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Abstract— This year marks the 10th anniversary of the ratification of SystemVerilog IEEE 1800. Still, to date, 
most IP is developed using classic Verilog. Can we use this antiquated language for designing the future? Do we leave 
design productivity opportunities on the table? In verification, SystemVerilog has been adopted quickly, since only a 
few tools in the front-end had to support it. For design models, however, a much larger set of tools need to provide 
language support. This paper shows which subset of SystemVerilog is supported broadly and is ready for adoption. 
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I.  INTRODUCTION  

Both VHDL (IEEE 1076) and Verilog (IEEE 1364) were developed in the 1980s. The 
primary intent was the ability to model digital hardware in code. Hence, the term Hardware 
Description Language (HDL) was coined. HDL was a huge leap for electronic design and, 
further on, enabled massive productivity gains with the introduction of synthesis. With these 
advances, a designer no longer had to model individual gates but, rather, could focus on a 
more abstract way of describing functionality. A single person was now able to generate tens 
of thousands, and later hundreds of thousands, of gates very quickly. It was a watershed 
moment.  

By the mid 1990s design productivity created a verification problem. The ability to release 
chips that worked on first tape-out was reduced. People wrote simple tests in an HDL to make 
sure the model was behaving as expected. The methods applied were rather rudimentary. 
Later, concepts like code coverage came into play, and finally the sophistication level rose 
with functional coverage, constrained random test generation, verification planning, and so 
forth.  

The core problem remained: An HDL is an HDL. It was not designed for verification. As 
neither VHDL nor Verilog gained sufficient verification support fast enough, verification 
languages such as e (IEEE 1647), Vera, Superlog, amongst others, emerged. Verilog was 
eventually superseded by SystemVerilog (IEEE 1800). Its extensions over standard Verilog 
were primarily targeting verification. The level of expansion cannot be underestimated. The 
new language contained the entire legacy Verilog HDL, which is complex by itself, and it 
gained object oriented programming, constrained randomization, functional coverage, 
assertions, and more.  

The adoption of SystemVerilog for verification was not trivial. As John Aynsley, CTO of 
Doulos, pointed out at DVCon San Jose 2012: “Further evidence of SystemVerilog’s size and 
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complexity is the length of its BNF formal syntax definition, which covers 43 pages of the 
standard language reference manual, and is 70-80% larger than that of VHDL.” 

This is an important statement. In particular, as the complexity of a language relative to the 
size of its BNF does not scale in a linear fashion. Instead, complexity explodes quickly. John 
further pointed out that C++ 1998 only has an 18 page BNF!  

Nevertheless, the adoption of SystemVerilog for verification still occurred fairly quickly 
because people were able to cope with its complexity. Additionally, the number of verification 
tools required to process this language was rather small, making adoption from a tool 
perspective easier—The primary tool for a testbench is a simulator after all.  

In the design space, the world is very different as the hurdles to adoption are very different. 
The RTL hardware model has to be processed by many more tool categories than does the 
testbench, let alone accounting for various tool implementations. 

SystemVerilog for design requires broad support and optimization from: 

Linting, Simulation, Emulation/Acceleration, Synthesis, Test insertion (DFT), Low 
Power, FPGA prototyping, Equivalence Checking, Property checking 

The combination of tool categories combined with a multi-vendor support ecosystem makes 
adoption for design a much harder problem than for verification. 

However, the benefits of SystemVerilog are worth overcoming these challenges.  

II. MOTIVATION 

Why would anyone ever attempt something like the adoption of SystemVerilog for design? 
Quite simply, because the gains can be quite significant. SystemVerilog combines some of the 
benefits of VHDL and introduces additional concepts. SystemVerilog models can avoid whole 
classes of design bugs up front, by making the code more concise, easier to read and 
comprehend, and more adaptable to change in current or future projects. It offers the following 
improvements: 

• Increased abstraction with new and user defined data types, and clustering 
constructs such as structs and interfaces. 

• Much better ways of parameterization, which make the code much more suitable for 
IP development, and more robust to handle engineering change orders (ECOs)  

• Preemptive bug avoidance during coding stage. 

o Common mistakes will no longer pass the parser. 

o Other types of mistakes will be checked and flagged by the tools.  

These benefits of bug preemption alone can be worth the cost of adoption. 

As SystemVerilog and the associated tools have matured, the time is ripe to take advantage 
of the new features. After 10 years, we have reached an inflection point where the support 
across the industry makes SystemVerilog for design adoption tangible.  
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Great strides have been made by tool vendors in the last few years to improve support of 
SystemVerilog for design. With increased adoption, community pressure will grow and the 
remaining support gaps will close even faster. 

This paper will show what works using examples of basic constructs that everyone should 
adopt, and it also covers constructs that are very beneficial, but take on more risk. 

III. DESIGN AND VERIFICATION CODE SHARING 

Fundamentally, code sharing between design and verification teams can results in repeating 
certain mistakes twice. Design and verification should be derived from a comprehensive 
specification and that derivation should occur separately. However, aspects that are explicitly 
stated in the specification documentation do not have to be implemented by both teams. In 
such cases it makes sense to share code. 

The SystemVerilog package is useful in that it enables this code sharing. To share code the 
package should contain register addresses and bit fields—both for design connectivity, as well 
as for verification hook up to the DUT. Further on, there are sets of type definitions that also 
make sense to share, such as certain enumerated types. 

IV. BASIC  CONSTRUCT – ALWAYS_FF, ALWAYS_COMB, ALWAYS_LATCH 

One of the least intrusive constructs you can adopt is the always_ff, always_comb and 
always_latch constructs. Singular always blocks tend to infer ambiguity. Hence, if you move 
to procedural block constructs, the intent of the block is clearly stated in the use of the 
construct. Additionally, the tools will actually check if the logic in such a block is indeed 
sequential or combinatorial. Restrictions in coding will make the code cleaner and lead to 
fewer bugs upfront. 

V. BASIC CONSTRUCT – ENUMERATED TYPE 

The enumerated type is a construct that everyone using SystemVerilog for design should 
adopt. It is widely supported, does not introduce complex code changes, and brings clear 
benefits. The reward/risk ratio is very high. 

In classic Verilog `define and localparam were widely adopted for various purposes. 
The problem with `define is that it is global in nature. In addition, the problem with either 
option is that the individual definitions are not connected in any form or shape. They might be 
combined by locality during the definition stage; however, there is no actual grouping in the 
language. If we use `define or localparam for branching control or FSM 
implementation, for example, we cannot take advantage of benefits that come with grouped 
values. 

In the following basic definition of an enumerated type for the AHB transaction type, we 
can see the grouping of values.  
  typedef enum  {IDLE = 4, BUSY = 5, NONSEQUENTIAL = 6, SEQUENTIAL = 7 } htrans_e; 
 

This grouping and the associated encoding can be leveraged right away, as follows: 
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htrans_e htrans; 
 
  initial begin : initialization 
 
    htrans = htrans.first(); 
 
  end : initialization  

For example, you can use the built-in function first() of the enumerated type to model 
initialization. The benefit of this approach is that the enumeration definition can change and 
put a different constant first but the initialization code does not have to change with the 
definition.  This is especially useful as state machines evolve in the design and states are 
renamed. 

Enumerated types bring additional benefits—they prevent common mistakes! For example, 
it is not allowed to define the same value twice. By default, this does not occur as implicit 
values are defined in order, from 0 on, by increments of 1. However, if you need to set the 
values explicitly, you will never be able to introduce a bug caught by dual use of the same 
value, as this will be caught at compile time. Consider the following example:  
  typedef enum {IDLE = 4, BUSY = 4, NONSEQUENTIAL = 6, SEQUENTIAL = 7} htrans_e; 
 

The definition shown above is not legal and causes a compile error. However, if you were 
using `define or localparam you would not catch this problem at an early stage, as it is 
perfectly legal, and the individual names are completely independent and have no relationship 
to one another. The grouping of enumerated values in a type definition is therefore a great 
benefit, in particular when the enumerated type contains a lot of values, which would increase 
the likelihood of mistakes. 

There is another benefit. Assume you want to enforce the values of the enumerated type to 
be compliant with a particular data type, as follows: 
  typedef enum logic[3:0] {IDLE = 4, BUSY = 5, NONSEQUENTIAL = 6, SEQUENTIAL = 17} htrans_e; 
 

This can be beneficial in order to keep the value set limited and, therefore, also prevent 
potential bugs. In the example above, SEQUENTIAL could not be assigned to 17. (The 
compiler will flag it as a violation to logic[3:0], which only allows 4’b0000 to 
4’b1111 (decimal 0 to 15). 

Another great benefit of enumerated types is that they are strongly typed and therefore 
implicitly prevent all kinds of problems in the logic, as shown below.  
  typedef enum logic[3:0] {IDLE = 4, BUSY = 5, NONSEQUENTIAL = 6, SEQUENTIAL = 7} htrans_e; 
 
  htrans_e htrans = 8;  
 

In the example, you cannot actually assign 8 to htrans. Tools can flag that you are 
actually not using a proper value. 

Additionally, the enumerated type definition could be shared between the design and 
verification processes as part of a package. Although this is typically frowned upon, in many 
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cases it can make sense as these types stem directly from the specification, and in some cases 
could even be automatically generated from the specification. 

Finally, the explicit naming of values through enumerated types makes debug easier. For 
example, in waveform displays, code value browsing, and other viewers and browsers, it is no 
longer necessary to work on tool specific tricks and custom scripts to get a named value. You 
will actually see the named value everywhere and, since it is part of the language, the tool 
vendors can collect the names from the internal model representation. Through the 
introduction of the enumerated type, the name value has become native in the language and 
the supporting tools. 

VI. BASIC CONCEPT: TYPEDEF 

Abstraction is almost always a good concept to leverage, in particular when it comes to 
design productivity—it drove the idea behind HDLs in the first place! With the introduction 
of type definitions in SystemVerilog, the designer gains additional freedom from the ability 
to define new types for data or control structures that are customized and meaningful for the 
application at hand.  

Through the abstraction of defined types, the required code length will also be reduced, 
which will lead to further productivity. Finally, the naming of the types themselves will also 
lead to better and more maintainable code. 

 
Using the APB example even the simplest type definition can illustrate its usefulness: 
 

  typedef logic [31:0] apb_data_t; 
  typedef logic [31:0] apb_addr_t; 
 

These two type definitions can now be used in various places. 
 
For example, in the interface definition below, pwdata and prdata now have a 

common type. Consequently, changes to the type definition in one place (data width) will 
impact two places in the interfaces, creating more modularity and lowering the risk of design 
bugs.  
 
interface apb_if (input logic pclk, input logic presetn); 
 
  logic       psel; 
  apb_addr_t  paddr; 
  logic       penable; 
  logic       pwrite; 
  apb_data_t  pwdata; 
  logic       pready; 
  apb_data_t  prdata; 
 
  /* SNAP */ 
endinterface : apb_if  
 

VII. BASIC CONCEPT—USEFUL FUNCTIONS: $BITS, $SIZE 

SystemVerilog brings a significant set of new built-in functions to the language. Some of 
them are extremely beneficial for making your code cleaner and more compact as shown in a 
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simple example below which illustrates how you can determine the sizing of a generation 
loop.  
  for (genvar i = 0; i < $size(receivers); i++) //SNAP 
 

These new functions complement existing Verilog functions such as $clogb2 which is 
often useful in parameter declarations. 

VIII. INTERFACES 

One of the most important features in SystemVerilog for design is interfaces. Interfaces can 
lead to massive amounts of code reduction, which improves readability, bug rates, and the 
ability for reuse. However, interfaces are more complex from both a coding and also from a 
tool perspective. Therefore, tool support across the industry is more challenging and care 
should be taken to check tool limitations before using the advanced features of interfaces. 
Current tools support the examples shown in this section. 

Interfaces are more than a bundle of wires. They are containers for various data types to 
connect blocks in an efficient manner. In addition, interfaces offer the opportunity to contain 
auxiliary logic as well as assertions. Hence, it makes sense that assertions used to check 
protocol compliance are implemented right in the interface. This helps support modularity, 
code sharing, and reuse. 

In the example below, we define an interface for APB. 
interface apb_if (input logic pclk, input logic presetn); 
 
  logic        psel; 
  apb_addr_t   paddr; 
  logic        penable; 
  logic        pwrite; 
  apb_data_t   pwdata; 
  logic        pready; 
  apb_data_t   prdata; 
 
  modport master(output psel, paddr, penable, pwrite, pwdata, 
                  input  pready, prdata); 
 
  modport slave (input  psel, paddr, penable, pwrite, pwdata, 
                  output pready, prdata); 
 
  // ASSERTIONS … 
 
 /* SNAP */ 
endinterface : apb_if 

One of the attractive aspects of interfaces is modports. In the interface example above, we 
get directionality from a master and a slave perspective. And, when we use this interface, we 
can choose which modport is appropriate for the intended usage. 

Now let’s see how such an interface can make module connectivity significantly more 
compact, adaptable and elegant. 
    // master 
    apb_master  master (.master(host), .slave); 
 
    // interface instances 
    apb_if     slave[apb_pkg::SLAVE_NUM] (.*); 
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    // slaves 
    apb_gpu     gpu  (.apb(slave[apb_pkg::SLAVE_GPU])); 
    apb_flash   flash(.apb(slave[apb_pkg::SLAVE_FLASH]); 
    apb_usb     usb  (.apb(slave[apb_pkg::SLAVE_USB])); 
 
 

 
Figure 1: Master-Slave connectivity 

In the example above, you can see that we could connect an APB master and three slaves 
using just five lines of code. The example instantiates three slave interfaces in just one line of 
code. Then, the example goes on to connect the master to these three slaves. The three slave 
module instances hook up to their respective interfaces. Additionally the master is also hooked 
up to a host interface. If you write this out in regular Verilog you will wind up with a code 
explosion of one order of magnitude! 

Just for the master alone, the connections to the three slaves would require massive signal 
hook-up for every signal connection. 
apb_master master ( 
   .master_addr  (host_paddr), 
// SNAP to shorten code example 
   .slave0_addr  (slave_paddr  [SLAVE_GPU]), 
   .slave0_wdata (slave_pwdata [SLAVE_GPU]), 
   .slave0_write (slave_pwrite [SLAVE_GPU]), 
   .slave0_enable(slave_penable[SLAVE_GPU]), 
   .slave0_ready (slave_pready [SLAVE_GPU]), 
   .slave0_rdata (slave_prdata [SLAVE_GPU]), 
// SNAP to shorten code example 
   .slave2_rdata (slave_rdata  [SLAVE_USB]) 

); 

The APB example is actually understating the magnitude of code compression, as the APB 
protocol is very simple and deals with less than ten signals per interface. Imagine you are 
using AXI4, for example, which contains 40 signals (including reset and clock). In this case, 
you would see much higher code compression. 

IX. STRUCTS 

Structs are a great way to introduce even more abstraction into a design. Similar to the 
enumerated type, they form groups of related items. Unlike enumerated types, however, they 
are not dealing with just a single type definition but they also provide a container for 
aggregation. 

In our APB example we can use this feature to make our code even more elegant, by 
defining the set of items the master transfers to the slaves, and conversely. 
    // APB request (master to slave). 
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    typedef struct packed {apb_addr_t addr; logic enable; logic write; apb_data_t wdata;} apb_req_s; 
    // APB response (slave to master). 
    typedef struct packed {logic ready; apb_data_t rdata;} apb_resp_s; 

 

Now we can use the struct to simplify our interface definition, as follows: 
interface apb_if (input logic pclk, input logic presetn); 
  import apb_pkg::*; 
 
  logic      psel; 
  apb_req_s  req; 
  apb_resp_s resp; 
 
  modport master(output req, sel, input  resp); 
  modport slave (input  req, sel, output resp); 
 
 /* SNAP */ 
endinterface : apb_if 

X. NESTING CONSTRUCTS 

Most of the constructs shown in this paper have wide industry support. We also have shown 
how enumerated types and structs can be combined to form better interfaces. The bottom-up 
approach is working. However, there are other areas in the language that can make adoption 
challenging. The more levels of nesting you add to the mix, the more likely you will deal with 
tool issues and support problems. Almost inevitably, at least one tool will not be able to handle 
something properly. In the example below, we are picking a particular interface using an 
enumerated type variable. Then, we use a struct inside of it, which also contains an 
enumerated type variable. Finally, we use a function on that enumerated type variable. With 
the current level of tool support, this is not going to work across the flow. 
  assign next_phase = slave[slave_select].req.phase.next; 
 
  // next_phase is of type phase_e, slave is an array of interfaces, slave_select is of type slave_e 
  // req is a struct,  phase is of type phase_e 

 

Increased adoption of the community should reduce problems with nesting.  

XI. SUMMARY 

The discussion in this paper has shown which features in SystemVerilog are ready for 
adoption by the design community today. By taking advantage of these constructs, 
productivity can increase, with the end result being robust code that is more compact, 
maintainable, and less prone to bugs. With more companies moving to adopt SystemVerilog 
for design, it is time to benefit from the features of the language and seize this opportunity to 
stay ahead of the competition. 
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