
Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 1 of 8	
	

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	
Cache	 Sub-‐System	 using	 SystemC	

Thomas	 Tessier	
Vice	 President	 of	 R&D	

Panève,	 LLC.

Dr.	 Hai	 Lin	
Chief	 Chip	 Designer	

Panève,	 LLC.

Daniel	 Ringoen	
Sr	 SOC	 Engineer	
Panève,	 LLC.	

	

Eileen	 Hickey	
Sr	 Verification	 Engineer	

Panève,	 LLC.

Steven	 Anderson	
Sr	 FAE	

Forte	 Design	 Systems

Abstract:	

System on a chip designs contain increasingly complex
modules which necessitate ever more complex interfaces.
This dual increase in complexity has made it much more
difficult for both designers and verification engineers to
complete their tasks. Fortunately, advances in verification
methods, design tools, languages and vendor IP can have
a major impact in reducing the difficulty of the resulting
research and development process.

This paper will detail our experience with a small team
development effort for an advanced programmable,
multithreaded, multicore processor targeted at streaming
video applications. The system as tested, would create a
10M+ gate ASIC with 10 Mbytes of on-chip RAM. We
will be focusing on that portion of the chip which
implements a complex L2 Cache which maintains
coherency between multiple cores. The L2 cache is
connected with wide interfaces to both an On-Chip-Bus,
and to instruction and data L1 Caches. A system of this
complexity simply cannot be successfully implemented
without extensive verification. Having appropriate
simulation models for the interfaces is one of the keys to
success. Of course, it is also necessary for those
simulation models to be transformed into optimal
hardware components in order to follow a “synthesize
what you verify” methodology.

The source code and testbenches for this chip were coded
entirely in SystemC. This model was used for extensive
design verification as a behavioral simulation model. It
was then synthesized into Verilog RTL using a
commercial High Level Synthesis tool, and the resulting
RTL models were re-simulated with the same test
infrastructure to verify equivalency between SystemC and
Verilog models. Finally, testbenches were deployed to the
prototype FPGA along with design code for further in-
system verification.

We will discuss in detail the use of commercial interface
IP provided by the HLS vendor. The interfaces are
templates which can be configured to transfer a complex

data structure comprised of many separate fields. Some
examples of the interfaces used are handshaking point-to-
point, clock domain crossing, memory based FIFO’s and
register based FIFO’s. User read and write access can be
blocking or non-blocking. Chains of interfaces can also be
built into a stall-able pipeline. All of the interfaces include
TLM and PIN level specializations so that a single set of
user source code can be used for TLM or PIN level
simulations. This same TLM source code can be then
synthesized to RTL, which was then taken through a
typical RTL design flow to build hardware.

Having these pre-verified configurable interface blocks
not only simplified the design process it also helped us
successfully verify the system. The initial prototype is
undergoing test in a Virtex 6 device and work is
commencing to target a commercial ASIC with a full
system.

Introduction	

This paper will describe some of our experience with a
development effort for an advanced multi-core, multi-
threaded processor with the focus on the development of
the L2 Cache. A fully configured chip can have multiple
processing units connected via a coherent on-chip L2
cache. This paper focuses on the implementation and
verification of the portion of the chip which implements a
complex L2 Cache including the required interfaces to a
local high speed External Bus and L1 Cache. The local
high speed External Bus would also connect to various
external interfaces such as DDR3, Flash, Ethernet and
DVI.

The source for this chip was coded entirely in SystemC.
This model was used for extensive design verification as a
behavioral simulation model as well as for high-level
synthesis using a commercial tool from Forte Design
Systems to create scheduled Verilog RTL. The generated
RTL code was taken through a typical RTL design flow
and implemented on a Xilinx FPGA [1] as a proof of
concept. The next step will be to implement a complete
multi-core processor in an ASIC foundry process.

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 2 of 8	
	

The core processing units were coded as single cycle
methods to give us complete control over the data
pipeline. Even at this low level of abstraction the
advantages of C++ templates gave us very compact code.
The L2 cache and external interfaces of the chip were
written using multi-cycle SystemC threads with interfaces
and memories provided as part of the Cynthesizer tools
from Forte [2]. A higher level of abstraction was therefore
possible for these parts resulting in additional benefits.

We extensively used Cynthesizer interface IP based on a
simple ready / valid handshake for point to point signaling
(P2P). The P2P signaling protocol can reliably transfer
complex data structures between processing elements. In
addition, we used Cynthesizer memory model IP mapping
to either Xilinx Block or distributed RAM. Both the
interface IP and the memory IP take advantage of C++
mechanisms to encapsulate the protocols providing
consistent APIs for us to use and reducing the coding
required for interconnection.

In addition to the design advantages we found with this
methodology, we will discuss some of the verification
advantages and challenges we met. We will also take
some time to suggest areas for future improvements. But
first let’s take a look at the processor architecture.

H/W	 Architecture	

Diagram 1 shows an example of 2 processor cores, L1
cache, our L2 cache structure plus interfaces to our
External Interface (EXT) local high speed bus. The basic
processing element in most of the modules is a clocked
thread. Inside each individual thread, the computation
loop may be scheduled in one or more cycles. The
processing loop in some of the threads has been pipelined
where needed to increase throughput.

Diagram 2 shows a fairly detailed block diagram of our
L2 cache. All of the interfaces in this block were built
with P2P channels. The data types for those channels,
shown in the bubbles, are complex structures with any
number of data fields.

In our system the L2 interface is responsible for
interrogating all packets on the EXT to decide whether it
needs to acquire that packet and process it. The latency
from EXT request to EXT response must be done in two
cycles which necessarily includes a TAG lookup. This
extremely low latency could only be met by running the
memories on a faster clock than the EXT. This was the
tightest latency within the L2 Cache Memory system. We
used the various controls provided by Forte to ensure that

the design had minimum latency but met our timing
budget.

Our External Interface allows multiple processors to
request access. Each processing unit can put out a request
and continue processing other threads while waiting for

the fulfilled packet. The EXT also can connect through
external chip interfaces while still maintaining cache
coherency. We used this feature to scale our prototype
testing to multiple processors using multiple FPGAs. The
EXT connection itself is a combination of packets via P2P
and simple wired interconnect. All of the other interfaces
in the block diagram were implemented using interfaces
provided by Forte.

Most of the memories in the cache, except for the TAG,
are single ported. In many cases a memory is used to store
a complex data structure. Other memories in the design
include those used in FIFO interfaces. We built FIFOs
that mapped into Xilinx Distributed RAM as well as

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Diagram	 2	 –	 L2	 Cache

Diagram	 1	 –	 System	 Architecture

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 3 of 8	
	

Block RAM. FIFO’s were required for EXT interfaces,
buffering internal to the cache, and in the L2 cache.

For interfaces connecting off-chip it was necessary to use
interfaces that include clock-domain crossing (CDC)
circuitry. These were used extensively for interfaces, i.e.
DDR3, and memory mapped IO, i.e. Ethernet and DVI.
We found the P2P signaling protocol combined with CDC
circuitry to be a very effective way to make reliable off-
chip connections.

One of the key SystemC/C++ coding features we used is
related to introducing clock-domain crossing circuitry at
various points in the design. From a coding perspective
the interface that incorporates CDC circuitry is identical
to the P2P interface we use within a clock domain. This
polymorphism allowed us to introduce CDC simply by
instantiating a different class for the interface without
needing more extensive coding changes. We took
advantage of this flexibility to make decisions as to where
clock domain crossings needed to be inserted late in the
design process.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Diagram	 3	 –	 Interface	 Polymorphism

SystemC	 Modeling	

The only way to design and verify a chip of this size and
complexity is with a model that directly reflects the
desired hardware architecture. There is simply no other
way to create a simulation model that would allow us to
adequately verify the connections between system
modules and that our algorithms function correctly with
this communication in place. Consider for a moment if
you had a truly high level model of the processor where
the system memory is flat and accessible in a single cycle
to any address. Obviously this is not true or we wouldn’t
need a cache.

Although some of the coding required to create this model
is fairly low level, it would be a mistake to think that this
SystemC model is really just another RTL model. We
found a tremendous amount of leverage from using C++
and SystemC. For instance we estimate that our SystemC
model of approximately 50K lines of source code is a
direct replacement for up to 2 million lines of RTL. Much
of this leverage is directly provided by the basic C++
concepts such as templates, classes, polymorphism, and
operator overloading. We used these object-oriented
capabilities very effectively to manage the complexity of
our design. The most obvious benefit is that we can build
prototypes with 1 core then develop an ASIC with “n”
cores from the same source code.

Another language feature that simplifies source code is
encapsulated interfaces in a C++ class. For instance when
reading a memory in SystemC your source code can be as
simple as:

int address, a, memory[16];

a = memory[address];

All of the details like setting a chip enable, read / write
signals, driving the address signals, waiting for the setup
and hold times, etc. can be handled through an
encapsulated interface called a metaport. Using operator
overloading the memory read function can be invoked
using array access notation as shown above. Of course,
someone needs to write the protocol that goes into that
interface class. But if it is constructed as a template then
that same source code can be re-used anywhere we access
a memory and our user source code can then be as simple
as an array de-reference.

These concepts of metaports, templates and classes
become even more powerful if we consider a CDC FIFO
with an embedded dual port memory. After someone
wrote that complex model that manages the FIFO and
interfaces to the memory users can simply write source
code that has a get() function to receive data, and a put()
function to write data. We exploited the fact that the CDC
Interface could be built with and without a FIFO and
accessed identically from the standpoint of the external
code. This allowed us to first get the interfaces working
properly then to focus on whether a FIFO was needed to
buffer the data across the clock domain crossing. When
going from fast to slow we often used a FIFO to buffer
the data; when going from slow to fast we often just use
the interchangeable register-based CDC interface.

All of these IP blocks just described are provided as part
of the Cynthesizer tool set. We also used these same
techniques such as templates extensively in our own
source code. The EXT for instance is a templated class.

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 4 of 8	
	

The template is:
template < int t_workQueueDepth, int t_outboundQueueDepth,
bool t_isSlaveClient, enum ExtClientType
t_clientAccessType, int t_maxAddr >
class ext_adapter
: public sc_module

Through the use of template parameters, this single body
of source code is used to support the interface for three
clients, each with different workload and buffering
characteristics.
As previously mentioned, our L2 TAG interface needed
to respond to an EXT request in two cycles. The TAG
interrogation that needed to be performed as part of this
interaction used a read / modify / write which would have
required a 4 port memory that was not practical with the
chip resources we had available. Our solution was to use a
memory class clocked at twice the base processor
frequency. This class is provided as an option in the
memory model generator that is part of Forte’s
Cynthesizer toolset. By leveraging this class, we were
able to make a much simpler dual port memory act to the
surrounding logic as a 4 port memory.

There were lots of interfaces that needed to be developed
between off-chip resources and the EXT. Of course, we
also had to build our L1 and L2 cache with interfaces to
the EXT. Xilinx provided some handy RTL IP blocks for
the off-chip interfaces, but we still needed to develop the
interfaces between those Xilinx IP blocks and our
processing elements. Plus the entire cache model had to
be built in SystemC.

Fortunately, Cynthesizer includes a set of pre-verified
interface IP that we could easily leverage, all based on
the P2P signaling protocol. This simple handshake
interface can be used in stall-able pipelines and can be
leveraged into very complex interfaces like the CDC
FIFO described earlier.

The P2P protocol helped us meet all of our latency
requirements by supporting the transfer of a data value
on every clock cycle. It ensures reliable transfer by
permitting the downstream module to assert its busy
output and stall the upstream module. This prevents
data from being lost in the case where the downstream
data consumers cannot keep up with the data providers.

One of the details required when storing a complex data
structure in a memory is some code that tells the High
Level Synthesis (HLS) tool how to pack your structure
into the raw bits of your memory. For Cynthesizer, this
is done by writing cynw_interpret() functions. See the
‘Challenges Overcome’ section for further comments on
this process.

Using these pre-verified interfaces and memory models
definitely increased our productivity. In fact we estimate

that overall our design time was reduced from 2 man
years down to 5 man months, approximately a 5 X
productivity improvement.

Design	 Verification	

We found a combination of significant advantages and
disadvantages to doing our verification using C++ and
SystemC. One of the biggest advantages of this
methodology turned out to be how fast testbenches could
be developed. We were able to create test cases with
behavioral models providing stimulus through P2P
interfaces and very quickly get functioning testbenches. In
fact we estimate that testbench creation was as much as
10 X more productive than a comparable RTL based
testbench would have been. Much of this productivity
increase is simply the result of having access to the pre-
verified P2P interfaces. This eliminated a lot of
debugging of wired interfaces that we have experienced in
RTL design projects.

Once we had a behavioral testbench, it was very easy to
synthesize that model to build hardware that included a
DUT plus a traffic generator. This enabled a very quick
turn-around emulation capability that we used to great
advantage. We also used Forte-provided synthesizable
Random Number Generator for building traffic
generators. Both the L2, Flash and DDR3 interfaces were
extensively tested in hardware prototypes using this
method.

The main disadvantage we found was the difficulty of
debugging such a large body of SystemC code. The
SystemC library does not support the same level of run-
time checking provided by HDL simulators which left us

Diagram	 4	 -‐	 Unit	 Testbench	

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 5 of 8	
	

in a number of situations where we found it difficult to
debug. For example we had difficulty debugging C++
mistakes such as overwriting the stack of an
SC_METHOD which would not be possible in a language
such as Verilog. We believe that SystemC verification
and debugging could be greatly improved by the
availability of a good SystemC lint tool, a functional
coverage measurement capability, and additional run-time
checking in the library itself.

Many SystemC design projects make extensive use of
transaction-level simulations. Unfortunately, because of
our design style, we found that TLM simulations were
impractical to use for any large simulation in our project.
However we did use some TLM models for a few
components to help us eliminate unwanted behavioral
simulation delays. For instance the L2 TAG had multiple
memories that all needed to be accessed in a single cycle
from one thread. With the PIN level models for these
memories each one would insert its own delay in the
simulation. By substituting TLM models for those
memories we were able to eliminate these ‘artifact’
delays.

Panève [3] intends to provide high quality IP for our
customers and the testbench verification at the front end
of the design->build process contributes the highest
percentage of confidence in the functional behavior of the
design. The matchup of the testbenches and the design
provides ease of use, since both are written in SystemC,
while the testbench environment takes advantage of the
SystemC verification extensions added in 2002 under 2.0
-- scv_* library components.

Since the testbench structure starts with unit level testing
and moves the same test modules, called 'agents' to the
upper level testbenches, we get consistency in the testing,
as well as re-usability of the testbench components. Each
agent contains a monitor to verify the handshake
correctness of the interface as well as feeding the data
from the interface forward to an external
scoreboard module to verify data correctness;
a driver and generator, both constrained by
the 'active' bool of the agent to drive, or
'respond' to transactions at the interface and a
common data area in the agent for such items
as lists of received transactions that would
need to be forwarded or responded to,
through the driver.

In order to verify the cache coherency,
planning is necessary, not only for the actual
points of functional behavior most interesting
to the designers, but to formulate the needed
coverage measurements that quantify the
effectiveness of the verification testing.

Panève uses Jasper Design Automation’s Gameplan since
not only are the verification points easily organized and
prioritized, the ability to include the coverage metrics
makes Gameplan the total receptacle for our quality
concerns.

Within Gameplan, we have items such as checking the
coherency between the L1 and L2 cache entries as well
checking the coherency of the individual bits kept in the
tag of the L2 and L1. Also, items referring to the
retirement mechanism of a cache entry from L1 to L2,
and the requirements around the updating of L2 with the
modifications on L1 entries, complicated by the
characteristics of data delivery to and from the core.

At the unit test level, since the test fixture is the same as
at the upper design level, the maximum legal and illegal
behaviors are verified in the fastest possible manner,
including, but not limited, to use of scv_ components such
as the scv_sparse_array (from the SystemC verification
extension library) which not only provides an easily
defined (at the constructor) default value for read back of
'unwritten' locations, but the ability to range all over the
address bits without significantly impacting the
simulation footprint in memory, beyond the design and
the testbench, during the time of the simulation (think
hash implementation). As 'dyed in the wool' hardware
engineers, having such tools at our disposal without
having to design them, support them, and document them
ourselves, saves not only simulation time, but gets
testbenches built quickly. Since a large portion of the
design is cache, this accelerates the design verification
overall. The unit level testbenches also allow the
designers the fastest turn-around for testing new design
implementations as well as observability into behavior
resulting from randomized data being flung about by the
testbenches. Such data from the scv_smart_ptr component
of the scv library provides ease of randomization, proper
data persistence, and automatic garbage collection of
these ephemeral constructs, also reducing the end-to-end

Diagram	 5	 -‐	 Upper	 Level	 Testbench

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 6 of 8	
	

simulation memory consumption.

As the levels of cache as well as the core are combined,
building outward with the 'agents' and switching the
'active' bools to passive, provides observability into the
internal IFs as the monitors are still available, while using
the same driving agents(as at the unit levels) at the outer
IFs. Although the rigidity of the combined design blocks
reduces the randomness of the behaviors induced in the
design, the ability to observe the interaction of the design
blocks with each other, increments the level of the quality
in the final IP.

Linking	 the	 high-‐level	 design	 with	 the	 RTL	
flow	

We are a SystemC house so there was no RTL legacy to
worry about. This gave us complete freedom to choose
our implementation tools. Diagram 6 shows the design
flow we used that incorporates the Cynthesizer tools from
Forte Design Systems.

For our flow we used the example ASIC library provided
by Forte as our synthesis target technology. This required
some experimentation to figure out what comparable
clock frequency to use for the high level synthesis to
ensure that our RTL synthesis could build us a gate level
equivalent that would meet timing. We instructed
Cynthesizer to build RTL with no direct gate
instantiations for datapath components. We then exported
that generated RTL and moved it into Xilinx XST to
synthesize our FPGA “Proof of Concept” implementation.

Although Forte provided hooks into the Synplify-Pro
FPGA synthesis tool we discovered that there were
limitations to this approach which included library
characterization at a given frequency as well as the
general tool costs themselves. The Xilinx-only flow
worked very well for our purposes.

Challenges	 that	 were	 overcome	

There were some seemingly simple housekeeping tasks
that turned out to be harder than expected. For instance
the cynw_interpret() functions mentioned earlier that pack
a user defined struct into a memory word. Even a minor
change to a member of the struct would require us to go
back and re-write a fair amount of code which of course is
error prone. We found a simple coding solution by using
enumerated cynw_interpret functions. For example here is
an enum struct that is used to define field boundary limits:

enum ext_packet_field_boundaries
{
EXT_ADDR_LSB_NUM = 0,
EXT_ADDR_MSB_NUM = EXT_ADDR_LEN_B-1,
REQUEST_ID_LSB_NUM,
REQUEST_ID_MSB_NUM = EXT_ADDR_MSB_NUM + CLIENT_ID_LEN_B,
EXT_CMD_LSB_NUM,
EXT_CMD_MSB_NUM = REQUEST_ID_MSB_NUM + EXT_CMD_LEN_B,
EXT_L2BLKSTATE_LSB_NUM,
EXT_L2BLKSTATE_MSB_NUM = EXT_CMD_MSB_NUM + CACHE_TAG_STATE_B,
RESP_BUSY_LSB_NUM,
RESP_BUSY_MSB_NUM = RESP_BUSY_LSB_NUM, // single bit field
RPH_PACKED_SIZE_B,
DATA_LSB_NUM = RPH_PACKED_SIZE_B,
DATA_MSB_NUM = RESP_BUSY_MSB_NUM + DATA_BLK_SIZE,
PACKED_SIZE_B
};

Then the cynw_interpret function can use the defined
enum types in range expressions to parse the data
structure into memory words. In this case we are packing
a structure of type ext_packet into a 72 bit word that can
be stored in a memory:

inline void cynw_interpret (const ext_packet_header& from,
sc_biguint<72>& to)
{
to.range(EXT_ADDR_MSB_NUM, EXT_ADDR_LSB_NUM) = from.ext_addr;
to.range(REQUEST_ID_MSB_NUM, REQUEST_ID_LSB_NUM) =
 from.request_id;
to.range(EXT_CMD_MSB_NUM, EXT_CMD_LSB_NUM) = from.ext_cmd;
to.range(EXT_L2BLKSTATE_MSB_NUM, EXT_L2BLKSTATE_LSB_NUM) =
 from.ext_l2blkstate;
to.range(PACKET_VALID_MSB_NUM, PACKET_VALID_LSB_NUM) =
 from.packet_valid;
to.range(RESP_BUSY_MSB_NUM, RESP_BUSY_LSB_NUM) = from.resp_busy;
}

Equally, some of the packets used at the P2P interfaces
were built from multiple structs to maximize
commonality and encapsulation – an object oriented
design goal. The above enum approach was then needed
to be augmented with a ‘MACRO’ approach to make the
enum process seamless and encapsulated at the packet
definition.

Diagram	 6	 -‐	 Design	 Flow

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 7 of 8	
	

In the ext_packet definition file:
// These two macros are used in e2c_packet.h and c2e_packet.h
#define EXT_PACKET_PACK() \
to.range(EXT_ADDR_MSB_NUM,EXT_ADDR_LSB_NUM) \
 = from.packet.header.ext_addr; \
to.range(REQUEST_ID_MSB_NUM,REQUEST_ID_LSB_NUM) \
 = from.packet.header.request_id; \
to.range(EXT_CMD_MSB_NUM,EXT_CMD_LSB_NUM) \
 = from.packet.header.ext_cmd; \
to.range(EXT_L2BLKSTATE_MSB_NUM, EXT_L2BLKSTATE_LSB_NUM) \
 = from.packet.header.ext_l2blkstate; \
to.range(RESP_BUSY_MSB_NUM,RESP_BUSY_LSB_NUM) \
 = from.packet.header.resp_busy; \
to.range(WAS_ACKED_MSB_NUM,WAS_ACKED_LSB_NUM) \
 = from.packet.header.was_acked; \
to.range(UNUSED_PAD_MSB_NUM,UNUSED_PAD_LSB_NUM) \
 = from.packet.header.unused_pad; \
to.range(DATA_MSB_NUM,DATA_LSB_NUM) \
 = from.packet.body.data;

#define EXT_PACKET_UNPACK() \
to.packet.header.ext_addr = \
 from.range(EXT_ADDR_MSB_NUM,EXT_ADDR_LSB_NUM); \
to.packet.header.request_id = \
 from.range(REQUEST_ID_MSB_NUM,REQUEST_ID_LSB_NUM); \
to.packet.header.ext_cmd = \
 from.range(EXT_CMD_MSB_NUM,EXT_CMD_LSB_NUM); \
to.packet.header.ext_l2blkstate = \
 from.range(EXT_L2BLKSTATE_MSB_NUM,EXT_L2BLKSTATE_LSB_NUM); \
to.packet.header.resp_busy = (bool)(sc_uint<1>) \
 from.range(RESP_BUSY_MSB_NUM,RESP_BUSY_LSB_NUM); \
to.packet.header.was_acked = (bool)(sc_uint<1>) \
 from.range(WAS_ACKED_MSB_NUM,WAS_ACKED_LSB_NUM); \
to.packet.header.unused_pad = (bool)(sc_uint<1>) \
from.range(UNUSED_PAD_MSB_NUM,UNUSED_PAD_LSB_NUM); \
to.packet.body.data = \
 from.range(DATA_MSB_NUM,DATA_LSB_NUM);

Then, in the file for the one of the packets that uses the
ext_packet:

struct e2c_packet
{
 struct ext_packet packet;

 // The following fields are only for client/EXT communication
 // and are not passed around in the ext packet

 // EXT to client flags
 struct ext_packet_status status;
.
.
.
inline void cynw_interpret (const e2c_packet& from,
sc_biguint<E2C_PACKED_SIZE_B>& to)
{
 EXT_PACKET_PACK();
 to.range(E2C_STATUS_IS_DATA_MSB_NUM,
E2C_STATUS_IS_DATA_LSB_NUM)
 = from.status.is_data;
 to.range(E2C_STATUS_IS_SOURCE_MSB_NUM,
E2C_STATUS_IS_SOURCE_LSB_NUM)
 = from.status.is_source;
 to.range(E2C_STATUS_IS_IO_DEST_MSB_NUM,
E2C_STATUS_IS_IO_DEST_LSB_NUM)
 = from.status.is_io_dest;
}

inline void cynw_interpret (const sc_biguint<E2C_PACKED_SIZE_B>&
from, e2c_packet& to)
{
 EXT_PACKET_UNPACK();
 to.status.is_data = (bool)(sc_uint<1>)
 from.range(E2C_STATUS_IS_DATA_MSB_NUM,
E2C_STATUS_IS_DATA_LSB_NUM);
 to.status.is_source = (bool)(sc_uint<1>)
 from.range(E2C_STATUS_IS_SOURCE_MSB_NUM,
E2C_STATUS_IS_SOURCE_LSB_NUM);
 to.status.is_io_dest = (bool)(sc_uint<1>)
 from.range(E2C_STATUS_IS_IO_DEST_MSB_NUM,
E2C_STATUS_IS_IO_DEST_LSB_NUM);
}

But our primary challenge at the beginning of this effort
was having a very small team of engineers. This is
certainly not uncommon as a startup but even larger
companies have similar resource constraints. Without the

adoption of the SystemC design methodology and all the
tools and IP provided with Cynthesizer we could not have
completed this project in the time frame we did.

This was a very ambitious project. We leveraged multiple
aspects of SystemC to allow our team to design and verify
less code while producing a large complicated design.
Would you prefer verifying 50K lines of SystemC or 2
Million lines of Verilog? That was always our guiding
light in our use of SystemC. Furthermore the small team
could focus on detail problems at a much higher level and
then develop testbenches very quickly to prove the
problem was addressed.

Challenges	 that	 remain	 unresolved	

Constrained Random Simulation, which we generate with
ease using SystemC, will be more useful when we have a
way of scoring how effectively our stimulus exercised the
design. Functional Coverage should not have been an
afterthought in the language. There are vendors that
provide Functional Coverage for SystemC and we are
exploring them.

Code coverage is another area of concern, how do you
know you are exercising all the code you have in the
design, what about dead code detection. These are all
places that Code Coverage could assist the design group.

Assertions are another powerful verification method that
can work hand in hand with functional coverage.
Assertions should be part of the language. I know that
C++ has assertions but a more formalized
recommendation within the language would go a long
way for third parties to write tools to manage assertions.

$display and printf are NOT productive debug methods.
GDB is not that useful on a large design but we used it
extensively which cost us a lot of time. A good solid lint
tool would have caught a lot of issues but debugging these
complex models has to be easier for wide adoption. As I
told someone this felt like using Verilog/VHDL in 1995!
	 	

Designing,	 Verifying	 and	 Building	 an	 Advanced	 L2	 Cache	 Sub-‐System	 using	 SystemC	

DV-‐CON	 2012	 	 	 Page 8 of 8	
	

Conclusion

This was a very ambitious design project accomplished
with a small team within a fairly short period of time.
This would not have been possible without changing the
level of abstraction used to write the models that define
the system. The level of abstraction of our code was made
possible by basic C++ constructs along with vendor IP for
interconnect and the SystemC design language. Once
complete and verified this model can be efficiently
transformed into RTL that can be targeted to an FPGA or
ASIC with the Cynthesizer tool from Forte Design
Systems.

References

[1] Xilinx: http://www.xilinx.com

[2] Forte Design Systems: http://www.forteds.com

[3] Panève: http://www.paneve.com

