Designing a PSS Reuse Strategy

Matthew Balance
Mentor, A Siemens Business

2019

EEEEEEEEEEEEEEEEEEEEEEE
SSSSSSSSSSSSS

Portable Stimulus Vision

 Ambitious Scope
— Portable across verification levels
— Portable across verification engines

Portable Stimulus

 Ambitious scope is helpful!
— Can be applied in many places
— Can be applied in many ways

FULL SYSTEM

e Also complicates adoption
— Many possible ways to adopt SIMULATION

SYSTEMS INITIATIVE

Reuse Strategy

* |dentify a primary target application
— Keep it simple, initially
— Can always extend
— Avoids getting mired in overthinking reuse

* |dentify assets to reuse
— Every organization has some

e Design new assets with reuse in mind
— Let your primary target application be the guide here

DESIGN AND VERIFICATION'™

accellera . DV

SYSTEMS INITIATIVE

Three Axes of Reuse

 Vertical Reuse

— Reuse across verification levels 4

SYSTEM-Rev1l SYSTEM-RevN

— PSS test intent created at IP reusable at Subsystem and SoC
— Reuse accelerates test-creation process at Subsystem and SoC

* Horizontal Reuse

— Reuse across design revisions

Vertical Reuse

— PSS description is easily-customizable

 Technique Reuse

— Reuse same automated-stimulus techniques across platforms

v

— Use same modeling techniques in simulation and prototype Horizontal Reuse

— Automation accelerates test-creation process
2019

DESIGN AND VERIFICATION'™

accellera) DV

SYSTEMS INITIATIVE

Three Axes of Reuse
Tradeoffs

* Vertical Reuse
— Provides the greatest benefit
— Has the highest initial cost

* Horizontal Reuse
— Provides strong benefits
— Has moderate startup costs

* Technique Reuse
— Has the lowest initial cost
— Provides (relatively) the smallest benefit

DESIGN AND VERIFICATION'™

accellera i DV

SYSTEMS INITIATIVE

Anatomy of a PSS Description

* Declarative high-level specification Test Intent
— Actions
— Constraints

Actions Component

- RUIeS Tree

Mapping

* Link to environment-specific test realization
— SystemVerilog
— C/C++
— Assembly

Embedded

C++ Host sw (C)

Test Realization

DESIGN AND VERIFICATION'™

accellera DV

SYSTEMS INITIATIVE

Creating Tests with Portable Stimulus

class pss_top : public action {
CTOR (pss_top, action);
Ton_handle<do_a> a{“a”};
action_handle<do_b> b{“b”};
{Nery s

action_handle<do_c> ¢ ;
on_handle<do_d> d{“d”};

acti
activilly a®

a,

b,

selec!

parallel { ¢, d },
sequence { ¢, d
}

}
}

SYSTEMS INITIATIVE

|

PSS Abstract |
Scenario |
Model '

Scenario model
+ Constraints

~ 5
2
Qo -

X
5=
O3

F____________________1

I Gen-time or Run-time I
| |
Constraint Test I
Solver Solved Model Generator I
e e e e e e e e e e e o |
ﬁ —_— UVM C-test -

Sequences Sequences

DESIGN AND VERIFICATION'™

SoC Testbench DN/ 211N

UVM Testbench

2019

CONFERENCE AND EXHIBITION

Reusable Assets

Constraints
e PSS descriptions are heavily constraint-based

— PSS is a declarative specification

e SystemVerilog constraints are also a declarative specification

— Very similar (nearly identical) format to PSS

* Reusing SV constraints can jump-start PSS creation

— Reuse already-developed and debugged logic

DESIGN AND VERIFICATION'™

accellera . DV

SYSTEMS INITIATIVE

Reusable Assets

Test Realization
e Existing functions can often be reused as test realization

task init_single_transfer(

int unsigned channel,
. .« [. int unsigned src,
¢ May reqUIre Some m0d|flcat|0n int unsigned inc_src,
. . int unsigned dst,
— Simplify arguments int unsigned inc_dst,
. . . , . . int unsigned sz
— Align with other functions’ calling convention)

wb_dma_ch ch = m_regs.ch[channel];
uvm_status e status;
uvm_reg data_t value;

e Reuse saves significant time over developing

// Disable the channel
ch.CSR.read(status, value);
value[@] = 0;
ch.CSR.write(status, value);

DESIGN AND VERIFICATION'™

accellera . DV

SYSTEMS INITIATIVE

Designing for Reuse

Libraries
e Designing PSS for reuse a key consideration

e Consider defining common data structures
— Address/size data buffer

e Consider defining common base types
— Actions with common fields
— |P-specific common types

accellera .

SYSTEMS INITIATIVE

struct data mem_t {
rand bit[31:0] addr;
rand bit[31:0] sz;

}

abstract action dma_dev_a : pvm _dev_a {
// All transfers involve a channel
rand bit[7:0] in [0..7] channel;
// Size of each transfer
rand bit[4] in [1,2,4] trn_sz;

}

/>I<>I<
* Transfer memory-to-memory
*/

action mem2mem_a : dma_dev_a {
input data_ref _mem_b dat_i;
output data_ref _mem b dat_o;

EEEEEEEEEEEEEEEEEEEEEEE

Designing for Reuse
Checking

* Designing reusable checking is challenging
— Visibility is different in different environments
— Requirements are different
— Performance is different

* Focus on making functional tests portable

— |s the end result correct?

* Add in environment-specific checks as needed
— Detailed scoreboards
— Environment-specific checking actions

DESIGN AND VERIFICATION'™

accellera) DV

SYSTEMS INITIATIVE

Designing for Reuse

Test Realization
* Design test-realization for reuse [task memzmen

int unsigned channel,
int unsigned src,
int unsigned dst,
° : int unsigned sz);
SpeCIfy common APIS init_single transfer(channel, src, 1, dst, 1, sz);

wait _complete_irqg(channel);

— SystemVerilog endtask
— Embedded C

void wb_dma_dev_mem2mem(

uint32_t devid,
- }1()St (: uint32_t channel,
uint32_ t src,
uint32_ t dst,
uint32_ t sz,
) uint32 t trn_sz) {
¢ Doesn t COSt mUCh wb_dma_dev_t *drv = (wb_dma_dev_t *)uex_get_device(devid);

uint32 t csr, sz _v;

— But avoids complexity
// Disable the channel

csr = uex_ioread32(&drv->regs->channels[channel].csr);
csr &= ~(1);

uex_iowrite32(csr, &drv->regs->channels[channel].csr); M
accellera CONFERENCE AND EXHIBITION

12

SYSTEMS INITIATIVE

Designing for Reuse

Consider a Hardware Abstraction Layer
A Hardware Abstraction Layer (HAL) makes test realization portable

Provides common API

PSS
Re-targetable
Test Intent

Firmware API
UEX Firmware

Provides different implementations

Simplifies test-realization code

SYSTEMS INITIATIVE

UEX

Memory Interrupt
Management Handling

SystemVerilog UVM

Bare Metal eSW

Threading

Host workstation

13

DESIGN AND VERIFICATION'™

EEEEEEEEEEEEEEEEEEEEEEE

Designing for Reuse

Consider a Hardware Abstraction Layer
* Micro-Executor (UEX) is one example of a HAL

e Example code shows an ISR
— uex_ioread32 access memory
— uex_event_signal notifies waiting

SYSTEMS INITIATIVE

static void wb_dma dev_irqg(struct uex dev_s *devh) {

}

wb_dma_dev_t *dev = (wb _dma dev_t *)devh;
uint32 t i;
uint32 t src_a;

src_a = uex_ioread32(&dev->regs->int src_a);

// Need to spin through the channels to determine
// which channel to activate
for (i=0; i<8; i++) {
if (src_a & (1 << 1)) {
// Read the CSR to clear the interrupt
uint32 t csr = uex_ioread32(&dev->regs->chan[i].csr);
dev->status[i] = ©;
uex_event _signal(&dev->xfer ev[i]);
}
}

EEEEEEEEEEEEEEEEEEEEEEE

14

Summary

* Creating a Reuse Strategy helps to get the biggest benefit from PSS
— Keeps focus on a primary application
— Reduces complexity
— Can always expand scope on subsequent projects

* |dentify a primary target application
* |dentify assets to reuse

e Design new assets with reuse in mind

DESIGN AND VERIFICATION'™

accellera . DV

SYSTEMS INITIATIVE

Questions

Finalize slide set with questions slide

DESIGN ANLD Vi ICATION'™

SYSTEMS INITIATIVE

	Designing a PSS Reuse Strategy
	Portable Stimulus Vision
	Reuse Strategy
	Three Axes of Reuse
	Three Axes of Reuse�Tradeoffs
	Anatomy of a PSS Description
	Creating Tests with Portable Stimulus
	Reusable Assets�Constraints
	Reusable Assets�Test Realization
	Designing for Reuse�Libraries
	Designing for Reuse�Checking
	Designing for Reuse�Test Realization
	Designing for Reuse�Consider a Hardware Abstraction Layer
	Designing for Reuse�Consider a Hardware Abstraction Layer
	Summary
	Questions

