User’s Guide”,
Accellera, 2011

