
Designing a PSS Reuse Strategy

Matthew Balance
Mentor, A Siemens Business

© Accellera Systems Initiative 1

Portable Stimulus Vision
• Ambitious Scope

– Portable across verification levels
– Portable across verification engines

• Ambitious scope is helpful!
– Can be applied in many places
– Can be applied in many ways

• Also complicates adoption
– Many possible ways to adopt

2

UVM C

Portable Stimulus

IP BLOCK SUBSYSTEM FULL SYSTEM

EMULATIONSIMULATION FPGA PROTO

Reuse Strategy
• Identify a primary target application

– Keep it simple, initially
– Can always extend
– Avoids getting mired in overthinking reuse

• Identify assets to reuse
– Every organization has some

• Design new assets with reuse in mind
– Let your primary target application be the guide here

3

Three Axes of Reuse
• Vertical Reuse

– Reuse across verification levels
– PSS test intent created at IP reusable at Subsystem and SoC
– Reuse accelerates test-creation process at Subsystem and SoC

• Horizontal Reuse
– Reuse across design revisions
– PSS description is easily-customizable

• Technique Reuse
– Reuse same automated-stimulus techniques across platforms
– Use same modeling techniques in simulation and prototype
– Automation accelerates test-creation process

4

Ve
rti

ca
l R

eu
se

Horizontal Reuse

SYSTEM-Rev1

IP-Rev1 IP-RevN

SUBSYS-Rev1 SUBSYS-RevN

SYSTEM-RevN

. . .

. . .

. . .

Three Axes of Reuse
Tradeoffs

• Vertical Reuse
– Provides the greatest benefit
– Has the highest initial cost

• Horizontal Reuse
– Provides strong benefits
– Has moderate startup costs

• Technique Reuse
– Has the lowest initial cost
– Provides (relatively) the smallest benefit

5

Anatomy of a PSS Description
• Declarative high-level specification

– Actions
– Constraints
– Rules

• Link to environment-specific test realization
– SystemVerilog
– C/C++
– Assembly

Test Intent

Actions

Test Realization

UVM C++ Host Embedded
Sw (C)

Component
Tree

Actions
Actions

Actions

Mapping

Creating Tests with Portable Stimulus

7

Scenario model
+ Constraints

DSL

C++

D
SL

C
om

pi
le

r
Solved Model

Gen-time or Run-time

C
om

pi
le

 /
Li

nk
 /

R
un

Constraint
Solver

Test
Generator

PSS Abstract
Scenario
Model

AXI
VIP

UART DDR
MEM

DMAC

UART
VIP

AXI
VIP

UVM
Sequences

UVM Testbench

TB
AXI
VIP

UART DDR
MEM

DMAC

UART
VIP

CPU

UVM
Sequences

C-testSync

SoC Testbench

Reusable Assets
Constraints

• PSS descriptions are heavily constraint-based
– PSS is a declarative specification

• SystemVerilog constraints are also a declarative specification
– Very similar (nearly identical) format to PSS

• Reusing SV constraints can jump-start PSS creation
– Reuse already-developed and debugged logic

8

Reusable Assets
Test Realization

• Existing functions can often be reused as test realization

• May require some modification
– Simplify arguments
– Align with other functions’ calling convention

• Reuse saves significant time over developing

9

task init_single_transfer(
int unsigned channel,
int unsigned src,
int unsigned inc_src,
int unsigned dst,
int unsigned inc_dst,
int unsigned sz
);
wb_dma_ch ch = m_regs.ch[channel];
uvm_status_e status;
uvm_reg_data_t value;

// Disable the channel
ch.CSR.read(status, value);
value[0] = 0;
ch.CSR.write(status, value);

Designing for Reuse
Libraries

• Designing PSS for reuse a key consideration

• Consider defining common data structures
– Address/size data buffer

• Consider defining common base types
– Actions with common fields
– IP-specific common types

10

struct data_mem_t {
rand bit[31:0] addr;
rand bit[31:0] sz;

}

abstract action dma_dev_a : pvm_dev_a {
// All transfers involve a channel
rand bit[7:0] in [0..7] channel;
// Size of each transfer
rand bit[4] in [1,2,4] trn_sz;

}

/**
* Transfer memory-to-memory
*/

action mem2mem_a : dma_dev_a {
input data_ref_mem_b dat_i;
output data_ref_mem_b dat_o;
. . .

}

Designing for Reuse
Checking

• Designing reusable checking is challenging
– Visibility is different in different environments
– Requirements are different
– Performance is different

• Focus on making functional tests portable
– Is the end result correct?

• Add in environment-specific checks as needed
– Detailed scoreboards
– Environment-specific checking actions

11

Designing for Reuse
Test Realization

• Design test-realization for reuse

• Specify common APIs
– SystemVerilog
– Embedded C
– Host C

• Doesn’t cost much
– But avoids complexity

12

task mem2mem(
int unsigned channel,
int unsigned src,
int unsigned dst,
int unsigned sz);
init_single_transfer(channel, src, 1, dst, 1, sz);
wait_complete_irq(channel);

endtask

void wb_dma_dev_mem2mem(
uint32_t devid,
uint32_t channel,
uint32_t src,
uint32_t dst,
uint32_t sz,
uint32_t trn_sz) {

wb_dma_dev_t *drv = (wb_dma_dev_t *)uex_get_device(devid);
uint32_t csr, sz_v;

// Disable the channel
csr = uex_ioread32(&drv->regs->channels[channel].csr);
csr &= ~(1);
uex_iowrite32(csr, &drv->regs->channels[channel].csr);

Designing for Reuse
Consider a Hardware Abstraction Layer

• A Hardware Abstraction Layer (HAL) makes test realization portable

• Provides common API

• Provides different implementations

• Simplifies test-realization code

13

Designing for Reuse
Consider a Hardware Abstraction Layer

• Micro-Executor (UEX) is one example of a HAL

• Example code shows an ISR
– uex_ioread32 access memory
– uex_event_signal notifies waiting

14

static void wb_dma_dev_irq(struct uex_dev_s *devh) {
wb_dma_dev_t *dev = (wb_dma_dev_t *)devh;
uint32_t i;
uint32_t src_a;

src_a = uex_ioread32(&dev->regs->int_src_a);

// Need to spin through the channels to determine
// which channel to activate
for (i=0; i<8; i++) {

if (src_a & (1 << i)) {
// Read the CSR to clear the interrupt
uint32_t csr = uex_ioread32(&dev->regs->chan[i].csr);
dev->status[i] = 0;
uex_event_signal(&dev->xfer_ev[i]);

}
}

}

Summary
• Creating a Reuse Strategy helps to get the biggest benefit from PSS

– Keeps focus on a primary application
– Reduces complexity
– Can always expand scope on subsequent projects

• Identify a primary target application

• Identify assets to reuse

• Design new assets with reuse in mind

15

Questions

Finalize slide set with questions slide

© Accellera Systems Initiative 16

	Designing a PSS Reuse Strategy
	Portable Stimulus Vision
	Reuse Strategy
	Three Axes of Reuse
	Three Axes of Reuse�Tradeoffs
	Anatomy of a PSS Description
	Creating Tests with Portable Stimulus
	Reusable Assets�Constraints
	Reusable Assets�Test Realization
	Designing for Reuse�Libraries
	Designing for Reuse�Checking
	Designing for Reuse�Test Realization
	Designing for Reuse�Consider a Hardware Abstraction Layer
	Designing for Reuse�Consider a Hardware Abstraction Layer
	Summary
	Questions

