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Abstract- The Accellera PSS language standard enables users to capture a model of test intent that is portable across 

verification levels and execution platforms. Challenges in reusing the integration between the PSS model and the 

environment severely impacts the overall reuse benefits of applying PSS. This paper highlights the challenges in 

productively integrating PSS with the environment, and covers key criteria for a PSS/environment integration that 

maximizes reuse of both the environment elements and the PSS description. It describes key elements of a framework that 

maximizes PSS and test realization reuse across UVM-based testbench environments, and between UVM and embedded-

software environments. 

 

I. INTRODUCTION 

The Accellera PSS language standard [1] enables users to capture a model of test intent that is portable across 

verification levels and execution platforms. The PSS language captures test intent – the high-level design of what 

should be tested – while the task of carrying out the test intent is handled by test realization code in the UVM or 

embedded software environment in which the tests created from a PSS model execute.  

A PSS model is logically separated into two pieces – one for modeling test intent and the other (test realization) for 

carrying out that test intent, as shown in Figure 1. 

  

 
Figure 1 - Anatomy of a PSS Model 

The PSS language features used to model test intent are heavily constraint-based, and capture value relationships 

that model a test space. The PSS language provides two mechanisms for connecting this high-level constraint-driven 

model to test realization code: procedure calls, and code templates (target templates). Both of these mechanisms are 

captured using the exec blocks construct. 



 
Figure 2 - Generating Tests from a PSS Model 

The goal of capturing the PSS model and mapping to test realization is, of course, to create tests to run in the target 

environment. PSS supports either pre-generating these tests or generating them on-the-fly as the target environment 

runs.  

A typical application of pre-generated tests are SoC platforms where the test created from the PSS model must be 

an embedded-software program expressed in either C or assembly language. Due to the restrictions of the bare-metal 

software-execution environments supported by an SoC test environment, the PSS test can have relatively few external 

dependencies. It certainly cannot depend on an external solver that evaluates the PSS model as the SoC executes.  

A typical application of tests generated on-the-fly is when integrating into a UVM testbench or a SystemC 

environment. These environments are typically already designed with constrained-random techniques in mind. In 

other words, these environments are typically run in regression mode with different seeds and the assumption that 

different stimulus will result from using a different seed. When using on-the-fly test generation, the behavior of a PSS 

model integrated into these environments matches those assumptions.  

 

This paper will use a simple DMA engine as the basis for examples. The DMA engine has 8 channels that can 

perform a variety of transfer types. 

The most fundamental operation the DMA can perform is to transfer data from one region of memory to another.  

 

 
Figure 3 - Diagram of a Memory-to-Memory Transfer 



 
Figure 4 - Memory-to-Memory Action 

 

Figure 4 shows a simple atomic action for controlling the DMA engine to transfer data between two memory 

regions. The atomic action models the relationships needed to model the intent of a DMA transfer, without specifying 

how the DMA engine will be programmed to carry out the DMA transfer. We have two primary options for connecting 

this test intent to test realization within the testbench that will actually program the DMA engine to carry out the 

intended transfer. 

 

The PSS Target Template exec block allows the user to specify literal snippets of code that the PSS processing tool. 

When we integrate into a SystemVerilog environment, our PSS model will produce a UVM virtual sequence. We can 

choose to implement the DMA memory-to-memory transfer in the same way that we would when writing a UVM 

sequence by hand: by setting up a UVM sequence item and calling start_item/finish_item as shown in Figure 5. 

action wb_dma_xfer_a : wb_dma_a { 
  // The channel this transfer runs on 
  rand bit[3]    channel; 
     
  // Total transfers to perform 
  rand bit[16]   tot_sz; 
     
  // Bytes to transfer at a time (1, 2, 4) 
  rand bit[4] in [1,2,4] trn_sz; 
} 
 
action mem2mem_a : wb_dma_xfer_a { 
  input data_mem_b   dat_i; 
  output data_mem_b   dat_o; 
    
  constraint { 
    dat_i.sz == (tot_sz * trn_sz); 
    dat_i.sz == dat_o.sz; 
  } 
} 



 
Figure 5 - SystemVerilog Target-Template Implementation 

 

 

Using the target-template approach to specifying test realization has some weaknesses. First, it requires us to pre-

generate tests, which means that the user needs to manage many generated test files instead of simply running 

simulation with different seeds. Secondly, writing in-line code like that shown in Figure 5 can be error-prone. Any 

errors will be caught when compiling the generated test, instead of being able to be identified by the PSS processing 

tool. 

The PSS Procedural Interface (PI) has similarities to the SystemVerilog Direct Procedure Interface (DPI) and 

foreign-language interfaces provided by other programming languages. In the case of PSS, as well as these other 

languages, the user specifies a prototype within the ‘native’ language (eg PSS) that captures the signature of a function 

implemented in the ‘foreign’ language (eg C). Doing so allows tools that process PSS descriptions to perform better 

checking up front. For example, checking that the methods are being called with the correct number and correct type 

of arguments. 

 

extend action wb_dma_c::mem2mem_a { 
 
 exec body SV = """ 
  begin 
  wb_dma_descriptor  desc =  

wb_dma_descriptor::type_id::create(); 
  desc.channel = {{channel}}; 
  desc.mode = 0; 
  desc.inc_src = 1; 
  desc.inc_dst = 1; 
  desc.src_sel = 0; 
  desc.dst_sel = 1; 
  desc.tot_sz = {{tot_sz}}; 
  desc.trn_sz = {{trn_sz}}; 
  desc.chk_sz = 16; 
  desc.src_addr = {{dat_i.addr}}; 
  desc.dst_addr = {{dat_o.addr}}; 
  
  start_item(desc); 
  finish_item(desc); 
  end 
 """; 
} 



 
Figure 6 - Procedural-Interface Implementation 

Figure 6 shows an implementation of the memory-to-memory transfer using the PSS procedural interface. Figure 7 

shows the code within the sequence that implements the API. Note that the underlying code is very similar to what 

we placed in the target-template exec block, but by using the procedural interface we allow the PSS tool to provide 

better error checking. And, the stimulus can be generated on-the-fly as the simulation runs instead of needing to be 

pre-generated. 

 

 
Figure 7 - SystemVerilog implementation of the mem2mem task 

 

Due to the advantages of using the procedural interface, the first recommendation for creating reusable test 

realization is to define APIs and use the PSS procedural interface to connect the PSS test intent to that test realization.  

 

function void mem2mem( 
 bit[31:0] channel,  
 bit[31:0] src,  
 bit[31:0] dst,  
 bit[31:0] tot_sz,  
 bit[31:0] trn_sz); 
import target function mem2mem; 
 
extend action wb_dma_c::mem2mem_a { 
 
 exec body { 
  mem2mem(channel, dat_i.addr, dat_o.addr, tot_sz, trn_sz); 
 } 
} 
 

task mem2mem( 
  bit[31:0]  channel, 
  bit[31:0]  src, 
  bit[31:0]  dst, 
  bit[31:0]  tot_sz, 
  bit[31:0]  trn_sz); 
    wb_dma_descriptor  desc = wb_dma_descriptor::type_id::create(); 
 
    desc.channel = channel; 
    desc.mode = 0; 
    desc.inc_src = 1; 
    desc.inc_dst = 1; 
    desc.src_sel = 0; 
    desc.dst_sel = 1; 
    desc.tot_sz = tot_sz; 
    desc.trn_sz = trn_sz; 
    desc.chk_sz = 16; 
    desc.src_addr = src; 
    desc.dst_addr = dst; 
  
    start_item(desc); 
    finish_item(desc); 
 
endtask 



 

 

 

 

II. ANATOMY OF TEST REALIZATION 

In understanding how best to structure test realization code to maximize its reuse potential, it’s important to consider 

the key elements of test realization. The details of how each of these elements are captured depends a bit on the 

environment, but they’re always present.  

 

A. API 

The API might be the most-recognizable aspect of test realization. The test realization API provides access to the 

functionality of the test realization code.  

 

 
Figure 8 - Embedded-Software Test Realization API 

Figure 8 shows an example of a C embedded-software API for performing a memory-to-memory transfer using our 

DMA engine. Note that a handle to the device’s context data is passed as the first parameter, and the remaining 

parameters specify the details about the transfer itself. 

 

 
Figure 9 - UVM Test Realization API 

Figure 9 shows an example of a UVM API for performing a memory-to-memory transfer. Note that in this case the 

mem2mem task is a class member task, and so the context data is implied (ie it’s the current class instance).  

 

B. Configuration and Context Data 

Test realization for all but the most-trivial of devices will require some element of context and configuration data. 

Context data is often found in two forms: state information about the device being managed, and data objects used to 

interact with the environment.  

Configuration data may be as simple as the base address of the device being managed in the case of embedded-

software test realization. In the case of UVM test realization, configuration data often consists of one or more UVM 

objects (eg register model) used to access the device registers. 

 

void wb_dma_dev_mem2mem( 
  wb_dma_dev_t   *dev, 
  uint32_t   channel, 
  uint32_t   src, 
  uint32_t   dst, 
  uint32_t   sz, 
  uint32_t   trn_sz); 

task mem2mem( 
 int unsigned   channel, 
 int unsigned   src, 
 int unsigned   dst, 
 int unsigned   sz, 
 int unsigned   trn_sz); 



 
Figure 10 - Embedded-Software Context Data 

Figure 10 shows an example of context and configuration data for an embedded-software version of test realization 

for the DMA engine. In this case, configuration data is in the form of the regs field that holds a pointer to the base 

address of the DMA device. Context data is in the form of flags to monitor the state of each channel, and objects 

used for interacting with the interrupt-management system. 

 

 

 
Figure 11 - UVM Test Realization Context Data 

Figure 11 shows an example of context and configuration data for a UVM version of test realization for the DMA 

engine. in this case, configuration data is in the form of the m_regs field that is a handle to the UVM register model 

used to access the DMA device registers. Conext data is in the form of the m_active and m_sem fields that hold 

information about the state of DMA channels and allow   

C. Events 

Here again, test realization for all but the most-trivial of devices will need to respond to events – most often in the 

form of interrupts. In the case of our DMA engine, our test realization can become aware that a channel has completed 

a transfer either by continuously polling its channel-status register (CSR) or by receiving an interrupt. Determining 

channel completion by polling the CSR is functional in an environment that only executes a single transfer on a single 

DMA engine instance at a time, using interrupts is generally required to do anything more-complex. 

 

typedef struct wb_dma_dev_s { 
 wb_dma_regs_t   *regs; 
 
 // Status flags for state of channels 
 uint32_t   status[8]; 
 
 // Notification objects for interacting with IRQ 
 pvm_event_t   xfer_ev[8]; 
} wb_dma_dev_t; 
 

class wb_dma_dev extends pvm_dev; 
 `uvm_object_utils(wb_dma_dev); 
 wb_dma_reg_block   m_regs; 
 bit     m_active[]; 
 semaphore    m_sem[]; 



 
Figure 12 - Embedded-Software Test Realization Event Code 

 

The test realization for our DMA has an interrupt-handler callback function (shown in Figure 12) that is called by 

the bare-metal software environment. This function is responsible for both clearing the interrupt condition and for 

notifying the test realization code that the DMA transfer is complete. 

 

 

Figure 13 - UVM Test Realization Event Code 

static void wb_dma_dev_irq(pvm_dev_t *devh) { 
 wb_dma_dev_t *dev = (wb_dma_dev_t *)devh; 
 uint32_t i; 
 uint32_t src_a; 
 
 src_a = pvm_ioread32(&dev->regs->int_src_a); 
 
 // Need to spin through the channels to determine 
 // which channel to activate 
 for (i=0; i<8; i++) { 
  if (src_a & (1 << i)) { 
   // Read the CSR to clear the interrupt 
   uint32_t csr = pvm_ioread32(&dev->regs->channels[i].csr); 
   dev->status[i] = 0; 
   pvm_event_signal(&dev->xfer_ev[i]); 
  } 
 } 
} 

virtual task irq(int unsigned id); 
  uvm_status_e status; 
  uvm_reg_data_t value; 
   
  m_regs.int_src_a.read(status, value); 
  `uvm_info(get_name(), $sformatf("Received IRQ SRC='h%08h", value), UVM_LOW); 
   
  for (int i=0; i<8; i++) begin 
    if (value[i]) begin 
      `uvm_info(get_name(), $sformatf("Channel %0d active", i), UVM_LOW); 
      if (m_active[i]) begin 
        uvm_status_e status_t; 
        uvm_reg_data_t value_t; 
        wb_dma_ch ch = m_regs.ch[i]; 
 
        // Read the CSR to clear the interrupt 
        ch.CSR.read(status_t, value_t); 
        m_sem[i].put(1); 
 
      end else begin 
        `uvm_fatal(get_name(), $sformatf("Interrupt on inactive channel %0d", 
i)); 
      end 
    end 
  end 
endtask 



Figure 13 shows an example UVM test realization task that is triggered when the interrupt signal on the DMA is 

activated. Note that the behavior is nearly identical to the embedded-software version, except that the UVM register 

model is used to access registers. 

 

III. TEST REALIZATION REUSE REQUIREMENTS 

 

It is, of course, important to be clear on the requirements for reusable test realization. Three key requirements must 

be considered when designing a reuse scheme for test realization. 

A. Compose Test Realization 

The PSS language enables elements of test intent to easily be composed into larger models – for example to combine 

test intent for several IPs into test intent for a subsystem containing those IPs. It is important that test realization 

parallel this composability of test intent. Otherwise, the productivity boost obtained by applying portable stimulus is 

undercut by the cost of assembling the test realization layer. 

Test intent must cooperate in order to support composition. This typically means that the code should use a common 

API to allow each element of test realization to manage concurrency and events. Test realization will often need to 

wait for events, such as interrupts, and it must be possible to allow other test realization to execute in the meantime. 

 

B. Support Multiple Instances 

In addition to needing to support composition of test realization for multiple IPs, it is important to support multiple 

instances of test realization for the same IP type. In practical terms, this means that each module of test realization 

must be able to maintain context data. It must also be possible to configure each module of test realization with 

different resources. For example, in a UVM environment, two instances of test realization will need to be configured 

with different register-model instances. 

 

C. Support Addressing Instances 

Finally, and perhaps most critical from a Portable Stimulus perspective, it must be possible to address the individual 

elements of test realization from a PSS model. The challenge comes from the fact that the addressing schemes typically 

used by embedded-software and UVM rely on the client of test-realization having pointers or handles to the modules 

of test realization code. In contrast, PSS mostly operates on integral quantities. 

 

 

IV. TEST REALIZATION REUSE BEST PRACTICES 

A. Abstract Up 

PSS encourages abstracting up, such that test intent deals with the high level of what is being exercised in the design 

instead of the details. It is ideal to match the abstraction level of the test realization API to that of the PSS test intent. 

What this typically means is that the test-realization API is matched to that of the leaf-level actions in the PSS model. 

 

B. Use the Procedural Interface 

PSS target-template exec blocks allow literal code in non-procedural languages (eg assembly language) to easily be 

generated. However, the PSS processing tool is limited in how much checking can be done. Target-template exec 

blocks also do not support on-the-fly test generation. Procedural-interface exec blocks enable the PSS processing tool 

to check argument count and parameter types being passed to external methods, and also support both on-the-fly and 

pre-generated tests. When interfacing to any procedural language, use of the procedural interface is strongly preferred. 

 



C. Interact via Scalar Values and minimize data exchange 

All foreign-language interfaces impose some level of restriction around the data types to be exchanged, and manner 

in which data is exchanged with the outside world. PSS is no different, and has similar best practices to SystemVerilog 

DPI and Java JNI.  

It’s best to have PSS call the environment and pass data out, while minimizing how much data is returned to the 

PSS model. In general, pre-generated PSS tests are not reactive, so only passing data from the test intent to the test 

realization is the safest and most-flexible approach. 

Since PSS is a constraint-driven description centered on integral quantities, using an integral quantity to address the 

test realization instances works well. Using a small integer quantity to identify device instances will be familiar to 

anyone who has interacted with devices using the Unix file I/O interface [2]. In the case of PSS, using integral 

quantities to refer to different test-realization instances allows PSS to work with scalar quantities, while providing a 

mapping to pointers or handles that are friendly to the embedded-software or UVM environment. 

The primary challenge in this approach is keeping the IDs used on the PSS side in sync with the context-data pointers 

or handles on the environment side.  

 

D. Delegate Whatever Possible to the Environment 

As stated before, test-realization code involves context data, configuration data, and events. To the extent possible, 

all of these aspects of test realization should be managed within the environment (ie UVM or embedded software), 

keeping the PSS test realization independent of the implementation details.  

An outcome of this best practice is a core assumption that environment initializes itself and the relevant test-

realization code before PSS test-generation code executes. This ensures that the PSS test can assume devices are 

initialized, that interrupts have been configured, and that it can simply call the provided test realization APIs. 

 

 

V. TEST REALIZATION REUSE FRAMEWORK 

The best practices described in the paper can be implemented in many different ways, and with tweaks to existing 

environments. This section describes key elements of a test realization reuse framework that can either be used as-is 

or incorporated into other environments. The framework is composed of PSS elements, and elements for each target 

environment – currently embedded software and UVM. 

 

A. PSS  

The core data types on the PSS side are deceptively simple. Specifically, a base component that contains an integral 

field for addressing the appropriate test realization instance. 

 

 
Figure 14 - Base Component Type 

In the case of our DMA engine, our DMA component inherits from this base component and, consequently, contains 

a device-id field to use in addressing its associated test realization instance. 

 

 
Figure 15 - DMA PSS Component 

When specifying implementation for DMA actions, the component instance-specific devid value is passed as the 

first parameter of the test-realization function to uniquely identify the instance. 

component pvm_dev_c { 
 int   devid; 
  
} 

component wb_dma_c : pvm_dev_c { 
  import pvm_types_pkg::*; 
   
} 



 

 
Figure 16 - Passing Device ID to Test Realization 

 

B. UVM 

UVM is an object-oriented framework implemented in terms of object-oriented languages – primarily 

SystemVerilog. In a UVM environment, it is most natural to encapsulate content in SystemVerilog classes and 

reference instances of these classes via handles.  

The first framework element on the UVM side is a base class from which a test realization class must inherit. The 

pvm_dev class is, itself, a UVM component and provides the same mechanisms for propagating configuration data 

that any other UVM component-derived class does. 

 

function void wb_dma_dev_mem2mem_d( 
 bit[31:0] devid, 
 bit[31:0] channel,  
 bit[31:0] src,  
 bit[31:0] dst,  
 bit[31:0] tot_sz,  
 bit[31:0] trn_sz); 
import target function mem2mem; 
 
extend action wb_dma_c::mem2mem_a { 
 
 exec body { 
  wb_dma_dev_mem2mem_d(comp.devid, channel, dat_i.addr,  
   dat_o.addr, tot_sz, trn_sz 
  ); 
 } 
} 



 
Figure 17 - UVM Test Realization 

Specific API calls are implemented as class methods within the device class, as shown below. These tasks will use 

environment resources, such as the UVM register model, to interact with the device. 

 

 
Figure 18 - UVM Implementation of mem2mem 

Note that the name of the task shown in Figure 18 is different from the name of the API referenced by the PSS 

model (Figure 16). Also, note that the API shown above doesn’t have a ‘devid’ parameter. The reuse framework 

/** 
 * Class: wb_dma_dev 
 *  
 * Implements PSS test-realization for the wb_dma IP 
 */ 
class wb_dma_dev extends pvm_dev; 
 `uvm_object_utils(wb_dma_dev); 
 wb_dma_reg_block   m_regs; 
 bit       m_active[]; 
 semaphore     m_sem[]; 
  
 function new(string name="wb_dma_dev"); 
  super.new(name); 
   
  m_active = new[8]; 
  m_sem = new[8]; 
   
  foreach (m_sem[i]) begin 
   m_sem[i] = new(0); 
  end 
 endfunction 
 
// . . . 
 
endclass 

task mem2mem( 
 int unsigned   channel, 
 int unsigned   src, 
 int unsigned   dst, 
 int unsigned   sz, 
 int unsigned   trn_sz); 
   
 `uvm_info(get_name(),  

$sformatf("--> mem2mem channel=%0d src='h%08h dst='h%08h sz=%0d", 
  channel, src, dst, sz), UVM_LOW); 
 
 init_single_transfer(channel, 0, src, 1, dst, 1, sz, trn_sz); 
 
 wait_complete_irq(channel); 
 
 `uvm_info(get_name(),  

$sformatf("<-- mem2mem channel=%0d src='h%08h dst='h%08h sz=%0d", 
  channel, src, dst, sz), UVM_LOW); 
endtask 



provides a mechanism for mapping from a global SystemVerilog task call and a class method in a specific instance 

of a device class. 

 

 
Figure 19 - Global Task Declaration Macro 

 

Figure 19 shows the use of macros provided by the reuse framework to declare global tasks that accept a device id 

as the first parameter, obtain a handle to the appropriate instance of the wb_dma_dev class, and call the appropriate 

class method. The first macro call (for mem2mem) is roughly equivalent to the code shown in Figure 20. 

 

 
Figure 20 - Generated Global Task 

 

C. Embedded Software 

The test-realization reuse framework also provides infrastructure for embedded software. Embedded software is 

typically written in C, and is often very resource-constrained. Many of the same object-oriented patterns can still be 

expressed, though. 

 

 
Figure 21 - Embedded SW Implementation of DMA Device 

 

`pvm_dev_task_decl_5(wb_dma_dev, mem2mem, uint32_t, uint32_t, uint32_t, 
uint32_t, uint32_t) 
 
`pvm_dev_task_decl_5(wb_dma_dev, mem2dev, uint32_t, uint32_t, uint32_t, 
uint32_t, uint32_t) 
 
`pvm_dev_task_decl_5(wb_dma_dev, dev2mem, uint32_t, uint32_t, uint32_t, 
uint32_t, uint32_t) 
 

task automatic wb_dma_dev_mem2mem_d( 
 uint32_t devid,  
 uint32_t p1,  
 uint32_t p2,  
 uint32_t p3,  
 uint32_t p4,  
 uint32_t p5); 
 wb_dma_dev dev_inst; 
 $cast(dev_inst, pvm_get_device(devid)); 
  
 dev_inst.mem2mem(p1, p2, p3, p4, p5); 
endtask 

typedef struct wb_dma_dev_s { 
 pvm_dev_t   dev; 
 wb_dma_regs_t   *regs; 
 uint32_t   status[8]; 
 
 pvm_event_t   xfer_ev[8]; 
} wb_dma_dev_t; 
 



Note that the framework data type (pvm_dev_t) is listed first in the user-defined data structure for the DMA engine. 

This provides a simple way of implementing inheritance in C. DMA-specific fields are also defined in the core data 

structure. 

 

 
Figure 22 - Embedded Software mem2mem Implementation 

Figure 22 shows the beginning of an embedded-software implementation of the memory-to-memory transfer 

operation. Note that a handle to the device data structure provides the context for the function. 

 

void wb_dma_dev_mem2mem( 
  wb_dma_dev_t  *drv, 
  uint32_t  channel, 
  uint32_t  src, 
  uint32_t  dst, 
  uint32_t  sz, 
  uint32_t  trn_sz) { 
 uint32_t csr, sz_v; 
 
 // Disable the channel 
 csr = pvm_ioread32(&drv->regs->channels[channel].csr); 
 csr &= ~(1); 
 pvm_iowrite32(csr, &drv->regs->channels[channel].csr); 
 
 // Program channel registers 
 csr = pvm_ioread32(&drv->regs->channels[channel].csr); 
 
 csr &= ~(1 << 19); // interrupt on chunk done 
 csr |= (1 << 18); // interrupt on done 
 csr |= (1 << 17); // interrupt on error 
 csr &= ~(1 << 5);  // Don't use hardware handshake 
 csr |= (1 << 4); // inc src 
 csr |= (1 << 3); // inc dst 
 
 csr &= ~(1 << 2); // use interface 0 for source 
 csr |= (1 << 1); // use interface 1 for destination 
 
 csr |= (1 << 0); // enable channel 
 
 // Setup source and destination addresses 
 pvm_iowrite32((src&0x0FFFFFFF), 
   &drv->regs->channels[channel].src); 
 pvm_iowrite32((dst&0x0FFFFFFF), 
   &drv->regs->channels[channel].dst); 
 
// . . . 
 
} 



 
Figure 23 - Embedded Software API Registration 

The embedded-software implementation of the framework provides macros to define wrapper functions that convert 

device-id to the appropriate instance of the device data structure, just as the UVM implementation does. In the case 

of embedded software, this macro declares a static-inline function that will, in most cases, be collapsed to inline 

code by the compiler. An example of the macro expansion is shown in Figure 24. 

 

 
Figure 24 - Expansion of the device-id macro 

 

 

 

CONCLUSION 

The Accellera PSS language enables test intent to easily be combined, making test intent portable across a range of 

execution platforms and reusable across a range of levels of verification. None of this is practically possible without 

modules of test realization that can be similarly composed and reused. Designing test realization code to be well-

encapsulated and modular, and easily accessed from PSS enables test intent and test realization to scale in a similar 

way across platforms and environments, enabling the key results that portable stimulus promises to deliver. 
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