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Portable Stimulus Vision
• Ambitious Scope

– Portable across verification levels
– Portable across verification engines

• Ambitious scope is helpful!
– Can be applied in many places
– Can be applied in many ways

• Also complicates adoption
– Many possible ways to adopt
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Reuse Strategy
• Identify a primary target application

– Keep it simple, initially
– Can always extend
– Avoids getting mired in overthinking reuse

• Identify assets to reuse
– Every organization has some

• Design new assets with reuse in mind
– Let your primary target application be the guide here
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Three Axes of Reuse
• Vertical Reuse

– Reuse across verification levels
– PSS test intent created at IP reusable at Subsystem and SoC
– Reuse accelerates test-creation process at Subsystem and SoC

• Horizontal Reuse
– Reuse across design revisions
– PSS description is easily-customizable

• Technique Reuse
– Reuse same automated-stimulus techniques across platforms
– Use same modeling techniques in simulation and prototype
– Automation accelerates test-creation process
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Three Axes of Reuse
Tradeoffs

• Vertical Reuse
– Provides the greatest benefit
– Has the highest initial cost

• Horizontal Reuse
– Provides strong benefits
– Has moderate startup costs

• Technique Reuse
– Has the lowest initial cost
– Provides (relatively) the smallest benefit
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Anatomy of a PSS Description
• Declarative high-level specification

– Actions
– Constraints
– Rules

• Link to environment-specific test realization
– SystemVerilog
– C/C++
– Assembly
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Creating Tests with Portable Stimulus
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Reusable Assets
Constraints

• PSS descriptions are heavily constraint-based
– PSS is a declarative specification

• SystemVerilog constraints are also a declarative specification
– Very similar (nearly identical) format to PSS

• Reusing SV constraints can jump-start PSS creation
– Reuse already-developed and debugged logic
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Reusable Assets
Test Realization

• Existing functions can often be reused as test realization

• May require some modification
– Simplify arguments
– Align with other functions’ calling convention

• Reuse saves significant time over developing
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task init_single_transfer(
int unsigned channel,
int unsigned src,
int unsigned inc_src,
int unsigned dst,
int unsigned inc_dst,
int unsigned sz
);
wb_dma_ch ch = m_regs.ch[channel];
uvm_status_e status;
uvm_reg_data_t value;

// Disable the channel
ch.CSR.read(status, value);
value[0] = 0;
ch.CSR.write(status, value);



Designing for Reuse
Libraries

• Designing PSS for reuse a key consideration

• Consider defining common data structures
– Address/size data buffer

• Consider defining common base types
– Actions with common fields
– IP-specific common types
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struct data_mem_t {
rand bit[31:0] addr;
rand bit[31:0] sz;

}

abstract action dma_dev_a : pvm_dev_a {
// All transfers involve a channel
rand bit[7:0] in [0..7] channel;
// Size of each transfer
rand bit[4] in [1,2,4] trn_sz;

}

/**
* Transfer memory-to-memory
*/

action mem2mem_a : dma_dev_a {
input data_ref_mem_b dat_i;
output data_ref_mem_b dat_o;
. . .

}



Designing for Reuse
Checking

• Designing reusable checking is challenging
– Visibility is different in different environments
– Requirements are different
– Performance is different

• Focus on making functional tests portable
– Is the end result correct?

• Add in environment-specific checks as needed
– Detailed scoreboards
– Environment-specific checking actions
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Designing for Reuse
Test Realization

• Design test-realization for reuse

• Specify common APIs
– SystemVerilog
– Embedded C
– Host C

• Doesn’t cost much
– But avoids complexity
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task mem2mem(
int unsigned channel,
int unsigned src,
int unsigned dst,
int unsigned sz);
init_single_transfer(channel, src, 1, dst, 1, sz);
wait_complete_irq(channel);

endtask

void wb_dma_dev_mem2mem(
uint32_t devid,
uint32_t channel,
uint32_t src,
uint32_t dst,
uint32_t sz,
uint32_t trn_sz) {

wb_dma_dev_t *drv = (wb_dma_dev_t *)uex_get_device(devid);
uint32_t csr, sz_v;

// Disable the channel
csr = uex_ioread32(&drv->regs->channels[channel].csr);
csr &= ~(1);
uex_iowrite32(csr, &drv->regs->channels[channel].csr);



Designing for Reuse
Consider a Hardware Abstraction Layer

• A Hardware Abstraction Layer (HAL) makes test realization portable

• Provides common API

• Provides different implementations

• Simplifies test-realization code
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Designing for Reuse
Consider a Hardware Abstraction Layer

• Micro-Executor (UEX) is one example of a HAL

• Example code shows an ISR
– uex_ioread32 access memory
– uex_event_signal notifies waiting
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static void wb_dma_dev_irq(struct uex_dev_s *devh) {
wb_dma_dev_t *dev = (wb_dma_dev_t *)devh;
uint32_t i;
uint32_t src_a;

src_a = uex_ioread32(&dev->regs->int_src_a);

// Need to spin through the channels to determine
// which channel to activate
for (i=0; i<8; i++) {

if (src_a & (1 << i)) {
// Read the CSR to clear the interrupt
uint32_t csr = uex_ioread32(&dev->regs->chan[i].csr);
dev->status[i] = 0;
uex_event_signal(&dev->xfer_ev[i]);

}
}

}



Summary
• Creating a Reuse Strategy helps to get the biggest benefit from PSS

– Keeps focus on a primary application
– Reduces complexity 
– Can always expand scope on subsequent projects

• Identify a primary target application

• Identify assets to reuse

• Design new assets with reuse in mind
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Questions

Finalize slide set with questions slide
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