
Designing Portable UVM Test Benches
for Reusable IPs

XIAONING ZHANG
BAOSHENG WANG

FEBRURARY 2015

2DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

TEST BENCH FOR REUSABLE INTELLECTUAL PROPERTIES

 Introductions

– IP reuse is a major design methodology for modern semiconductor industry

– Exhaustively verifying highly reusable Intellectual Properties (IPs) is challenging due to multiple usage scenarios

– Seamlessly reusing IP-level verification components at usage level requires well planning at an early test bench
(TB) development stage because of various SoC environments

 TB Requirements for Highly Reusable IPs

– Portable

– Generic

– Scalable

– Capable for seamless integration

 Proposal

– Generic UVM-based verification environments and development process

– Integration-aware test bench

3DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 1: DUT ANALYSIS ON FUNCTIONALITY

 A highly reusable IP, DVR (Digital Voltage Regulator), is utilized as a demonstration example

4DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 2: DUT ANALYSIS ON VERIFICATION CONSIDERATION

Understand the DUT from verification perspective:

– Two interfaces to configure internal registers

• An Industrial-compatible JTAG interface

• An AMD-private parallel bus interface

– The DVR can accept an input voltage (reference voltage) and control the voltage of the block it manages in
several states

• An internal FSM for state control

• Control signals and input voltage can be grouped together into the third interface (named as direct in this example)

– A behavior model for the analog type of voltage sensor is provided by RTL designers for verification

• RTL Designers verify its correctness by validating it against its real spice model

– A general directory structure is recommended

• UVCs: agent, driver, env, intf, include model, monitor, scoreboard, tb, tests, transactions and coverage

• Verification automation: test_list, scripts

5DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 3: OVERALL UVC DESIGN

6DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 4: UVCS - AGENTS AND ENVIRONMENT

 Three interfaces, three agents:

– JTAG agent

– Common parallel agent

– Direct agent

– Each agent contains:
• a sequencer
• a driver
• a monitor

– The handle of virtual interfaces are passed down to driver and monitor inside agent through “uvm_config_db”

 The configuration object in the ENV can configure each agent to be active/passive modes
– The mode switching is implementation through ifdefs

7DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 5: UVCS - SEQUENCE, SEQUENCER, SCOREBOARD AND COVERAGE

 There is a virtual sequencer containing handles to physical sequencers in agents

 For register access agents, the read sequence can take advantage of the
“item_done(tx)/get_response(tx)” pair between driver and sequence to implement register checking test
case.

 The scoreboard class contains predictors and comparators
• There are two analysis ports and two queues in the comparator to receive and hold the transactions coming from two TLM

analysis port connections, i.e. from predictor and real RTL output.

 Functional Coverage is implemented by callbacks
• There is a covergroup container component instantiated in the ENV.
• The handle of the component is passed down to callbacks “new ()” method.
• The callbacks are called in the “run_phase” of the monitor.

8DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 6A: TEST BENCH LAYOUT AND CONNECTIVITY

9DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 6B. TEST BENCH LAYOUT AND CONNECTIVITY

Components in test bench module:

– UVC instances

– Interfaces

– Clock/reset generation logic

– SystemVerilog behavioral models

Handling of TB module ports and signals

– Ports: “inout” type, i.e., bidirectional ports.

– Signals: “logic” type.

– Connections: bidirectional since they are connected together through instance pin assignments

Clocking blocks in UVM driver and monitor define the direction of interface signals

– The input signals to DUT will be inside driver clocking block

– All the signals are included in the monitor clocking block

“ifdefs” are used to control the direction of the signals for active/passive modes switching

10DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 7A: INTEGRATION OVERVIEW

11DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 7B: UVC HANDLING FOR INTEGRATION

Use SystemVerilog binding method to bind test bench module to
DUT

– TB is really portable

 TB UVCs at default are passive through ifdefs

– There will be no test cases to start sequences on the sequencers and
drivers path in block level UVC.

– Sequencers and drivers path will be disabled.

– configuration object is used to set passive to the mode variables
inside each agent.

New drivers at upper level

– The signals in the interface which were driven by the UVM drivers in
block level will now be driven by the upper-stream RTL in the upper
level data-path.

 Scoreboard and reference models can be used at upper level
Coverage collection is turned off at default to avoid potential

performance issues at upper level

bind DVR_rtl DVR_tb_module#(
.DVR_PARAM1 (DVR_PARAM1),
.DVR_PARAM2 (DVR_PARAM2),
.DVR_PARAM3 (DVR_PARAM3)

)
DVR_tb_inst(
//use .* if the tb port list is same as DUT

.clk (clk),

.rst (rst),

.dvr_in_port1 (dvr_in_port1),

.dvr_in_port2 (dvr_in_port2),
...

.dvr_out_port1 (dvr_out_port1)
);

12DESIGNING PORTABLE UVM TEST BENCHES FOR REUSABLE IP | FEBRUARY, 2015 | CONFIDENTIAL

STEP 7C: CODE SNIPPETS FOR INTEGRATION
module DVR_tb_module #(

... ...
)(
inout wire clk,
inout wire rst,
inout wire dvr_in_port1,

...
inout wire dvr_out_port1
);

//import uvm pkg for using uvm configDB in the module
import uvm_pkg::*;

logic clk_tb;
logic rst_tb;

//clock generation logic
... ...

//instantiate interface
DVR_interface dvr_interface_inst(clk_tb,rst_tb);

`ifdef PASSIVE_MODE_FOR_BLOCK_LEVEL
assign clk = clk_tb;
assign rst = rst_tb;
assign dvr_in_port1 = dvr_interface_inst.drive_sig1;

...
assign dvr_interface_inst.mon_sig1 = dvr_out_port1;

`else
assign clk_tb = clk;
assign rst_tb = rst;
assign dvr_interface_inst.drive_sig1 = dvr_in_port1;

...
assign dvr_out_port1 = dvr_interface_inst.mon_sig1;

`endif

//behavioral model instantiation and connectivity

//instantiate the UVC
//and pass the interface handle into it
DVR_UVC dvr_uvc_inst;
string m_name;

initial begin
m_name = $psprintf("%m");
dvr_uvc_inst = dldo_env::type_id::create({m_name, ".dvr_uvc_inst"},

uvm_top);

dvr_uvc_inst.interface_inst = dvr_interface_inst;
end
endmodule

interface DVR_interface (input bit clk, input bit rst);
logic drive_sig1;

...
logic mon_sig1;

clocking driver_clocking_block @(posedge clk);
output drive_sig1;
...

endclocking : driver_clocking_block

clocking mon_clocking_block @(posedge clk);
input drive_sig1;
...

input mon_sig1;
endclocking : mon_clocking_block

endinterface : DVR_interface

	Designing Portable UVM Test Benches for Reusable IPs
	Test Bench for reusable Intellectual Properties
	Step 1: DUT Analysis on functionality
	Step 2: DUT Analysis on verification consideration
	Step 3: Overall UVC Design
	Step 4: UVCs - Agents and Environment
	Step 5: UVCs - Sequence, sequencer, scoreboard and coverage
	Step 6a: Test bench layout and Connectivity
	Step 6b. Test bench layout and Connectivity
	Step 7a: INTEGRATION overview
	Step 7B: UVC handling for INTEGRATION
	Step 7C: Code snippets for INTEGRATION

