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Abstract— The recently-released Accellera Portable Test and Stimulus Standard (PSS) promises to boost 

verification reuse by allowing a single description of test intent to be reused across IP block, subsystem, and SoC 

verification environments, and provides powerful language features to address verification needs across the verification 

levels and address the specific requirement of verification reuse. However, language features on their own do not 

guarantee productive reuse of test intent. This paper describes methodology and a planning process to minimize 

duplicated effort and maximize the reuse benefits of adopting the Accellera Portable Test and Stimulus Standard. 

 

I. INTRODUCTION 

Creating sufficient tests to verify today’s complex designs is a key verification challenge, and this challenge is 

present from IP block-level verification all the way to SoC validation. The Accellera Portable Test and Stimulus 

Standard (PSS) [1] promises to boost verification reuse by allowing a single description of test intent to be reused 

across IP block, subsystem, and SoC verification environments, and provides powerful language features to 

address verification needs across the verification levels and address the specific requirement of verification reuse. 

However, much as powerful object-oriented features in the Java and C++ languages didn’t automatically result in 

high-quality reusable code, the PSS standard’s language features on their own do not guarantee productive reuse 

of test intent. Judiciously applied, reuse of design IP and test intent can dramatically reduce rework and avoid 

mistakes introduced during the rework process. In addition, just as reuse of design IP accelerates the creation of 

new designs, reuse of test intent accelerates the creation or new test scenarios. However, effective reuse of test 

intent requires up-front planning, in the same way that reuse of design IP or software code does. Without a well-

planned process, reuse can backfire and require more work without providing proportionate benefits. This paper 

will help you to design a PSS reuse strategy that matches the goals and profile of your organization, and maximizes 

the benefits you receive by adopting PSS. 

II. ANATOMY OF A PORTABLE STIMULUS DESCRIPTION 

The PSS language was designed with the requirements of test intent reuse, and automated test creation in mind. 

The requirement to allow test intent to be reused across a variety of very different platforms drove the PSS 

language to enable a clean and clear distinction between test intent and test realization, as shown in Figure 1. In a 

PSS description, test intent specifies the high-level view of what behavior is to be exercised. PSS test intent is 

captured in a declarative manner. Declarative descriptions, as we’ve seen from the use of the declarative constraint 

description in SystemVerilog, lend themselves very nicely to reuse and automation.  

 

Both of these requirements are well-served by declarative language features. Declarative languages deal with 

the what rather than that how by specifying rules that bound the legal space of what can happen. If you’ve used 

SystemVerilog constraints, you’ve used a declarative language to specify rules for legal stimulus data values. The 

PSS language extends the data-centric declarative description that SystemVerilog provides to the scenario level, 

allowing rules to be captured that not only specify data relationships, but also specify temporal relationships 

between scenario elements called actions. 
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Figure 1 - Anatomy of a Portable Stimulus Description 

Having a high-level declarative description isn’t sufficient on its own, however. Ultimately, tests need to 

interact with the design being verified at the much lower level of registers and interrupts. Test realization is the 

code that interfaces between the high-level test intent and the lower-level details of the target platform. This code 

has a much lower need to enable automation, and verification environments often have significant test-realization 

code available already that can be leveraged. As a consequence, test realization code for portable stimulus test 

intent is nearly always implemented in existing imperative languages, such as SystemVerilog, C++, or C. 

 

 
Figure 2 - Creating Tests with Portable Stimulus 

Ultimately, of course, the purpose of a portable stimulus description is to generate tests that can be run against 

the design. Figure 2 shows a typical tool flow for a portable stimulus description. In the case of a host-based 

simulation-type environment, the PSS description will often be executed on-the-fly as the simulation runs. In this 

case, the portable-stimulus engine can be seen as providing constraint-solver functionality. In the case of an SoC 

environment, driven by tests running on the embedded processor, the PSS description will invariably be executed 

ahead of time to generate a set of simple tests that can be efficiently executed on the embedded processor.  

In both cases, a key aspect of portable stimulus is the separation between the high-level test intent and the 

specific tests generated by tool automation. 
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III. THREE MEANINGS OF PORTABLE 

As you approach designing your Portable Stimulus application strategy, it’s useful to consider three meanings 

of Portable, and how each of these meanings factors into your current and future plans for applying Portable 

Stimulus. 

 

Vertical reuse is what often comes to mind when thinking about portable test intent. The concept here is to 

enable test intent to be developed early – typically at the IP block level – and reused across the verification flow 

from subsystem to system level. Vertical reuse of test intent boosts the productivity of creating test scenarios at 

the subsystem and SoC level with a robust library of reusable content developed at IP block and subsystem level. 

Reuse of test intent and realization dramatically reduces the amount of rework required at subsystem and SoC 

level, also reducing the number of bugs introduced at these levels due to rework. While the benefits of vertical 

test intent reuse are impressive, implementing this sort of reuse requires significant organizational commitment 

due to the requirement that IP development teams produce reusable test intent for downstream teams to use. 

Portable stimulus descriptions will need to be created for existing IPs.  

 

Horizontal reuse with portable stimulus enables test intent reuse across projects where the design being verified 

is a variant of a design previously verified with portable stimulus. The declarative nature of a portable stimulus 

test intent description dramatically simplifies the task of adjusting the functionality that needs to be verified by 

adjusting the rules captured in the test intent instead of manually inspecting and updating a suite of directed tests. 

 

 
Figure 3 - Horizontal Reuse Example 

Consider the example shown in Figure 3. Different variants of this SoC may contain different numbers of DMA 

engines. With a suite a directed tests, we would need to inspect and update all of the directed tests to ensure that 

they tested the SoC with the appropriate number of DMA engines. With a declarative portable-stimulus 

description, we can simply adjust the rules to capture the available number of DMA engines, and re-generate a 

suite of tests that will test the SoC.  

 

The final meaning of portable may seem just a bit counterintuitive: portability of test techniques. Consider 

SystemVerilog constrained-random testing. This technique, and the language supporting it, have been very 

valuable at raising verification productivity and quality. However, these techniques are still largely only available 

in simulation-based environments for verification of designs in Verilog and VHDL. These techniques aren’t 

available in environments for verifying C++ designs for use with high-level synthesis (HLS). These techniques 

are also unavailable for creating embedded software tests, because embedded systems are typically too resource-

constrained to meaningfully run a full SystemVerilog simulator and solver. 
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Portable stimulus makes test techniques, such as automated constrained-random test creation portable across a 

wide variety of target environments – from host-based environments, such as simulation and C++ verification 

environments, to resource-constrained embedded systems. This ability to use the same advanced verification 

techniques in environments where these techniques were not previously available may be reason enough to adopt 

portable stimulus – quite independent of the other types of portable previously described. 

 

It’s important to consider these three aspects of portability as you craft your PSS adoption strategy and decide 

which of these aspects of portability are significant to your organization, and the relative priority of those that are 

important to your organization. This prioritization will help your organization focus resources on enabling the 

aspects of portability that will bring the most benefit. 

 

EXAMPLE OVERVIEW 

A very simple example will be used across the balance of this paper to explain concepts. The SoC-level design, 

shown in Figure 3, contains a quad-core RISC-V processor, a peripheral subsystem, and several other controllers.  

 

 
Figure 4 - DMA Engine Block-level Environment 

We will look at the DMA IP at the block level. Figure 4 shows a block diagram of the block-level verification 

environment. We will also look at the subsystem-level design that incorporates the DMA engine along with a 

UART and an interrupt controller (shown in Figure 5). 

 

 
Figure 5 - Peripheral Subsystem Verification Environment 

 

IV. IDENTIFYING EXISTING REUSE OPPORTUNITIES 

After the text edit has been completed, the After determining which portability aspects of portable stimulus 

make the most sense to pursue, it’s time to take inventory of the elements you require to implement portable 

stimulus descriptions. It’s also time to take inventory of the assets already available within your organization. 
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Organizations have a wealth of information on the design and verification environment that can be used to in 

implementing a portable stimulus environment. 

 

A. Constraints 

PSS descriptions are heavily constraint-based, since they are declarative specifications. As a consequence, 

existing descriptions that are also declarative can often be converted into a PSS format and leveraged in creating 

PSS test intent. 

SystemVerilog constraints are a good source of constraints to jump-start a PSS description. The format of 

SystemVerilog constraints has sufficient similarities to PSS constraints that reuse is often as simple as copying 

and pasting SystemVerilog constraints into the PSS model. Typical targets for reuse here are configuration classes 

that specify the rules for configuring IP and subsystem operation modes. 

Constraints are often in a form that isn’t immediately recognizable. Think about a spreadsheet that specifies the 

memory map for a SoC. With a little bit of work, this information that has been captured in a machine-readable 

format can easily be converted into PSS constraints to specialize accesses targeted to different memory regions. 

B. Test Realization 

Existing environments have a wealth of test realization, though often in a form that needs to be modified a bit 

to work with a PSS description. 

In UVM environments, look for utility sequences that perform simple operations on an IP: setting its 

configuration, performing an operation, etc. Sometimes these sequences are created with random constraints and 

variables. In other cases, tasks are provided with arguments to control the different operation modes. In both cases, 

this test realization can easily be leveraged by a PSS description. 

 

 
Figure 6 - SystemVerilog Test Realization Reuse 

Figure 6 shows a code snippet from an existing SystemVerilog task within a virtual sequence that is used to 

setup the DMA engine to perform a transfer on a given channel. This code could be leveraged with a PSS model 

to interface with the DMA engine. Note that, because this is UVM, this task uses a UVM register model to access 

registers within the DMA engine. 

 

task init_single_transfer( 
  int unsigned channel, 
  int unsigned src, 
  int unsigned inc_src, 
  int unsigned dst, 
  int unsigned inc_dst, 
  int unsigned sz 
  ); 
  wb_dma_ch ch = m_regs.ch[channel]; 
  uvm_status_e status; 
  uvm_reg_data_t value; 
   
   
  // Disable the channel 
  ch.CSR.read(status, value); 
  value[0] = 0; 
  ch.CSR.write(status, value); 
 
  // These registers are volatile. Read-back the content 
  // so the register model knows to re-write them 
  ch.A0.read(status, value); 
  ch.A1.read(status, value); 
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Figure 7 - Embedded C Test Realization Reuse 

Figure 7 shows a similar C function for programming the DMA engine to perform a single transfer. We can 

also leverage this code to provide test realization for PSS test intent for the DMA engine. 

Note that the two sets of existing code are similar but not the same. We’ll need to determine how best to interface 

to these from our PSS. 

V. BUILDING REUSABLE PSS LIBRARIES 

As you consider creating PSS content internal to your organization, it’s worth thinking about common data 

structures. PSS as a standard is fairly new to the industry at the time that this paper was written and, consequently, 

doesn’t have a standardized library of common data structures and other reusable types. It is still highly advisable 

to try to establish a reusable library of common types within your organization. By their nature, PSS descriptions 

frequently use very similar data structures -- for example, a memory buffer that has an address and size.  

 

 

 
Figure 8 - Reusable Data-buffer Type 

void wb_dma_drv_init_single_xfer( 
  wb_dma_drv_t  *drv, 
  uint32_t  ch, 
  uint32_t  src, 
  uint32_t  inc_src, 
  uint32_t  dst, 
  uint32_t  inc_dst, 
  uint32_t  sz 
  ) { 
  uint32_t sz_v, csr; 
 
  csr = WB_DMA_READ_CH_CSR(drv, ch); 
 
  csr |= (1 << 18); // interrupt on done 
  csr |= (1 << 17); // interrupt on error 
  if (inc_src) { 
    csr |= (1 << 4); // increment source 
  } else { 
    csr &= ~(1 << 4); 
  } 
  if (inc_dst) { 
    csr |= (1 << 3); // increment destination 
  } else { 
    csr &= ~(1 << 3); // increment destination 
  } 
 
  csr |= (1 << 2); // use interface 0 for source 
  csr |= (1 << 1); // use interface 1 for destination 
 
  csr |= (1 << 0); // enable channel 
 
  // Setup source and destination addresses 
  WB_DMA_WRITE_CH_A0(drv, ch, src); 
  WB_DMA_WRITE_CH_A1(drv, ch, dst); 
 
  sz_v = WB_DMA_READ_CH_SZ(drv, ch); 
  sz_v &= ~(0xFFF); // Clear tot_sz 
  sz_v |= (sz & 0xFFF); 
  WB_DMA_WRITE_CH_SZ(drv, ch, sz_v); 
 
  // Start the transfer 
  WB_DMA_WRITE_CH_CSR(drv, ch, csr); 
 
  drv->status[ch] = 1; 
} 

struct data_mem_t { 
  rand bit[31:0]   addr; 
  rand bit[31:0]   sz; 
} 
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Don’t take the chance that three people responsible for three different IPs will all define the same memory 

buffer. This would make it quite difficult to combine the three PSS models in a subsystem or SoC-level 

environment. Instead, define common types, like that shown in Figure 8, and ensure that people creating PSS 

content in your organization reuse these common types and are able to contribute to the common type library. 

 

It’s helpful to establish some per-IP methodology with respect to creating PSS content. I recommend that all 

PSS actions for a given IP derive from a common IP-specific abstract action type, as shown in Figure 9.  

 

 

 
Figure 9 - IP-Specific Common Base Action 

A key PSS feature is type extension that allows content to be inserted in a PSS type without modifying the type 

itself. Having a common base type for all actions related to a given IP provides a common type to which 

extensions intended to apply to all actions for a given IP can be applied. 

 

VI. REUSABLE DATA GENERATION AND CHECKING 

Results checking is one aspect of testing that varies significantly across the IP-block to SoC verification 

continuum. At the block level, it’s common to use detailed scoreboard-based checking that looks at details of how 

an operation was carried out, as well as its overall result. At the SoC level, that level of visibility into the design 

isn’t feasible, and result checking tends to be based on the overall result of the operation.  

 

Defining a checking strategy that will be usable from IP to SoC will be important if vertical-reuse portability is 

a high priority for your organization. In this case, it is highly recommended to focus on building the types of 

checks that retain validity at the SoC level into the PSS description. Typically these checks will be based on in-

memory data, and will focus on the overall success (or failure) of an operation. 

 

It is always possible to augment functional checks with implementation checks. For example, at the block level, 

the DMA engine operation can be checked from a portable stimulus perspective by purely-functional checks (ie 

is the data at the destination the same as the data at the source). The block-level scoreboard can still be active in 

checking the details of how the DMA transfer was carried out. This strategy can be extended to the subsystem 

and SoC level as well. For example, bringing performance-checking scoreboards in at the SoC level. 

 

VII. MAKING TEST REALIZATION REUSABLE 

Having multiple implementations of test realization is effectively mandatory. It’s important for verifiers 

working in UVM to be able to take advantage of the services, such as a register model, that UVM provides. At 

abstract action dma_dev_a : pvm_dev_a { 
  // All transfers involve a channel 
  rand bit[7:0] in [0..7] channel; 
  // Size of each transfer 
  rand bit[4] in [1,2,4] trn_sz; 
   
} 
  
/** 
 * Transfer memory-to-memory 
 */ 
action mem2mem_a : dma_dev_a { 
  input data_ref_mem_b dat_i; 
  output data_ref_mem_b dat_o; 
   
  
/** 
 * Transfers data to a memory address 
 */ 
action dev2mem_a : dma_dev_a { 
  output data_ref_mem_b dat_o; 
  input data_ref_s  info_i; 
   
  rand bit[31:0]   src_addr; 
   
} 
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the same time, it’s important for verifiers working with embedded software to be able to take advantage of the 

register-access mechanisms (packed data structures, bit fields, etc) that they are familiar with. 

 

A. Define Common APIs 

That said, it is beneficial to maximize the commonality between the different implementations of test 

realization. Designing a common API that can be used by all implementations is a first step in this direction.  

 

 
Figure 10 - Common DMA API (SV) 

Figure 10 shows an API for use by a DMA action that is built on top of the SV tasks reused from the block-

level verification environment.  

 

 
Figure 11 - Common DMA API (C) 

Figure 11 shows an implementation of the same functionality in C for use in an embedded-software 

environment. Note that the implementation is slightly different with respect to the devid parameter because 

SystemVerilog is an object-oriented language, while C is not. In the SystemVerilog environment, the mem2mem 

task is a member of class that holds needed data, such as the register model. In a SystemVerilog environment, the 

devid parameter specified by the PSS model will be mapped to the appropriate class object. Since C is not object-

oriented the user’s code must deal with mapping the devid parameter from the PSS model to the data object 

holding data needed by the utility code.  Keeping a functionally-equivalent API, even if the underlying details 

differ a bit, dramatically simplifies the task of mapping from PSS to the various implementations of test 

realization. 

 

If vertical reuse is of high importance, it’s important to consider whether it’s worth investing in an environment-

compatibility layer, like the UEX hardware-access layer shown in Figure 12. The UEX hardware-access layer [2] 

provides a C API for accessing platform memory and threading capabilities in several ways. Using a compatibility 

layer like this enables test realization code for use in an embedded-software environment to be developed and 

debugged much earlier in the verification process, and reused across more of the verification process. 

task mem2mem( 
  int unsigned   channel, 
  int unsigned   src, 
  int unsigned   dst, 
  int unsigned   sz); 
  init_single_transfer(channel, src, 1, dst, 1, sz); 
  wait_complete_irq(channel); 
endtask 

void wb_dma_dev_mem2mem( 
    uint32_t   devid, 
    uint32_t   channel, 
    uint32_t   src, 
    uint32_t   dst, 
    uint32_t   sz, 
    uint32_t   trn_sz) { 
  wb_dma_dev_t *drv = (wb_dma_dev_t *)uex_get_device(devid); 
  uint32_t csr, sz_v; 
  uex_info_low(0, "--> wb_dma_dev_mem2mem %s channel=%d src=0x%08x dst=0x%08x sz=%d", 
    drv->base.name, channel, src, dst, sz); 
  // Disable the channel 
  csr = uex_ioread32(&drv->regs->channels[channel].csr); 
  csr &= ~(1); 
  uex_iowrite32(csr, &drv->regs->channels[channel].csr); 
 
  // Program channel registers 
  csr = uex_ioread32(&drv->regs->channels[channel].csr); 
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Figure 12 - UEX Hardware Access Layer 

 

Whether it’s a compatibility layer that spans several platforms, or a series of environment-specific APIS, it is 

important to consider how the test realization for different IPs will cooperate. The test realization code for all IPs 

will likely need to access memory. The test realization for many IPs will require notification when an interrupt 

occurs. In production code, an operating system provides the glue that connects the driver code for various IPs. In 

a verification environment, whether UVM or embedded software, something much more lightweight is required.  

 

 

 
Figure 13 - DMA IRQ Routine using UEX API 

Figure 13 shows an interrupt-service routine for the DMA IP that uses the UEX API to read the DMA registers 

and notify waiting routines that a DMA transfer is complete. The UEX library enables this same code to run in a 

UVM, embedded bare-metal software environment, as well as an OS-based environment. This reuse of test 

realization code enables early debug of code for accessing IPs, and minimizes rework. 

 

B. Specify a Common PSS Interface 

Actions and test realization code for a type of IP are expected to interact with multiple instances of that IP. 

Specifying a common way to select, from the PSS layer, which IP instance is being accessed is important to 

ensuring uniformity across different test realization implementations. 

 

static void wb_dma_dev_irq(struct uex_dev_s *devh) { 
  wb_dma_dev_t *dev = (wb_dma_dev_t *)devh; 
  uint32_t i; 
  uint32_t src_a; 
 
  src_a = uex_ioread32(&dev->regs->int_src_a); 
 
  // Need to spin through the channels to determine 
  // which channel to activate 
  for (i=0; i<8; i++) { 
    if (src_a & (1 << i)) { 
      // Read the CSR to clear the interrupt 
      uint32_t csr = uex_ioread32(&dev->regs->channels[i].csr); 
      dev->status[i] = 0; 
      uex_event_signal(&dev->xfer_ev[i]); 
    } 
  } 
} 
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Figure 14 - Test Realization Base Component and Action 

 

Figure 14 shows an example base component action that specifies a built-in field named devid that specifies 

which instance of an IP is being accessed by a given action. Defining a reusable base component and action type 

ensures that all PSS descriptions developed within your organization specify which IP instance is in use in the 

same way. 

 

 

 
Figure 15 - Referencing the Component devid Field 

Figure 15 shows how the devid field is referenced from a PSS exec block for one of the DMA actions. 

 

C. Minimize Data Exchange 

One best practice when developing PSS test realization code is to minimize the volume of data exchanged 

between the PSS model and the test realization code. This best practice is shared by other languages that have a 

foreign language, such as SystemVerilog and Java [3]. Generally speaking, the PSS description is an executive 

that specifies the high-level view of operations for which the test realization will carry out the details. 

Take, for example, the actions involved in a DMA transfer. Before transferring data from a memory location, 

that memory location should be initialized. Instead of writing a PSS description to fill in memory byte-by-byte, 

the PSS description shown in Figure 16 specifies a memory region to initialize, and delegates the details of how 

memory is initialized to the test realization function. 

 

 
Figure 16 - Action to Initialize Memory 

 

 
Figure 17 - C Test Realization to Initialize Memory 

component pvm_dev_c { 
  bit[7:0]  devid; 
 
  action pvm_dev_a { 
  
  } 
  
} 

extend action wb_dma_c::mem2mem_a { 
  exec body SV = """ 
    wb_dma_dev_mem2mem({{devid}}, {{channel}}, {{dat_i.addr}},  
      {{dat_o.addr}}, {{dat_i.sz}}, {{trn_sz}}); 
  """; 
} 
 

action gendata_a { 
  input data_mem_b  dat_i; 
  output data_ref_mem_b dat_o; 
 
  constraint dat_o.addr == dat_i.addr; 
  constraint dat_o.sz == dat_i.sz; 
} 

void pvm_gendata(uint32_t ref, uintptr_t addr, uint32_t sz) { 
  pvm_rand_t r; 
  void *addr_p = (void *)addr; 
  int i; 
 
  pvm_rand_init(&r, ref); 
 
  for (i=0; i<sz; i++) { 
    uint8_t v = pvm_rand_next(&r); 
    uex_iowrite8(v, addr_p+i); 
  } 
} 
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Figure 17 shows an implementation of the gendata functionality implemented in C.  This delegation of 

responsibilities enables the PSS description to stay at a high level where declarative programming is most 

efficient, while delegating the detail work to an imperative language, which is most efficient at carrying out 

these tasks. 

 

VIII. SUMMARY 

Portable stimulus enables several types of test intent reuse: reuse across verification levels (vertical reuse), reuse 

across projects (horizontal reuse), and reuse of techniques across otherwise-unrelated environments. Selecting 

and prioritizing which of these benefits is attractive to your organization enables proper focus on what is 

important to enable those applications of portable stimulus. Performing an inventory of existing assets helps to 

ensure maximum benefit from previous investment. Developing an in-house methodology and PSS library helps 

to ensure that your organization uses common methodology. Finally, defining common APIs for test realization 

code and ensuring that test realization for different IPs can interoperate ensures that portable stimulus reuse is 

facilitated, and not limited, by test realization code. 

All of these steps help to ensure that your organization can maximize the productivity benefits that Portable 

Stimulus offers. 
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