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Abstract- Due to the nature of some Hardware Description Languages (HDLs), it is possible to inadvertently 

insert race conditions into design code. The SystemC class library standard suffers from this issue, by allowing race 
conditions to be coded that may lead to complex, hard-to-detect bug conditions. Automated applications, based on 
Formal methods, may now be used to verify many hardware design scenarios more effectively and easily than 
simulation-based methods. We will present a new, unique technique that leverages formal methods to exhaustively 
test a block of SystemC code that uses any number of threads for potential race issues. This mechanism may be 
applied to Transaction Level Model (TLM) code as well as RTL code in SystemC, and could be leveraged by any 
Formal Verification tool that allows Property Checking to be applied to SystemC based designs. 

 

I.   INTRODUCTION 

 

Race conditions in HDL-based design have caused significant problems in integrated circuit development, 

particularly when using the Verilog HDL. Verilog is notorious for allowing a designer to create code that contains 

sections open to alternative interpretations by different tools, and that also behave differently than expected in a 

production device. Race conditions are a significant subset of these coding anomalies, and later versions of IEEE 

1364 Verilog [1] as well as the IEEE 1800 SystemVerilog standard [2] have new capabilities in an attempt to provide 

a more deterministic coding paradigm for engineers. SystemC shares many of the same problems as observed in 

Verilog. 

 

Nevertheless, race conditions are still inserted into many designs and it is important that these are eliminated from 

the Register Transfer Level (RTL) code prior to synthesis and regression verification. Although simulation with the 

correct test vectors may be used to find some race conditions types, a simulator will interpret temporal code 

operation in a specific order, making it hard to test for all possibilities. Some simulators have incorporated race 

condition analyzers to highlight potential issues, although often these analyzers are inadequate to track all 

possibilities. 

 

Formal Verification has proven a useful platform to provide exhaustive analysis for many complex verification 

scenarios. Providing the technology is applied in the correct manner, formal techniques may explore the entire state 

space of a code segment, inherently allowing the testing of every possible scenario that may lead to an issue. This 

would appear to be ideal when tracking race conditions as all possible inputs to a storage element under test may be 

analyzed without the risk of forgetting a specific test input pattern. However, the key to providing such a rigorous 

test is the setting up of an automated model that reads the code and provides the correct properties to drive the formal 

engines. This paper will describe such a model that avoids problems with the previous methods employed.  

 

 

II.   A REVIEW OF RACE CONDITIONS IN HDL-BASED DESIGN  

 

Because of the parallel nature of SystemC and other hardware description languages, the semantics of a segment of 

code is based on execution schedules, i.e. the order in which the different processes that are active at a certain 

execution step are executed sequentially. In an ideal design implementation, the choice of a particular execution 

schedule should not influence the behavior of the code, that is, at the end of any entire execution step, all outputs will 

have the same value regardless of the particular execution schedule that was chosen. Hence, simulation and synthesis 

tools are free to select an execution schedule that is best suited for their operation. 

 



In the presence of several processes accessing the same variable concurrently, the choice of execution schedule may 

very well have an effect on the value of the registers after the execution step, potentially leading to mismatches 

between the interpretation of the code operation used by the synthesis and simulation tools. Hence, it is crucial to 

ensure that such concurrent accesses are “thread-safe,” i.e., they are not affected by the chosen execution schedule. 

 

In general there are two forms of race conditions that commonly occur in HDL based designs, and electronics design 

in general. 

 

The write-write race condition is one where a variable that retains its state may be written by two or more input 

signals within a single write transition (usually a clock period), and depending on the interpretation of the order of 

code execution, either one of the inputs may provide the final stored value. A simple example of such a condition in 

Verilog is shown in Figure 1. Although reading the code would suggest that the flipflop value would end up as B, 

one simulator optimizing the code in one particular manner could easily chose the statement that writes the value of 

A to flipflop to be executed after the statement that writes the value of B to flipflop.   

 
module writewrite (input bit clock, A, B, output bit flipflop); 

always @(posedge clock) flipflop = A; 

always @(posedge clock) flipflop = B; 

endmodule 

 

Figure 1: An example write-write race condition in Verilog 

 

The second form of race condition is the read-write condition, where it is non-deterministic as to whether a state 

variable value will be read before or after it is written. Figure 2 shows a simple example of this scenario. It may be 

seen that when flipflop2 reads flipflop1, it may or may not hold the latest value of A depending on the event ordering 

employed. 

 
module readwrite (input bit clock, A, output bit flipflop2); 

bit flipflop1; 

always @(posedge clock) flipflop1 = A; 

always @(posedge clock) flipflop2 = flipflop1; 

endmodule 

 

Figure 2: An example read-write race condition in Verilog 

 

Although these two examples serve to illustrate the point, realistic race conditions can occur due to reads and writes 

separated by 100’s of lines of code, in designs where the logic that contain these conditions is extremely complex. As 

such it may be extremely difficult to track these problems, and an exhaustive check becomes very valuable.  

 

The first version of the Verilog language suffered significantly from this issue. As there was only one simulator and 

synthesis tool for practical purposes leveraging the language, and the engineers were expert enough to eliminate 

synthesis, simulation mismatches in the relatively small designs being created at the time, race conditions were not a 

significant issue. However, as the language was opened into the public domain and alternative simulators became 

available, it became clear that a design that ran in one simulator would often execute differently in another, and the 

full impact of these race conditions became clear.  

 

As a result the “non-blocking” assignment, represented by “<=”, was introduced into the Verilog language. This 

assignment statement used a master slave relationship, where for a specific series of events occurring at the same 

time, all the right hand side of statements would be processed and their result placed into temporary variables, and 

then all the temporary variables would be used to write to the left hand sides of the statements. Although this solved 

the problem partially, it did not eliminate all race condition scenarios and was unpopular as it had a negative effect 

on performance and memory consumption. In the SystemVerilog standard “event regions” were added [3], which 

further improves the possible determinism available in the language. However, to this day, Verilog designs are still 

susceptible to race conditions. 

 



The IEEE 1076 VHDL language standard [4] was designed from the ground up to avoid this issue. This is due to the 

fact that VHDL leverages a language paradigm that reminds the author of George Orwell’s “newspeak” in his novel 

1984 [5]. Dangerous constructions (the thought crimes) are disallowed in the language so that you cannot express 

anything that might not work (or is forbidden, as in 1984). In VHDL order dependent behavior is eliminated through 

the use of signals to communicate between processes, and the concept of “deltatime”. All VHDL processes running 

in a specific time slot are fully executed before the inter-process signals are written and read, during deltatime (an 

additional processing period between coded time slots), thus eliminating races. It should be noted that subsequent 

language revisions allow multiple processes to write to variables, increasing the risk of a race. Additionally, IEEE 

1076-2002 adds the notion of “shared variables” that can introduce race conditions, although these must be marked 

explicitly and are rarely used. 

 

The IEEE 1666 [6] SystemC classes and macros provide a discrete event simulation class library for the parallel 

execution of C++ blocks, thus enabling a C++ hardware design paradigm. SystemC was designed to provide an 

efficient modeling style and enable fast simulation. As such, it bears more resemblance to Verilog than VHDL,   

in terms of both the semantics of parallelism and the method of sharing data between processes. Therefore, SystemC 

is susceptible to race conditions in a similar manner to Verilog. In SystemC, given the potential use scenarios of the 

“wait()” statement and thread behavior, these race conditions can be particularly hard to detect and may lead to 

significant design issues. Additionally, as SystemC can be written in a way that the hardware nature of the design is 

almost invisible, SystemC designers might even not be aware of the parallel semantics of the language. 

 

 

III.   ALTERNATIVE METHODS FOR HDL RACE CONDITION ANALYSIS  

 

Kroening [7] shows that due to the possibility of writing to the same variable in several threads and the fact that the 

scheduling between threads is non-deterministic, different results can occur. Kroening proposes to build execution 

graphs and to detect races by performing model checking on those graphs. While this is a valid approach to solve the 

problem, it requires additional, specialized tools. In addition, understanding a race condition found using this 

solution requires additional debugging skills. 

 

Le and Drechsler [8] propose an approach named input-output determinism where the output of a design for a given 

input is calculated and then compares this with all other possible outputs for different execution schedules. The 

SystemC model in this case is converted to C and then a software model checker used to compare the different 

execution schedules. This methodology is limited to the static inputs provided remaining constant, and must rely on 

C based software model checking, a departure from the norms of hardware design, for which SystemC was created in 

the first place.  

 

For hardware language such as Verilog, on the other hand, the problem of data-races has been solved using 

commercial property-checking tools, such as OneSpin 360 DV™. As a by-product of compiling the design for 

formal analysis, all variables with potential data races are detected and for each of those variables, an assertion is 

created to check that a race condition cannot occur under any circumstances. This assertion can then be formally 

verified in the property checking tool with several results: by providing a full proof, i.e. the assurance that the race 

condition is indeed impossible, by ensuring that there can be no synthesis-simulation mismatch for the particular race 

condition, or by detecting a race condition. Such a race condition is then presented to the user in a standard hardware 

debugging environment, showing a simulation trace from reset where concurrent writes to the same variable occur. 

 

 

IV.   A PROPOSED MODEL FOR SYSTEMC RACE CONDITION ANALYSIS  

 

This paper describes a different solution to the problem of data-races in synthesizable SystemC by leveraging a 

translation scheme of SystemC into Verilog, allowing the use of standard formal techniques to detect data races. By 

translating into Verilog, the event semantics of the HDL language may be fully leveraged, along with the proven 

commercial solutions to this problem. 

 

A Verilog model is created from the SystemC model using a translation table. An abbreviated table is shown in 

Figure 3. 

 



SystemC        Verilog 

SC_MODULE   -> module 

SC_IN    -> input 

SC_OUT   -> output 

SC_METHOD   -> process 

sensitive   -> processes’ sensitivity list 

async_reset_signal_is  -> processes’ sensitivity list + reset condition 

constant   -> localparam 

 

Figure 3: Abbreviated Translation Table 

 

Reset declarations are translated into sensitivity lists as well as direct sensitivity declarations. 

 

The list above is the translation table for the example in Figure 4. Of course the full translation table is much longer. 

The entire SystemC synthesizable subset can be translated in this manner. 

 

Once the translated model has been derived, relatively standard hardware model checking may be applied. 

 

The basic idea for detecting write-write race conditions is simple: instead of actually comparing execution schedules 

as in [6] [7], we identify statements which variable v is updated with a value value(v). These statements may 

correspond to 2 different execution schedules leading to different results, one where statement i is executed before 

statement j, the other with statement j before statement i. For read-write races, the values don’t play a role, they 

occur whenever the read and write conditions are not mutually exclusive. 

 

An accumulated condition of a statement is the sum of all conditions that need to be true to activate this statement. 

For any signal s, we define the readcondition as the accumulated condition under which the signal is read and 

symmetrically the writecondition as the accumulated condition under which the signal is written, ordering the 

conditions from all processes together. 

 

Formula for read-write races: 

           𝑟𝑒𝑎𝑑𝑤𝑟𝑖𝑡𝑒𝑟𝑎𝑐𝑒(𝑣) =  ⋁ 𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣)𝑖  ∧ ⋁ 𝑟𝑒𝑎𝑑𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣)𝑖𝑖𝑖  

 

Formula for write-write-races: 

𝑤𝑟𝑖𝑡𝑒𝑤𝑟𝑖𝑡𝑒𝑟𝑎𝑐𝑒(𝑣) = ⋁ (𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣)𝑖  ∧ 𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣)𝑗  ∧  𝑣𝑎𝑙𝑢𝑒(𝑣)𝑖 ≠ 𝑣𝑎𝑙𝑢𝑒(𝑣)𝑗) 𝑖,𝑗   

 

If any such race occurs, the result is undefined. Note that similar to the above precise version of the write-write race 

formula that requires two different values being written, the simplified read-write formula above can also be refined 

to require that the “new” value of the variable actually matters in the context of the read location. This is illustrated 

later on in the example. 

 

Both simulators and synthesis tools “choose” one order of conflicting statements. So we encounter a classical 

simulation-synthesis mismatch here. Simulation-synthesis mismatches are a frequent source for misbehavior of 

designs. Even standard equivalence checking techniques don’t help here, as equivalence checkers are designed as 

tools that detect problems in the synthesis flow. Since the synthesis tools implements a single execution schedule, the 

equivalence checker will prove the correctness of the synthesis result even if there are other execution schedules that 

would lead to a different design behavior. 

 

V.   EXAMPLE 

 

Figure 4 shows the example from [7]. 

 
const int PMAX = 49; 

SC_MODULE(m) { 

 sc_in<bool> clk; 

 sc_in<bool> reset; 

 sc_out<int> pressure; 



 

 void guard() { 

  if (pressure == PMAX) 

   pressure = PMAX - 1; 

 } 

 void increment() { 

  pressure = pressure + 1; 

 } 

 SC_CTOR(m) { 

  pressure = 0; 

 

  SC_METHOD(guard);     sensitive << clk.pos(); 

  SC_METHOD(increment); sensitive << clk.pos(); 

  async_reset_signal_is(reset,true); 

 } 

}; 

 

Figure 4: Example SystemC Module 
 

The example module in Figure 4 translates into the Verilog code shown in Figure 5, using the translation table in 

Figure 3. 

 
localparam int PMAX=49; 

module m(input clk, input reset, output int pressure); 

 

always @(posedge clk or posedge reset) 

begin: guard 

 if (reset) 

  pressure = 0; 

 else if(pressure == PMAX) 

  pressure = PMAX - 1; 

end: guard 

 

always @(posedge clk or posedge reset) 

begin: increment 

 if (!reset) 

  pressure = pressure + 1; 

end: increment 

endmodule 

 

Figure 5: Verilog Translation for Example SystemC Module 

 

A potential race occurs if the value written in one process differs from the value written in a different process. 

 

So the write-write race condition in this case would be 

(from process guard) 
 !reset && pressure == PMAX 

 value: PMAX – 1 

(from process increment) 
 !reset 

 value: pressure + 1 

In combination: 
 !reset && pressure == PMAX && !reset && (pressure + 1 != PMAX – 1) 

 Reduced: 
 !reset && pressure == PMAX && (pressure != PMAX -2) 

 !reset && pressure == PMAX 



 

So whenever there’s no reset and pressure equals PMAX, there’s a write-write race. 

 

As the first process reads pressure in order to decide whether to modify it, there is an additional read-write race 

evaluating pressure==PMAX. For a simplified view of a read-write race as given by formula in this paper, the 

process reads pressure whenever there is no reset, and the other process increments pressure whenever there 

is no reset. So there is a read-write race whenever there is no reset. 

However, since the actual reading of pressure only computes pressure==PMAX, many of these read-write races 

are not relevant since the difference of the value of pressure before and after the increment is not relevant for 

evaluating pressure==PMAX. For a refined read-write race, we therefore get: 

 !reset && ((pressure == PMAX) != (pressure+1 == PMAX)) 

Reduced: 
 !reset && (pressure == PMAX || pressure == PMAX-1) 

 

For a hardware language like Verilog, the write-write race can be refined to bits, so that a race condition is only 

flagged when a bit value is different, allowing for concurrent accesses to individual bits of a signal. 

 

The only safe way out of this is to guard conflicting read and write statements and make them mutually exclusive. 

 

Figure 6 shows the race condition displayed in the OneSpin 360 DV Verify debug user interface. As can be seen in 

the figure, pressure is being incremented until up to the value “49” or PMAX where the race is occurs. The light 

red background coloring of the statements depicts their concurrent activity, which leads to the observed race. 

 

 
 

Figure 6: Race Condition Displayed in OneSpin 360 DV Debug Window 

 

Let us now try to make the SystemC code robust against a write-write race. We first introduce a further input to 

guard the increment assignment. This is illustrated in Figure 7. 

 
const int PMAX = 49; 



SC_MODULE(m) { 

 sc_in<bool> clk; 

 sc_in<bool> reset; 

 sc_in<bool> guard_inc; 

 sc_out<int> pressure; 

 

 void guard() { 

  if (pressure >= PMAX) 

   pressure = PMAX-1; 

 } 

 void increment() { 

  if (guard_inc) 

   pressure = pressure + 1; 

 } 

 SC_CTOR(m) { 

  pressure = 0; 

 

  SC_METHOD(guard);     sensitive << clk.pos(); 

  SC_METHOD(increment); sensitive << clk.pos(); 

  async_reset_signal_is(reset,true); 

 } 

}; 

 

Figure 7: SystemC Example Re-coded with additional guard 

 

Of course, the two assignments can still happen simultaneously, so the environment must make sure that the guard is 

activated properly. This leads to another strong advantage of using a SystemC-to-Verilog translation scheme and a 

formal ABV tool capable of handling assertion languages like SVA; the SystemC environment can be modeled in 

SVA: 

 
exclusive: assume property 

 (@(posedge m.clk) m.pressure>=m.PMAX-1 |-> ~m.guard_inc); 

 

This constraint ensures that the guard can only be activated if pressure is below the threshold. If this constraint is 

used for the SystemC code in OneSpin 360DV Verify, the absence of race conditions can be proven. 

Of course, there is a plethora of applications for an assertion language like SVA on top of SystemC – in addition to 

modeling the environment, assertions about the SystemC code can be written and proven or disproven with formal 

analysis. Note that this covers normal state expressions in SystemVerilog – very similar to C-style assert statements, 

but is not restricted to state expressions. In other words, the full capability of SVA can be used to express timed 

assertions. 

 

 

VI.   CONCLUSION 

 

Race conditions have dogged electronic design since the invention of digital circuits, and the advent of hardware 

description languages simply compounded their impact on design. Although different approaches, including 

language capabilities, have been employed to reduce or eliminate their impact, they still persist in driving bug 

conditions in IC designs. SystemC is no different to other HDLs in this regard, and the possible complexity of some 

SystemC designs can make detecting races difficult. This paper proposes a method whereby a SystemC design might 

be analyzed for race conditions through the use of a formal tool. This provides an assured method of eliminating all 

possible races through the technique detailed in the paper. 

 

More generally, the paper demonstrates how a standard technique leveraged for SystemVerilog designs can be 

extended to SystemC, exploiting the full power of formal tools including, for example constraining, which would 

need to be implemented additionally in any other method. The detection of race conditions in SystemC is an 



important capability, and by leveraging this approach, the method is applicable to any kind of races/simulation-

synthesis mismatches. This approach could be used to apply other formal based techniques on SystemC designs. 

 

 

REFERENCES 
 

[1]  IEEE 1364 Verilog Standard 

[2]   IEEE 1800 SystemVerilog Standard 

[3] Cummings and Salz, SystemVerilog Event Regions, Race Avoidance and Guidelines, SNUIG Boston, 2006 

[4] IEEE 1076 VHDL Language Standard 

[5] George Orwell, Nineteen Eighty Four, Secker and Warburg, 1949 

[6] IEEE 1666 SystemC Standard 

[7] Daniel Kroening and Nicolas Blanc, Race Analysis for SystemC using Model Checking, ACM, 2010 

[8]  Hoang Le and Rolf Drechsler, Toward Verifying Determinism of SystemC Designs, DATE, 2014  
 


