
Designing,Verifying and Building
an Advanced L2 Cache

Subsystem using SystemC

1

Presentor:	 Steve	 Frank	 -‐	 Panève
Authors:

Thomas	 Tessier	 -‐	 Panève
Dan	 Ringoen	 -‐	 Panève

Hai	 Lin	 -‐	 Panève
Eileen	 Hickey	 -‐	 Panève

Steven	 Anderson	 -‐	 Forte	 Design	 Systems

Panève 2

Who is Panève?

Rhino Architecture and L2 Cache Focus for this presentation

Why SystemC?

Forte Leverage

Design Success

Q & A

Agenda

Panève 3

Targeting to be the leading provider of general purpose
software-driven processing solutions for embedded
devices

Architecture breakthrough allows fundamental shift from
heterogeneous (multiple hard-wired units) to a single,
software- driven SoC

Smart Data-Flow Caching enabling software transparent
parallel processing

Panève

Panève 4

Rhino SOC Architecture
Extended L2 Cache

(DDR3 off chip)

Memory Controller/L2 Cache

Rhino Core
thread data-flow
64 bit processor

Concurrent Thread Processing Units (8)

L1 Instruction Cache
(128 kbytes)

L1 Data Cache
(128 kbytes)

L2 Cache (2 Mbyte)
smart data-flow

External Adapter

External Adapter

Flash

EA EA

EAExternal Adapter

Bridge, DMA, L2 Cache

EthernetDVI

Panève 5

Core innovation, manage complexity and verification

Entire system designed in SystemC

Design challenges were met using:

Point-to-Point (P2P) Interconnect

Compiled Memories

Clock Domain Crossing (CDC) interconnect

Templates and transactional organization

Focus on L2 Cache

Panève 6

L2 Cache Block Diagram

CacheIF

64x512x16

Cache Entry

Cache Data

1024
X

8192 cthread

L2Decision

ExtIF

cthread

||||||

_
_

cthread

cthread

cthread

cthread cthread

|||||| ICache

DCache

Panève 7

SystemC can be used as your design source when coupled with a high
level “Cynthesizer” tool

Full parameterized design

Use of templates makes it easy to describe parameterized functions.

Hybrid behavioral, transactional, cycle accurate design

A few lines of SystemC can create a lot of hardware, Caches are highly
repetitive

SystemC as the Testbench as well means everyone is working in one
language

Using SystemC for Hardware Design

Panève 8

Data rarely travels alone, it has flags and states

Cache normally has a “tag” information with it

SystemC struct/class is the perfect approach

Forte manages data structures using helper methods
cynw_interrupt

Complex Classes

Panève 9

Complex Classes

struct ext_header_s {
 ext_requestor_s requestor;
 ext_cmd_s cmd;
 block_address_s address;
 block_cstate_s cstate;
 bool modified;

 ext_header_s() {}

inline void init() {
 requestor = 0;
 cmd = 0;
 address.init();
 cstate.init();
 modified = false;
}

Other Standard methods !
like: Assignment (=), "
Compare (==) and "

sc_trace are required"

Panève 10

Complex Classes
Inline void operator=(const
a2c_packet_s& other) {
 requestor =
other.requestor;
 cmd = other.cmd;
 address =
other.address;
 cstate = other.cstate;
 modified =
other.modified;
}

inline operator
c2a_packet_s() const {
c2a_packet_s retVal;
retVal.requestor =
requestor;
retVal.cmd = cmd;
retVal.address =
address;
retVal.cstate = cstate;
retVal.modifed =
modified;
return retVal;

Assignment to
other packet

type

 Casting to
other packet

type

Panève 11

P2P Interconnect Usage

CacheIF

64x512x16

Cache Entry

Cache Data

1024
X

8192 cthread

L2Decision

ExtIF

cthread

||||||

_
_

cthread

cthread

cthread

cthread cthread

|||||| ICache

DCache

P2P arbitrator

P2P arbitrator P2P arbitrator

 Interconnects
Designed with

P2P
connections

 Memory Meta Ports provide:
ReadData = mem[addr]
mem[addr] = WriteData

Panève 12

Use P2P at module ports to move complex structured
data

Allowed what-if by replacing a P2P interface with a P2P
FIFO, no change in design code to test

Testbenches were developed quickly as the complex class
often had helper methods to develop data so the TB only
need to deal with the flow.

Panève Usage of P2P

Panève 13

Testbenches often exploited help applications in structures
to create data

Testbench connectivity was just the P2P port and clock, so
development was very quick

Only needed to consider control flow not data generation
in most cases

Could be used with STL and SCV to exploit smart
pointers and scoreboards

Testbench Usage of P2P

Panève 14

Memory compiler of different widths and depths

Allowed technology specific pin names which made
mapping automatic

Allowed a vendor specific Verilog simulation model

Specialized Forte Memory wrappers could make a dual
port out of single port by running the memory at 2x clock

Dual ported FIFO memories can also be built

Forte Compiled Memories

Panève 15

Compiled Memory Usage

CacheIF

64x512x16

Cache Entry

Cache Data

1024
X

8192 cthread

L2Decision

ExtIF

cthread

||||||

_
_

cthread

cthread

cthread

cthread cthread

|||||| ICache

DCache

P2P arbitrator P2P arbitrator

Single Ported
RAM

 Double Clocked
Dual Ported

Panève 16

Forte requires one to map array usage to physical memory, which is why
we use the memory compiler

The compiled memories have shared ports that can make them look like
the memory is multiple ported

Forte provides the ability to run the memory at double and half speed
from the compiler

Forte has interfaces for 2x and 4x memory to multiple the number of
ports

Simple get() and put() methods to access memory as well as normal
MEM[ADDR] form.

Why Compiled Memories

Panève 17

Forte has develop a set of IP for dealing with clock
domain crossing

It looks exactly like the P2P from the standpoint of the
usage model

Replaces P2P where-ever you need to cross clock
domains

Can be simple register based or FIFO based

Clock Domain Crossing

Panève 18

Clock Domain Crossing Usage

CacheIF

64x512x16

Cache Entry

Cache Data

1024
X

8192 cthread

L2Decision

ExtIF

cthread

||||||

_
_

cthread

cthread

cthread

cthread cthread

|||||| ICache

DCache

P2P arbitrator P2P arbitrator

 Replaced FIFOs with CDC
FIFOs but kept P2P

Interfaces

Panève 19

Generalized SystemC improvement of template support
was added in Forte release 4.2 with our encouragement

Forte Behavioral memories don't necessary map the
foundry memory behavior so careful analysis is required
when picking the attributes

Arrays of P2P are somewhat limited and we would like to
exploit there power

Suggested Improvements

Panève 20

Using P2P allowed us to focus on our design not on interfaces

Using CDC allowed us to focus on how to use the data and not
if we managed the clock domain crossing correctly

Testbenches were relatively easy to develop as a P2P port is
driven via put() and received via get()

Our paper points to a 100-to-1 code reduction

Our paper points to a 10-to-1 test bench development
reduction

Success

