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Abstract:	  

System on a chip designs contain increasingly complex 
modules which necessitate ever more complex interfaces. 
This dual increase in complexity has made it much more 
difficult for both designers and verification engineers to 
complete their tasks. Fortunately, advances in verification 
methods, design tools, languages and vendor IP can have 
a major impact in reducing the difficulty of the resulting 
research and development process. 

This paper will detail our experience with a small team 
development effort for an advanced programmable, 
multithreaded, multicore processor targeted at streaming 
video applications. The system as tested, would create a 
10M+ gate ASIC with 10 Mbytes of on-chip RAM. We 
will be focusing on that portion of the chip which 
implements a complex L2 Cache which maintains 
coherency between multiple cores. The L2 cache is 
connected with wide interfaces to both an On-Chip-Bus, 
and to instruction and data L1 Caches. A system of this 
complexity simply cannot be successfully implemented 
without extensive verification. Having appropriate 
simulation models for the interfaces is one of the keys to 
success. Of course, it is also necessary for those 
simulation models to be transformed into optimal 
hardware components in order to follow a “synthesize 
what you verify” methodology. 

The source code and testbenches for this chip were coded 
entirely in SystemC. This model was used for extensive 
design verification as a behavioral simulation model. It 
was then synthesized into Verilog RTL using a 
commercial High Level Synthesis tool, and the resulting 
RTL models were re-simulated with the same test 
infrastructure to verify equivalency between SystemC and 
Verilog models. Finally, testbenches were deployed to the 
prototype FPGA along with design code for further in-
system verification. 

We will discuss in detail the use of commercial interface 
IP provided by the HLS vendor. The interfaces are 
templates which can be configured to transfer a complex 

data structure comprised of many separate fields. Some 
examples of the interfaces used are handshaking point-to-
point, clock domain crossing, memory based FIFO’s and 
register based FIFO’s. User read and write access can be 
blocking or non-blocking. Chains of interfaces can also be 
built into a stall-able pipeline. All of the interfaces include 
TLM and PIN level specializations so that a single set of 
user source code can be used for TLM or PIN level 
simulations. This same TLM source code can be then 
synthesized to RTL, which was then taken through a 
typical RTL design flow to build hardware. 

Having these pre-verified configurable interface blocks 
not only simplified the design process it also helped us 
successfully verify the system. The initial prototype is 
undergoing test in a Virtex 6 device and work is 
commencing to target a commercial ASIC with a full 
system. 

Introduction	  
 
This paper will describe some of our experience with a 
development effort for an advanced multi-core, multi-
threaded processor with the focus on the development of 
the L2 Cache. A fully configured chip can have multiple 
processing units connected via a coherent on-chip L2 
cache. This paper focuses on the implementation and 
verification of the portion of the chip which implements a 
complex L2 Cache including the required interfaces to a 
local high speed External Bus and L1 Cache. The local 
high speed External Bus would also connect to various 
external interfaces such as DDR3, Flash, Ethernet and 
DVI.  
 
The source for this chip was coded entirely in SystemC. 
This model was used for extensive design verification as a 
behavioral simulation model as well as for high-level 
synthesis using a commercial tool from Forte Design 
Systems to create scheduled Verilog RTL. The generated 
RTL code was taken through a typical RTL design flow 
and implemented on a Xilinx FPGA [1] as a proof of 
concept. The next step will be to implement a complete 
multi-core processor in an ASIC foundry process. 
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The core processing units were coded as single cycle 
methods to give us complete control over the data 
pipeline. Even at this low level of abstraction the 
advantages of C++ templates gave us very compact code. 
The L2 cache and external interfaces of the chip were 
written using multi-cycle SystemC threads with interfaces 
and memories provided as part of the Cynthesizer tools 
from Forte [2]. A higher level of abstraction was therefore 
possible for these parts resulting in additional benefits. 
 
We extensively used Cynthesizer interface IP based on a 
simple ready / valid handshake for point to point signaling 
(P2P). The P2P signaling protocol can reliably transfer 
complex data structures between processing elements. In 
addition, we used Cynthesizer memory model IP mapping 
to either Xilinx Block or distributed RAM. Both the 
interface IP and the memory IP take advantage of C++ 
mechanisms to encapsulate the protocols providing 
consistent APIs for us to use and reducing the coding 
required for interconnection. 
 
In addition to the design advantages we found with this 
methodology, we will discuss some of the verification 
advantages and challenges we met. We will also take 
some time to suggest areas for future improvements. But 
first let’s take a look at the processor architecture.  

H/W	  Architecture	  
 
Diagram 1 shows an example of 2 processor cores, L1 
cache, our L2 cache structure plus interfaces to our 
External Interface (EXT) local high speed bus. The basic 
processing element in most of the modules is a clocked 
thread. Inside each individual thread, the computation 
loop may be scheduled in one or more cycles. The 
processing loop in some of the threads has been pipelined 
where needed to increase throughput.  
 
Diagram 2 shows a fairly detailed block diagram of our 
L2 cache. All of the interfaces in this block were built 
with P2P channels. The data types for those channels, 
shown in the bubbles, are complex structures with any 
number of data fields. 
 
In our system the L2 interface is responsible for 
interrogating all packets on the EXT to decide whether it 
needs to acquire that packet and process it. The latency 
from EXT request to EXT response must be done in two 
cycles which necessarily includes a TAG lookup. This 
extremely low latency could only be met by running the 
memories on a faster clock than the EXT. This was the 
tightest latency within the L2 Cache Memory system. We 
used the various controls provided by Forte to ensure that 

the design had minimum latency but met our timing 
budget.  

 
Our External Interface allows multiple processors to 
request access. Each processing unit can put out a request 
and continue processing other threads while waiting for 

the fulfilled packet. The EXT also can connect through 
external chip interfaces while still maintaining cache 
coherency. We used this feature to scale our prototype 
testing to multiple processors using multiple FPGAs. The 
EXT connection itself is a combination of packets via P2P 
and simple wired interconnect. All of the other interfaces 
in the block diagram were implemented using interfaces 
provided by Forte. 
 
Most of the memories in the cache, except for the TAG, 
are single ported. In many cases a memory is used to store 
a complex data structure. Other memories in the design 
include those used in FIFO interfaces. We built FIFOs 
that mapped into Xilinx Distributed RAM as well as 

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Diagram	  2	  –	  L2	  Cache 

Diagram	  1	  –	  System	  Architecture 
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Block RAM. FIFO’s were required for EXT interfaces, 
buffering internal to the cache, and in the L2 cache. 
 
For interfaces connecting off-chip it was necessary to use 
interfaces that include clock-domain crossing (CDC) 
circuitry. These were used extensively for interfaces, i.e. 
DDR3, and memory mapped IO, i.e. Ethernet and DVI. 
We found the P2P signaling protocol combined with CDC 
circuitry to be a very effective way to make reliable off-
chip connections. 
 
One of the key SystemC/C++ coding features we used is 
related to introducing clock-domain crossing circuitry at 
various points in the design. From a coding perspective 
the interface that incorporates CDC circuitry is identical 
to the P2P interface we use within a clock domain. This 
polymorphism allowed us to introduce CDC simply by 
instantiating a different class for the interface without 
needing more extensive coding changes. We took 
advantage of this flexibility to make decisions as to where 
clock domain crossings needed to be inserted late in the 
design process. 
 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Diagram	  3	  –	  Interface	  Polymorphism 

SystemC	  Modeling	  
 
The only way to design and verify a chip of this size and 
complexity is with a model that directly reflects the 
desired hardware architecture. There is simply no other 
way to create a simulation model that would allow us to 
adequately verify the connections between system 
modules and that our algorithms function correctly with 
this communication in place. Consider for a moment if 
you had a truly high level model of the processor where 
the system memory is flat and accessible in a single cycle 
to any address. Obviously this is not true or we wouldn’t 
need a cache. 
 

Although some of the coding required to create this model 
is fairly low level, it would be a mistake to think that this 
SystemC model is really just another RTL model. We 
found a tremendous amount of leverage from using C++ 
and SystemC. For instance we estimate that our SystemC 
model of approximately 50K lines of source code is a 
direct replacement for up to 2 million lines of RTL. Much 
of this leverage is directly provided by the basic C++ 
concepts such as templates, classes, polymorphism, and 
operator overloading. We used these object-oriented 
capabilities very effectively to manage the complexity of 
our design. The most obvious benefit is that we can build 
prototypes with 1 core then develop an ASIC with “n” 
cores from the same source code. 
 
Another language feature that simplifies source code is 
encapsulated interfaces in a C++ class. For instance when 
reading a memory in SystemC your source code can be as 
simple as: 

int address, a, memory[16]; 
 

a = memory[address]; 

 
All of the details like setting a chip enable, read / write 
signals, driving the address signals, waiting for the setup 
and hold times, etc. can be handled through an 
encapsulated interface called a metaport. Using operator 
overloading the memory read function can be invoked 
using array access notation as shown above. Of course, 
someone needs to write the protocol that goes into that 
interface class. But if it is constructed as a template then 
that same source code can be re-used anywhere we access 
a memory and our user source code can then be as simple 
as an array de-reference. 
 
These concepts of metaports, templates and classes 
become even more powerful if we consider a CDC FIFO 
with an embedded dual port memory. After someone 
wrote that complex model that manages the FIFO and 
interfaces to the memory users can simply write source 
code that has a get() function to receive data, and a put() 
function to write data. We exploited the fact that the CDC 
Interface could be built with and without a FIFO and 
accessed identically from the standpoint of the external 
code. This allowed us to first get the interfaces working 
properly then to focus on whether a FIFO was needed to 
buffer the data across the clock domain crossing. When 
going from fast to slow we often used a FIFO to buffer 
the data; when going from slow to fast we often just use 
the interchangeable register-based CDC interface. 
 
All of these IP blocks just described are provided as part 
of the Cynthesizer tool set. We also used these same 
techniques such as templates extensively in our own 
source code. The EXT for instance is a templated class.  
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The template is:  
template < int t_workQueueDepth, int t_outboundQueueDepth, 
bool t_isSlaveClient, enum ExtClientType 
t_clientAccessType, int t_maxAddr > 
class ext_adapter 
: public sc_module 

 
Through the use of template parameters, this single body 
of source code is used to support the interface for three 
clients, each with different workload and buffering 
characteristics. 
As previously mentioned, our L2 TAG interface needed 
to respond to an EXT request in two cycles. The TAG 
interrogation that needed to be performed as part of this 
interaction used a read / modify / write which would have 
required a 4 port memory that was not practical with the 
chip resources we had available. Our solution was to use a 
memory class clocked at twice the base processor 
frequency. This class is provided as an option in the 
memory model generator that is part of Forte’s 
Cynthesizer toolset. By leveraging this class, we were 
able to make a much simpler dual port memory act to the 
surrounding logic as a 4 port memory. 
 
There were lots of interfaces that needed to be developed 
between off-chip resources and the EXT. Of course, we 
also had to build our L1 and L2 cache with interfaces to 
the EXT. Xilinx provided some handy RTL IP blocks for 
the off-chip interfaces, but we still needed to develop the 
interfaces between those Xilinx IP blocks and our 
processing elements. Plus the entire cache model had to 
be built in SystemC. 
 
Fortunately, Cynthesizer includes a set of pre-verified 
interface IP that we could easily leverage, all based on 
the P2P signaling protocol. This simple handshake 
interface can be used in stall-able pipelines and can be 
leveraged into very complex interfaces like the CDC 
FIFO described earlier. 
 
The P2P protocol helped us meet all of our latency 
requirements by supporting the transfer of a data value 
on every clock cycle. It ensures reliable transfer by 
permitting the downstream module to assert its busy 
output and stall the upstream module. This prevents 
data from being lost in the case where the downstream 
data consumers cannot keep up with the data providers.  
 
One of the details required when storing a complex data 
structure in a memory is some code that tells the High 
Level Synthesis (HLS) tool how to pack your structure 
into the raw bits of your memory. For Cynthesizer, this 
is done by writing cynw_interpret() functions. See the 
‘Challenges Overcome’ section for further comments on 
this process. 
 
Using these pre-verified interfaces and memory models 
definitely increased our productivity. In fact we estimate 

that overall our design time was reduced from 2 man 
years down to 5 man months, approximately a 5 X 
productivity improvement. 

Design	  Verification	  
 
We found a combination of significant advantages and 
disadvantages to doing our verification using C++ and 
SystemC. One of the biggest advantages of this 
methodology turned out to be how fast testbenches could 
be developed. We were able to create test cases with 
behavioral models providing stimulus through P2P 
interfaces and very quickly get functioning testbenches. In 
fact we estimate that testbench creation was as much as 
10 X more productive than a comparable RTL based 
testbench would have been. Much of this productivity 
increase is simply the result of having access to the pre-
verified P2P interfaces. This eliminated a lot of 
debugging of wired interfaces that we have experienced in 
RTL design projects. 
 
Once we had a behavioral testbench, it was very easy to 
synthesize that model to build hardware that included a 
DUT plus a traffic generator. This enabled a very quick 
turn-around emulation capability that we used to great 
advantage. We also used Forte-provided synthesizable 
Random Number Generator for building traffic 
generators. Both the L2, Flash and DDR3 interfaces were 
extensively tested in hardware prototypes using this 
method. 

 
The main disadvantage we found was the difficulty of 
debugging such a large body of SystemC code. The 
SystemC library does not support the same level of run-
time checking provided by HDL simulators which left us 

Diagram	  4	  -‐	  Unit	  Testbench	   



Designing,	  Verifying	  and	  Building	  an	  Advanced	  L2	  Cache	  Sub-‐System	  using	  SystemC	  

DV-‐CON	  2012	  	   	   Page 5 of 8	  
	  

in a number of situations where we found it difficult to 
debug. For example we had difficulty debugging C++ 
mistakes such as overwriting the stack of an 
SC_METHOD which would not be possible in a language 
such as Verilog. We believe that SystemC verification 
and debugging could be greatly improved by the 
availability of a good SystemC lint tool, a functional 
coverage measurement capability, and additional run-time 
checking in the library itself. 
 
Many SystemC design projects make extensive use of 
transaction-level simulations. Unfortunately, because of 
our design style, we found that TLM simulations were 
impractical to use for any large simulation in our project. 
However we did use some TLM models for a few 
components to help us eliminate unwanted behavioral 
simulation delays. For instance the L2 TAG had multiple 
memories that all needed to be accessed in a single cycle 
from one thread. With the PIN level models for these 
memories each one would insert its own delay in the 
simulation. By substituting TLM models for those 
memories we were able to eliminate these ‘artifact’ 
delays. 
 
Panève [3] intends to provide high quality IP for our 
customers and the testbench verification at the front end 
of the design->build process contributes the highest 
percentage of confidence in the functional behavior of the 
design. The matchup of the testbenches and the design 
provides ease of use, since both are written in SystemC, 
while the testbench environment takes advantage of the 
SystemC verification extensions added in 2002 under 2.0 
-- scv_* library components. 
 
Since the testbench structure starts with unit level testing 
and moves the same test modules, called 'agents' to the 
upper level testbenches, we get consistency in the testing, 
as well as re-usability of the testbench components. Each 
agent contains a monitor to verify the handshake 
correctness of the interface as well as feeding the data 
from the interface forward to an external 
scoreboard module to verify data correctness; 
a driver and generator, both constrained by 
the 'active' bool of the agent to drive, or 
'respond' to transactions at the interface and a 
common data area in the agent for such items 
as lists of received transactions that would 
need to be forwarded or responded to, 
through the driver. 
 
In order to verify the cache coherency, 
planning is necessary, not only for the actual 
points of functional behavior most interesting 
to the designers, but to formulate the needed 
coverage measurements that quantify the 
effectiveness of the verification testing. 

Panève uses Jasper Design Automation’s Gameplan since 
not only are the verification points easily organized and 
prioritized, the ability to include the coverage metrics 
makes Gameplan the total receptacle for our quality 
concerns. 
 
Within Gameplan, we have items such as checking the 
coherency between the L1 and L2 cache entries as well 
checking the coherency of the individual bits kept in the 
tag of the L2 and L1. Also, items referring to the 
retirement mechanism of a cache entry from L1 to L2, 
and the requirements around the updating of L2 with the 
modifications on L1 entries, complicated by the 
characteristics of data delivery to and from the core. 
 
At the unit test level, since the test fixture is the same as 
at the upper design level, the maximum legal and illegal 
behaviors are verified in the fastest possible manner, 
including, but not limited, to use of scv_ components such 
as the scv_sparse_array (from the SystemC verification 
extension library) which not only provides an easily 
defined (at the constructor) default value for read back of 
'unwritten' locations, but the ability to range all over the 
address bits without significantly impacting the 
simulation footprint in memory, beyond the design and 
the testbench, during the time of the simulation (think 
hash implementation). As 'dyed in the wool' hardware 
engineers, having such tools at our disposal without 
having to design them, support them, and document them 
ourselves, saves not only simulation time, but gets 
testbenches built quickly. Since a large portion of the 
design is cache, this accelerates the design verification 
overall. The unit level testbenches also allow the 
designers the fastest turn-around for testing new design 
implementations as well as observability into behavior 
resulting from randomized data being flung about by the 
testbenches. Such data from the scv_smart_ptr component 
of the scv library provides ease of randomization, proper 
data persistence, and automatic garbage collection of 
these ephemeral constructs, also reducing the end-to-end 

Diagram	  5	  -‐	  Upper	  Level	  Testbench 
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simulation memory consumption. 
 
As the levels of cache as well as the core are combined, 
building outward with the 'agents' and switching the 
'active' bools to passive, provides observability into the 
internal IFs as the monitors are still available, while using 
the same driving agents(as at the unit levels) at the outer 
IFs. Although the rigidity of the combined design blocks 
reduces the randomness of the behaviors induced in the 
design, the ability to observe the interaction of the design 
blocks with each other, increments the level of the quality 
in the final IP. 
 

Linking	  the	  high-‐level	  design	  with	  the	  RTL	  
flow	  
 
We are a SystemC house so there was no RTL legacy to 
worry about. This gave us complete freedom to choose 
our implementation tools. Diagram 6 shows the design 
flow we used that incorporates the Cynthesizer tools from 
Forte Design Systems. 
 
For our flow we used the example ASIC library provided 
by Forte as our synthesis target technology. This required 
some experimentation to figure out what comparable 
clock frequency to use for the high level synthesis to 
ensure that our RTL synthesis could build us a gate level 
equivalent that would meet timing. We instructed 
Cynthesizer to build RTL with no direct gate 
instantiations for datapath components. We then exported 
that generated RTL and moved it into Xilinx XST to 
synthesize our FPGA “Proof of Concept” implementation. 
 
Although Forte provided hooks into the Synplify-Pro 
FPGA synthesis tool we discovered that there were 
limitations to this approach which included library 
characterization at a given frequency as well as the 
general tool costs themselves. The Xilinx-only flow 
worked very well for our purposes. 

Challenges	  that	  were	  overcome	  
 
There were some seemingly simple housekeeping tasks 
that turned out to be harder than expected. For instance 
the cynw_interpret() functions mentioned earlier that pack 
a user defined struct into a memory word. Even a minor 
change to a member of the struct would require us to go 
back and re-write a fair amount of code which of course is 
error prone. We found a simple coding solution by using 
enumerated cynw_interpret functions. For example here is 
an enum struct that is used to define field boundary limits: 
 
enum ext_packet_field_boundaries 
{ 
EXT_ADDR_LSB_NUM = 0, 
EXT_ADDR_MSB_NUM = EXT_ADDR_LEN_B-1, 
REQUEST_ID_LSB_NUM, 
REQUEST_ID_MSB_NUM = EXT_ADDR_MSB_NUM + CLIENT_ID_LEN_B, 
EXT_CMD_LSB_NUM, 
EXT_CMD_MSB_NUM = REQUEST_ID_MSB_NUM + EXT_CMD_LEN_B, 
EXT_L2BLKSTATE_LSB_NUM, 
EXT_L2BLKSTATE_MSB_NUM = EXT_CMD_MSB_NUM + CACHE_TAG_STATE_B, 
RESP_BUSY_LSB_NUM, 
RESP_BUSY_MSB_NUM = RESP_BUSY_LSB_NUM, // single bit field 
RPH_PACKED_SIZE_B, 
DATA_LSB_NUM = RPH_PACKED_SIZE_B, 
DATA_MSB_NUM = RESP_BUSY_MSB_NUM + DATA_BLK_SIZE, 
PACKED_SIZE_B 
}; 

 
Then the cynw_interpret function can use the defined 
enum types in range expressions to parse the data 
structure into memory words. In this case we are packing 
a structure of type ext_packet into a 72 bit word that can 
be stored in a memory: 
 
inline void cynw_interpret (const ext_packet_header& from, 
sc_biguint<72>& to) 
{ 
to.range(EXT_ADDR_MSB_NUM, EXT_ADDR_LSB_NUM) = from.ext_addr; 
to.range(REQUEST_ID_MSB_NUM, REQUEST_ID_LSB_NUM) = 
  from.request_id; 
to.range(EXT_CMD_MSB_NUM, EXT_CMD_LSB_NUM) = from.ext_cmd; 
to.range(EXT_L2BLKSTATE_MSB_NUM, EXT_L2BLKSTATE_LSB_NUM) = 
  from.ext_l2blkstate; 
to.range(PACKET_VALID_MSB_NUM, PACKET_VALID_LSB_NUM) = 
  from.packet_valid; 
to.range(RESP_BUSY_MSB_NUM, RESP_BUSY_LSB_NUM) = from.resp_busy; 
} 
 

Equally, some of the packets used at the P2P interfaces 
were built from multiple structs to maximize 
commonality and encapsulation – an object oriented 
design goal. The above enum approach was then needed 
to be augmented with a ‘MACRO’ approach to make the 
enum process seamless and encapsulated at the packet 
definition. 
  

Diagram	  6	  -‐	  Design	  Flow 
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In the ext_packet definition file: 
// These two macros are used in e2c_packet.h and c2e_packet.h 
#define EXT_PACKET_PACK( )                                   \ 
to.range(EXT_ADDR_MSB_NUM,EXT_ADDR_LSB_NUM)                  \ 
  = from.packet.header.ext_addr;                             \ 
to.range(REQUEST_ID_MSB_NUM,REQUEST_ID_LSB_NUM)              \         
  = from.packet.header.request_id;                           \ 
to.range(EXT_CMD_MSB_NUM,EXT_CMD_LSB_NUM)                    \ 
  = from.packet.header.ext_cmd;                              \ 
to.range(EXT_L2BLKSTATE_MSB_NUM, EXT_L2BLKSTATE_LSB_NUM)     \ 
  = from.packet.header.ext_l2blkstate;                       \ 
to.range(RESP_BUSY_MSB_NUM,RESP_BUSY_LSB_NUM)                \ 
  = from.packet.header.resp_busy;                            \ 
to.range(WAS_ACKED_MSB_NUM,WAS_ACKED_LSB_NUM)                \ 
  = from.packet.header.was_acked;                            \ 
to.range(UNUSED_PAD_MSB_NUM,UNUSED_PAD_LSB_NUM)              \ 
  = from.packet.header.unused_pad;                           \ 
to.range(DATA_MSB_NUM,DATA_LSB_NUM)                          \ 
  = from.packet.body.data; 
 
#define EXT_PACKET_UNPACK( )                                 \ 
to.packet.header.ext_addr =                                  \ 
  from.range(EXT_ADDR_MSB_NUM,EXT_ADDR_LSB_NUM);             \ 
to.packet.header.request_id =                                \ 
  from.range(REQUEST_ID_MSB_NUM,REQUEST_ID_LSB_NUM);         \ 
to.packet.header.ext_cmd =                                   \ 
  from.range(EXT_CMD_MSB_NUM,EXT_CMD_LSB_NUM);               \ 
to.packet.header.ext_l2blkstate =                            \ 
  from.range(EXT_L2BLKSTATE_MSB_NUM,EXT_L2BLKSTATE_LSB_NUM); \ 
to.packet.header.resp_busy = (bool)(sc_uint<1>)              \ 
  from.range(RESP_BUSY_MSB_NUM,RESP_BUSY_LSB_NUM);           \ 
to.packet.header.was_acked = (bool)(sc_uint<1>)              \ 
  from.range(WAS_ACKED_MSB_NUM,WAS_ACKED_LSB_NUM);           \ 
to.packet.header.unused_pad =  (bool)(sc_uint<1>)            \ 
from.range(UNUSED_PAD_MSB_NUM,UNUSED_PAD_LSB_NUM);           \ 
to.packet.body.data =                                        \ 
  from.range(DATA_MSB_NUM,DATA_LSB_NUM); 

 
Then, in the file for the one of the packets that uses the 
ext_packet: 
 
struct e2c_packet 
{ 
  struct ext_packet          packet; 
 
  // The following fields are only for client/EXT communication 
  // and are not passed around in the ext packet 
 
  // EXT to client flags 
  struct ext_packet_status   status; 
. 
. 
. 
inline void cynw_interpret (const e2c_packet& from, 
sc_biguint<E2C_PACKED_SIZE_B>& to) 
{ 
  EXT_PACKET_PACK( ); 
  to.range(E2C_STATUS_IS_DATA_MSB_NUM,    
E2C_STATUS_IS_DATA_LSB_NUM)     
 = from.status.is_data; 
  to.range(E2C_STATUS_IS_SOURCE_MSB_NUM,  
E2C_STATUS_IS_SOURCE_LSB_NUM)   
 = from.status.is_source; 
  to.range(E2C_STATUS_IS_IO_DEST_MSB_NUM, 
E2C_STATUS_IS_IO_DEST_LSB_NUM)  
 = from.status.is_io_dest; 
} 
 
inline void cynw_interpret (const sc_biguint<E2C_PACKED_SIZE_B>& 
from, e2c_packet& to) 
{ 
  EXT_PACKET_UNPACK( ); 
  to.status.is_data    = (bool)(sc_uint<1>)  
    from.range(E2C_STATUS_IS_DATA_MSB_NUM,    
E2C_STATUS_IS_DATA_LSB_NUM); 
  to.status.is_source  = (bool)(sc_uint<1>)  
    from.range(E2C_STATUS_IS_SOURCE_MSB_NUM,  
E2C_STATUS_IS_SOURCE_LSB_NUM); 
  to.status.is_io_dest = (bool)(sc_uint<1>)  
    from.range(E2C_STATUS_IS_IO_DEST_MSB_NUM, 
E2C_STATUS_IS_IO_DEST_LSB_NUM); 
} 

 
 
But our primary challenge at the beginning of this effort 
was having a very small team of engineers. This is 
certainly not uncommon as a startup but even larger 
companies have similar resource constraints. Without the 

adoption of the SystemC design methodology and all the 
tools and IP provided with Cynthesizer we could not have 
completed this project in the time frame we did. 
 
This was a very ambitious project. We leveraged multiple 
aspects of SystemC to allow our team to design and verify 
less code while producing a large complicated design. 
Would you prefer verifying 50K lines of SystemC or 2 
Million lines of Verilog? That was always our guiding 
light in our use of SystemC. Furthermore the small team 
could focus on detail problems at a much higher level and 
then develop testbenches very quickly to prove the 
problem was addressed. 

Challenges	  that	  remain	  unresolved	  
 
Constrained Random Simulation, which we generate with 
ease using SystemC, will be more useful when we have a 
way of scoring how effectively our stimulus exercised the 
design. Functional Coverage should not have been an 
afterthought in the language. There are vendors that 
provide Functional Coverage for SystemC and we are 
exploring them. 
 
Code coverage is another area of concern, how do you 
know you are exercising all the code you have in the 
design, what about dead code detection. These are all 
places that Code Coverage could assist the design group. 
 
Assertions are another powerful verification method that 
can work hand in hand with functional coverage. 
Assertions should be part of the language. I know that 
C++ has assertions but a more formalized 
recommendation within the language would go a long 
way for third parties to write tools to manage assertions. 
 
$display and printf are NOT productive debug methods. 
GDB is not that useful on a large design but we used it 
extensively which cost us a lot of time. A good solid lint 
tool would have caught a lot of issues but debugging these 
complex models has to be easier for wide adoption. As I 
told someone this felt like using Verilog/VHDL in 1995!  
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Conclusion 

This was a very ambitious design project accomplished 
with a small team within a fairly short period of time. 
This would not have been possible without changing the 
level of abstraction used to write the models that define 
the system. The level of abstraction of our code was made 
possible by basic C++ constructs along with vendor IP for 
interconnect and the SystemC design language. Once 
complete and verified this model can be efficiently 
transformed into RTL that can be targeted to an FPGA or 
ASIC with the Cynthesizer tool from Forte Design 
Systems. 
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