
Determining Test Quality through Dynamic Runtime
Monitoring of SystemVerilog Assertions

Kelly D. Larson
klarson@nvidia.com

Is this you?

It’s only 2 weeks ‘til
tapeout.

We have over 10,000 tests
in our regression…

I wonder if they all
work?…

How do you know your tests are
doing what they should?

• A complex SoC can have well over 10,000
tests.

• Making tests completely self-checking can be
difficult.

A test which ‘passes’ may simply mean
that nothing “BAD” happened... And

not necessarily that anything “GOOD”
happened.

The cost of bad tests

• A ‘broken’ test steals valuable simulation
cycles.

• A ‘broken’ test is not testing what it should,
and introduces a coverage hole.

• Your coverage report may not be sufficient to
expose these gaps.

Solution

• We need a way to tie the pass/fail condition of
an individual test to the specific conditions or
goals of the test.

• This needs to be a scalable solution.
• This needs to work with both constrained

random tests, as well as processor-centric
style directed testing.

Assertion Monitor!

Specific Test Requirements

• My test was supposed to hit a specific
coverage point or fail. Did it?

• I know my test was supposed to make
condition 'X' happen exactly five times or fail.
Did it?

• Because of the way that I wrote my test, I
should never see 'Y' happen, and if it does I
want the test to fail even though ‘Y’ itself is
not illegal. Will it?

Assertion Monitor

• Most standard use of SystemVerilog assertions
is to target DESIGN QUALITY.

• Our Assertion Monitor solution will target
TEST QUALITY.

Design Quality Test Quality

What about Assertion Coverage?

• Using dynamic assertion monitor is similar to
analyzing assertion coverage reports, except:
– Focus is on individual tests, not overall results.
– Done while simulation is running.
– Can fail test immediately upon detecting a

problem with the test.
– More flexible, can fail for condition hit or not hit,

or hit within defined ranges.

Example Use Case: Arbiter
req_hi

gnt_hi

req_med

gnt_med

req_low

gnt_low

check_hi: assert property(@(posedge clk) disable iff (reset)
req_hi |=> gnt_hi);

check_med: assert property(@(posedge clk) disable iff (reset)
(req_med & !req_hi) |=> gnt_med);

check_low: assert property(@(posedge clk) disable iff (reset)
(req_low & !req_med & !req_hi) |=> gnt_low);

Arbiter
Block

Make it interesting…

• The assertions in this example will catch illegal
activity, but they won’t actually insure that
any ‘arbitration’ actually occurred.

• In this case, we’ll need add another cover
point to observe an interesting condition.

check_arb: cover property(@(posedge clk) disable iff (reset)
(req_hi & req_med & req_low));

Plusarg directives

• What we’d like now is to be able to run the
simulation with an additional argument which
requires our interesting condition to occur in
order for the test to pass.

<sim command> +RequireAssert=check_arb

<sim command> +ProhibitAssert=check_hi

• How about a test where I know a particular
condition should not occur?

Assertion Monitor Plusargs

Type #
Arg

Example & Description When
Checked

Re
qu

ire

0 +RequireAssert=myassert. Assertion must fire at least
once during the test.

End of test

1 +RequireAssert=myassert:x, Assertion must fire at
least ‘x’ times during the test.

End of test

2 +RequireAssert=myassert:x:y, Assertion must fire in
the range greater than or equal to ‘x’, and less than or
equal to ‘y’ times.

During (too
many), End
(too few)

Pr
oh

ib
it

0 +ProhibitAssert=myassert, Assertion must never fire
during the simulation.

During Test

1 +ProhibitAssert=myassert:x, Assertion must not fire
‘x’ or more times (less is OK).

During Test

2 +ProhibitAssert=myassert:x:y, Assertions cannot fire
in the range of [x:y] inclusive (less or more is OK).

End of test

Assertion Monitor Components

• Assertion Monitor has three main
components

RTL
(SVA)

UVM
(SystemVerilog)

DPI
(C)

RTL Component

• RTL is instrumented with SVA assertions and
coverpoints.
– Ideally we can make use of existing assertions

written for design quality.

• Assertion monitor treats assertions and
coverpoints as the same.
– From test quality perspective we don’t really ‘care’

if the assertions passes or fails, only that the
condition was tested.

UVM Component

• Before the test begins, parse command line
directives and call DPI routine to instrument
assertion tracking.

• At the end of the test, do final check for
proper behavior.

• Provide utility functions that will allow the
assertion monitor DPI routines to report UVM
errors and warnings.

C DPI Component

• Provide a data structure to store runtime
information about monitored assertions.

• Provide the mechanism to attach a callback
routine to monitored assertions.

• Provide the callback routine which will be run
every time a monitored assertion or cover
point successfully passes.

• Provide an ‘end of test’ routine which will do a
final check.

SystemVerilog Assertion API

Our assertion monitor makes use of two key
features of the Assertion API:
1) The ability to iterate through a design to find

specific assertions.
2) The ability to attach our own callback

(subroutine) to an assertion which will get
called whenever the assertion (or cover
point) passes successfully.

Iterating through RTL Assertions

• Assertion API allows us to easily iterate
through handles of all of the assertions and
coverpoints in the design.

• Handle gives us access to the hierarchical
path, and allows us to attach a callback.

itr = vpi_iterate(vpiAssertion, NULL);
while (assertion = vpi_scan(itr)) {

/* process assertion */
}

Registering a Callback

vpiHandle vpi_register_assertion_cb(
vpiHandle assertion, /* handle to assertion */
PLI_INT32 reason, /* reason for which callbacks needed */
vpi_assertion_callback_func *cb_rtn,
PLI_BYTE8 *user_data /* user data to be supplied to cb */

);

typedef PLI_INT32 (vpi_assertion_callback_func)(
PLI_INT32 reason, /* callback reason */
p_vpi_time cb_time, /* callback time */
vpiHandle assertion, /* handle to assertion */
p_vpi_attempt_info info, /* attempt related information */
PLI_BYTE8 *user_data /* registered user data */

);

Flow: Before Test

UVM C DPI RTL

Parse plusargs

Initialize struct
Create callback

Attach CB to
assertion

Callback attached
to RTL assertion or

cover

Flow: During Test

UVM C DPI RTL

Display UVM error Statistics updated
Check for errors

Assertion ‘pass’
executes callback

Flow: After Test

UVM C DPI RTL

End of Test: Call
Final check

Final check for
errors

Display UVM error

Don’t like plusargs?

• Assertions can be monitored by calling DPI
routines directly from the testbench.

• Can be called from within random testcases to
provide dynamic feedback to help guide the
progression of the testcase itself.

Constrained Random Testing

• In this example, assertion is registered with
the DPI directly from the UVM sequence.

• Sequence actively monitors the assertion until
3 successful passes are detected.

class bus_seq extends uvm_sequence #(bus_txn);
<...>
virtual task body();

ahandle = register_assert("upper.overflow_detect",-1,-1,1);
while (successes < 3) begin

`uvm_do(tr);
successes = num_assert_successes(ahandle);

end
endtask: body

endclass: bus_seq

Summary
• It’s more important than ever to make sure

every simulation cycle is well spent.
• ‘Broken’ tests not only waste cycles, but add

risk by exposing unwanted coverage holes.
• SystemVerilog has built-in facilities that allow

us to dynamically track assertions and
coverpoints during the test.

• Dynamically tracking coverage helps insure
that a test continues to do what it’s supposed
to do throughout the project.

Thank You!

Kelly D. Larson
klarson@nvidia.com

	Determining Test Quality through Dynamic Runtime Monitoring of SystemVerilog Assertions
	Is this you?
	How do you know your tests are doing what they should?
	The cost of bad tests
	Solution
	Specific Test Requirements
	Assertion Monitor
	What about Assertion Coverage?
	Example Use Case: Arbiter
	Make it interesting…
	Plusarg directives
	Assertion Monitor Plusargs
	Assertion Monitor Components
	RTL Component
	UVM Component
	C DPI Component
	SystemVerilog Assertion API
	Iterating through RTL Assertions
	Registering a Callback
	Flow: Before Test
	Flow: During Test
	Flow: After Test
	Don’t like plusargs?
	Constrained Random Testing
	Summary
	Slide Number 26

