
Designers Work Less with Quality Formal Equivalence
Checking

Orly Cohen, Moran Gordon, Michael Lifshits,
Alexander Nadel, and Vadim Ryvchin

Intel Corporation
P.O. Box 1659

Haifa 31015 Israel
{orly.cohen,gordon.moran,michael.lifshits,alexander.nadel,

ryvchin.vadim}@intel.com

ABSTRACT
Formal Equivalence Checking (FEC) is a technique that for-
mally proves the equivalence of a schematics implementation
against a golden RTL model. This equivalence must be guar-
anteed in light of possible multiple local hand-implemented
changes in the schematics. To overcome capacity problems,
FEC is usually performed on system sub-blocks, whereas the
“environment” is modeled with assumptions written using a
property specification language such as SVA. These assump-
tions must later be proved relative to the driving logic. The
majority of FEC tools today are based on SAT-based model
checking formal verification engines. In this paper, we de-
scribe an approach that can considerably reduce both the
time and computational effort required to complete FEC
activity in a project. It is based on an additional step in-
troduced to complement the traditional SAT-based model
checking algorithm. This step calculates a minimal set of re-
quired assumptions using a new SAT-based algorithm. Min-
imizing the set of assumptions greatly reduces the manual
debugging effort required of designers, as well as reduces the
number of iterative verifications.

1. INTRODUCTION
Formal Equivalence Checking (FEC) [12] is a powerful

technique that formally proves the equivalence of a pair of
design models. FEC is used in various places in the de-
sign flow, including functional equivalence comparison of
the schematics implementation (which has been created ei-
ther manually or by an automatic synthesis tool) against the
golden Register Transfer Logic (RTL) model. This equiva-
lence (or design implementation correctness) must be guar-
anteed in light of multiple local hand-implemented changes
in the schematics that may have been introduced by, for
example, timing and power optimizations. FEC is usually
performed on system sub-blocks small enough to be suit-
able for the well-known capacity limitations of formal tools.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Since the set of behaviors of a given block in isolation can
be much larger than when the block is integrated in a cir-
cuit, any unexpected input that the block receives will result
in an incorrect behavior. This is known as the Environ-
ment Problem [5]. Users overcome this lack of environment
by applying assume-guarantee reasoning (e.g. [1]) which ex-
presses restrictions the circuit places on the sub-circuit using
a property specification language such as SVA. Formal ver-
ification tools treat these properties as assumptions which
mimic the“essential”behavior of the environment. These as-
sumptions must, of course, be proved relative to the driving
logic, whence they are known as guarantees. By formulating
the set of assume and guarantee properties, the correctness
of the entire system is demonstrated by rendering the orig-
inal verification problem into smaller verification problems
involving the individual decoupled blocks. It follows that us-
ing a smaller set of assumptions is better, since ensuring the
validity of the verification requires iteratively proving all the
assumptions used. Seligman et al. describe the importance
of assumptions verification in FEC and provide an example
of a CPU project at Intel that arrived with a dead A0 silicon
as a result of a missed assumption verification step [8].

The majority of FEC tools today (we used Seqver [13])
use model checking theory and algorithms [4] and are imple-
mented with SAT-based formal verification engines (e.g. [3]).
Generally speaking, they create a propositional boolean for-
mula that is satisfiable if and only if the schematics is not
equivalent to the RTL, that is, there is a bug. This formula
is constructed as follows. A set of propositional clauses is
generated for each circuit element, each assumption, and
the equivalence requirement between the schematics and
RTL. The propositional formula comprises the set of all the
clauses. SAT solvers aim to prove the lack of a satisfying
assignment to a given formula, which, in turn, proves the de-
sired equivalence of the models. Modern SAT solvers based
on the DLL backtrack search algorithm [6], such as Min-
isat [9] or Eureka [18], are able to deduce whether extremely
large formulas are satisfiable, making it possible to solve
verification problems on complex circuits with tens of thou-
sands of sequential elements and millions of gates. If the
models are equivalent, it is necessary to prove the assump-
tions relative to the guarantees. Proving all the assumptions
would require excessive effort on the part of designers; how-
ever, it is sufficient to prove only such assumptions as were
necessary for the proof of equivalence. Fortunately, modern
SAT solvers can return all the clauses that were required for

the proof. This is called the unsatisfiable core of the for-
mula [11,20]. The projection of the clauses in the core onto
the assumptions represents the subset of assumptions whose
proof is required.
However, the number of assumptions returned by applying

standard algorithms [11,20] is still large and can be reduced
further. There exist SAT-based approaches for reducing the
set of clauses in the unsatisfiable core [10], or even mini-
mizing them [7,17] in the sense that removal of any further
clause from the core would make the problem satisfiable.
However, these algorithms are unaware of the mapping be-
tween the assumptions and the clauses. Minimization at the
SAT level does not imply that the number of assumptions
in the core would be minimized (see Fig. 4).
We developed a more efficient algorithm to calculate a

minimal set of assumptions required for the proof, in the
sense that removing any assumption would make the mod-
els non-equivalent. Besides reducing the number of iterative
verifications required, minimizing the set of assumptions can
greatly reduce the manual effort required of designers. A
major part of this effort during FEC consists of debugging
property failures. However, the failure of a property usu-
ally indicates the lack of an assumption on the inputs of a
block rather than a bug. Therefore, minimizing the number
of assumptions (i.e. the number of potential failures that
need to be debugged) will reduce the number of debugging
cycles required and the amount of related designer effort,
while achieving the same quality FEC. However, assump-
tion minimization requires additional computation time; we
shall demonstrate that it is highly beneficial at certain stages
of the FEC flow, while at other stages it is too costly.
The rest of the paper is organized as follows. In Section 2,

after briefly describing FEC, we give an overview of the al-
gorithm that efficiently calculates the minimal assumptions
set. In Section 3, we discuss the tradeoffs involved in various
approaches to reducing the number of assumptions used at
the various stages of FEC, and summarize the impact of our
approach in a large microprocessor project at Intel. Conclu-
sions and a number of recommendations for implementing
the suggested approach follow in Section 4.

2. FEC – FORMAL EQUIVALENCE
CHECKING

To overcome capacity limitations, in practice, formal ver-
ification is carried out using a divide and conquer approach,
usually referred to as compositional verification [5]. A com-
positional approach to FEC was developed in [12] and [15],
where the RTL and implementation models are decomposed
into pairs of corresponding slices. From proving the equiv-
alence of all the pairs one can infer the equivalence of the
models. The slices need to be small enough to be within the
capacity of the formal engines.
The constraints mimicking the “essential” behavior of the

slice environment must be added to the slices’ inputs us-
ing combinational or linear temporal formulas. The theory
in [15], unlike [12], supports the tool’s use of the input re-
strictions as assumptions when proving the equivalence of a
slice pair. These assumptions must, of course, be proven rel-
ative to the driving logic, whence they are known as guaran-
tees. By properly formulating the set of assume and guaran-
tee properties, it is possible to demonstrate the correctness
of the entire system, rendering the original verification prob-

Figure 1: FEC between matching RTL and schemat-
ics slices

Manual Debug

Specify constraints on the sub-circuits, imposing only

legal input sequences by mimicking their environments

Decompose the compared RTL and SCH

models into small sub-circuits (slices)

Verification pass

Analyze counterexample, fix

bug or detect missing

assumptions

YES

NO

Prove the equivalence of the outputs of

each corresponding pair of sub-circuits

Start

End

Manual Debug

Verify that RTL assumptions are

correct (using and verifying other RTL

assumptions)

Figure 2: Compositional FEC flow stages

lem into smaller verification problems involving only the in-
dividual decoupled slices. This divide and concur approach
is taken almost any time formal verification is applied to real
systems (see e.g. [1])

The above process is outlined in Figure 1. FEC is per-
formed between matching RTL and schematics slices (marked
with darkened closed rectangles) on the left side of the Fig-
ure. Constraints P1 and P2, placed on the RTL slice inputs,
are shown on the right side of the Figure (on the enlarged
slice).

Figure 2 outlines the stages of the composition FEC flow
that proves the equivalence of the specification (RTL) and
implementation (circuit) models.

Note that the last stage includes multiple iterative verifi-
cations. First, the set of assumptions used in the previous
stage is verified. This process uses other assumptions resid-
ing in the RTL following the assume-guarantee reasoning.

These assumptions are then verified using other assump-
tions and so on. Properties in the RTL come from vari-
ous sources (for example, design intent properties are writ-
ten in the RTL code, capturing intended design behavior)
to enable Assertion-Based Verification (ABV) methodology.
These properties are considered assumptions when used dur-
ing verification as constraints, and therefore need to be veri-
fied to close the Assume-Guarantee loop. The latest work of
Khasidashvili et al. [14] describes how these properties can
be proved locally in RTL contexts that are different from
the slices used in FEC.
Each verification ends with one of the following results:

Pass, Fail (in this case a counterexample trace is returned by
the tool), Problematic (due to lack of memory or timeout),
and Conditional - the property itself passes but its correct-
ness is conditionally dependent on the status of other prop-
erties (those used as assumptions for its verification). Failing
and problematic properties should be manually addressed.
The traces of failing properties should be debugged – an
interactive and iterative process that requires the hands-
on involvement of the designers, who must identify and re-
solve the root causes of the failures [16]. Although some ap-
proaches have been suggested to automate this time-consuming
process [16], it still requires a substantial effort in practice.
Debugging results in adding missing assumptions (in most
cases) or in a bug fix. Various manual techniques for logic
reduction are usually required to help formal verification
tools resolve problematic results. Unfortunately, conditional
properties need to be addressed as well – the counterexam-
ple traces of the failing assumptions are debugged by the
designers. [8] describes a case where a CPU project at In-
tel came up with dead A0 silicon due to the fact that an
engineer running FEV missed an assumption failure in the
design and did not make sure that all used assumptions were
fully verified.

2.1 Minimal Assumption Set Calculation
From the previous discussion it follows that using a smaller

set of assumptions is better, since to ensure the validity of
the equivalence verification one has to iteratively prove all
the assumptions used. There exist various approaches to
reducing the number of used assumptions in formal verifica-
tion. In this section we review several approaches, mention-
ing their drawbacks to justify our regarding them as unsuit-
able for our purpose.

2.1.1 Static Structural Analysis
One can analyze the logical cone of influence of the prop-

erty in the DUT and consider only those assumptions di-
rectly affecting the property – that is, whose cones intersect
the cone of the property. Consider Figure 3. The cones
of influence of the assumptions A1 and A2 (marked with
dark grey) intersect the cone of the property P1, therefore
affecting the behavior of DUT inputs relevant for property
P1. However, assumption A3 implicitly affects property P1
through A2. This shows how such naive approaches are
prone to under-constraining the DUT inputs, leading to false
negatives and redundant debugging cycles.

2.1.2 Iterative Trial and Error
One can try an iterative verification method, gradually

adding assumptions until they are sufficient for the proof.
The steps of this approach are outlined in Algorithm 1.

Figure 3: Assumption selection based on structural
analysis

Algorithm 1 Trial and Error Iterative Assumption Mini-
mization (Assump)

MinAssump := ∅. Try proving the equivalence without
any assumptions
while verification fails and MinAssump ̸= Assump do

try proving the equivalence using only assumptions in
MinAssump
use the counterexample (CEX) returned and find A ∈
Assump : A not in MinAssump and A contradicts with
CEX trace
add (at most 20) such assumptions to Assump

return MinAssump

Although this method was used in the Intel FEC flow un-
til recently, it has multiple drawbacks – it includes multiple
verifications trying various sets of assumptions for each pair
of design slices. Moreover, as we will see when comparing
methods in Section 3, it results in a non-optimal set of as-
sumptions.

2.1.3 SAT-based Algorithms
Here we describe SAT-based approaches to reducing the

number of assumptions used to prove the equivalence be-
tween the schematics and RTL. Our novel algorithm for as-
sumption minimization is based on the known technique of
projecting the data calculated at the SAT solver level back
onto the DUT.

Suppose that we are given a set of entities, where each en-
tity is either a design element, an assumption, or the equiv-
alence requirement between the schematics and RTL. Sup-
pose that the schematics is equivalent to the RTL. Each en-
tity entity can be translated to a set of clauses Clss(entity),
called the clause projection of entity . We denote the set of all
the assumptions by Assump and the union of all the circuit
elements and the equivalence requirement by Rest . Con-
sider Algorithm 2. It receives a set of assumptions Assump
and a set containing the rest of the formula Rest . It re-
turns a minimal set of assumptions required for the equiva-
lence proof, MinAssump. In other words, after applying the
algorithm, it is guaranteed that Rest ∪ MinAssump is un-
satisfiable and that removing any assumption from Rest ∪
MinAssump would make it satisfiable. The algorithm finds
an approximation of MinAssump by invoking a SAT solver
and placing every assumption whose clause projection in-
tersects with the unsatisfiable core into MinAssump. This
approximation results in a reduced set of assumptions, and

Algorithm 2 Minimize Assumptions (Assump,Rest)

Solve Clss(Rest ∪Assump) with SAT and extract the un-
satisfiable core UC
MinAssump := A ∈ Assump: Clss(A)∩UC is non-empty;
for all A ∈ MinAssump: Clss(A)∩UC is non-empty do

Solve Clss(Rest ∪ (MinAssump \ {A})) with SAT
if the result is “unsatisfiable” then

MinAssump := MinAssump \ {A}
return MinAssump

the reduced set can be sufficient if computation running time
is a serious limiter. We refer to this algorithm as assumption
reduction by unsatisfiable core projection.
Our algorithm further minimizes the core after the SAT

solver computes its first approximation. This requires ad-
ditional computation time, and hence it is justified mainly
when minimizing the core is relatively more important than
reducing the run-time. It iterates over all the assumptions
remaining in MinAssump. For each assumption
A ∈ MinAssump, the algorithm checks if it can be removed
from MinAssump by invoking the SAT solver on the clause
projection of all the assumptions in MinAssump, except for
A, and the rest of the formula Clss(Rest ∪ (MinAssump \
{A})). If the SAT solver concludes that this formula is un-
satisfiable, it means that it found an equivalence proof with-
out need of A. Hence, A can be removed from MinAssump.
Modern SAT solvers learn the so-called conflict clauses [2,

19] during the search. Conflict clauses are lemmas that make
the subsequent search substantially faster. To improve the
performance of our algorithm, it is essential to re-use, as
much as possible, conflict clauses that were learned in the
SAT solver’s invocations. Roughly speaking, we re-use any
conflict clause that was not derived using removed assump-
tions by providing it to any subsequent invocation of the
SAT solver. The idea of re-using conflict clauses in the con-
text of minimal unsatisfiable core extraction was proposed
first in the context of the CRR algorithm for minimal un-
satisfiable core extraction at the clause level [7, 17].

3. IMPACT OF THE ASSUMPTION MINI-
MIZATION STAGE ON FEC

In this section we describe the experiments we performed
to quantitatively measure the impact of the proposed ap-
proach to assumption minimization in a large microprocessor
project at Intel. Assumption minimization is important in
all the verification stages involved in FEC (see the diagram
in Fig. 2). Each verification stage introduces new assump-
tions which, in turn, should be verified at a later stage. The
original equivalence verification is not complete until all the
used assumption failures are cleared. It follows that mini-
mizing the set of used assumptions is most important at the
early stage, when the equivalence of the corresponding RTL
and SCH pairs is proven (the first “manual debug” loop ap-
pears at this stage in Figure 2). It is also relevant for later
stages, although in these stages a less accurate (and thus
less time-consuming) approach can be considered.
Assumption minimization comes with a price – it requires

additional computational effort, e.g. to iterate over the
assumptions after unsatisfiable core calculation (see Algo-
rithm 2). Next we describe the experiments we performed
to estimate the computational overhead versus effectiveness

of the various approaches to reducing the number of used
assumptions. We further discuss the tradeoffs for achieving
the right balance between desirable minimization character-
istics and run-time at various FEC stages.

We compared the results for minimizing the set of used as-
sumptions at the first, RTL and SCH equivalence verification
FEC stage. A comparison of run-time and reduction results
for 22 randomly chosen blocks from microprocessor design
are shown in Figure 5. The red columns show the results
of the “naive” iterative algorithm described in Algorithm 1,
while the green columns indicate the results of the minimiza-
tion algorithm based on the unsatisfiable core described in
Algorithm 2. Numbers marked over each green/red column
pair show the improvement of the minimization algorithm
over the iterative one, where 100% means that both algo-
rithms resulted in the same amount of used assumptions,
50% means that the minimization algorithm resulted in half
as many assumptions and so on. The run-time 1 of both
algorithms was similar (not shown here). The minimization
algorithm did a much better reduction job, resulting in half
as many assumptions in most cases, and dramatically fewer
in some cases (e.g. B17 and B18).

The last FEC stage where RTL assumptions are verified is
usually much more computationally intensive as compared
to the other stages. This is because the cone of influence of
ABV RTL properties, used in FEC as assumptions, stretches
beyond the boundaries of the relatively small and mostly
combinational slices of the design used for a proof in earlier
FEC stages. It can reach out to the primary inputs of the
DUT and contain large sequential logic. As a result, the
assumption minimization algorithm may become practically
unfeasible due to the long run-time.

We compared the results and run-times of two approaches
to reducing the set of used assumptions. The first approach
calculates a subset of all assumptions using the projection of
the unsatisfiable core calculated with standard algorithms [11,
20] onto the assumptions. See the illustration in Fig. 4a – as-
sumptions a1 . . . a5 are returned instead of a1 . . . a13. The
second approach uses our algorithm for unsatisfiable core
minimization with respect to assumptions. See the illustra-
tion in Fig. 4b – only assumption a8 is returned instead of
a1 . . . a13.

We show the results for 4 microprocessor design blocks
with 71, 50, 75 and 86 RTL properties that needed to be
proven to complete FEC. The number of assumptions used
without applying any of the assumption reduction approaches
resulted overall in 13019, 10431, 23836, and 31101 assump-
tions for these blocks, respectively. The results of the run-
time and reduction comparison are shown in Fig. 6. Red
columns refer to the standard UNSAT core projection al-
gorithm, while the green columns indicate the result of the
UNSAT core minimization algorithm 2. The lines indicate
the run-times of the algorithms. It can be seen that both
algorithms considerably reduced the number of assumptions
– the UNSAT core projection algorithm resulted in about a
fifth, and the UNSAT core minimization algorithm in about
a twentieth, of the original number of assumptions.

1The compared slices are small in most cases, and the re-
lated equivalence verification does not take much time to
complete, even when the longest assumption minimization
algorithm is used. Therefore we haven’t experimented with
faster assumption reduction using unsatisfiable core projec-
tion.

(a) Minimizing SAT clauses (b) Minimizing assumptions

Figure 4: Minimal unsatisfiable core with respect to SAT clauses (a) and DUT assumptions (b). The rect-
angle represents all the clauses within the SAT instance. Pyramides a1 . . . a13 represent the assumptions.
Unsatisfiable cores are shown with blobs that contain some rectangle space or some of the SAT clauses. As-
sumptions whose clauses (pyramid bases) intersect the unsatisfiable core are marked with red circles - they
are returned by the algorithms.

 1

 10

 100

 1000

 10000

 100000

B1 B2 B3 B4 B5 B6 B7 B8 B9B10B11B12B13B14B15B16B17B18B19B20B21B22

R
un

-t
im

e
(s

ec
on

ds
)

iterative minimization
UNSAT core minimization

57%
28%

100%46%2%

87%

88%

59%
42%

38%

100%

73%50%

17%

93%

50%

3%

6%

63%

50%

78%55%

Figure 5: Assumption minimization with unsatisfiable core (see Alg. 2) vs. trial and error iterative minimiza-
tion (see Alg. 1). The time is shown with logarithmic scale. Percents indicate the number of assumptions in
minimization algorithm compared to the iterative one (e.g. 50 indicates 2× reduction).

However the minimization algorithm took up to 40 hours
to complete whereas the projection algorithm finished in a
fraction of this time. Considering the above we decided to
use the faster approach for this stage.
The following results demonstrate the amount of manual

designer effort that can be saved using assumption mini-
mization. We experimented with three blocks (let’s denote
them DUT1, DUT2 and DUT3) including thousands of RTL
properties. Earlier FEC stages used 2200, 776, and 3200
RTL properties as assumptions, and thus they needed to be
verified. Let’s denote these as Used-By-FEC RTL properties
(UBF). We ran the verification twice for all RTL properties,
first with assumption reduction using the standard UNSAT
core projection technique and then without assumption re-
duction.

Figure 7 summarizes the verification results for the three
blocks – it shows the average number of assumptions used
per property and the percentage of failing assumptions. The
degree of assumption reduction varies between DUTs, but
the number of used assumptions is in every case considerably
reduced: by ∼ 50× for DUT1 (153 vs. 3.8) and by ∼ 2× for
DUT2 and DUT3. Moreover, the rate of failing properties,
those requiring manual debug, is also significantly reduced.

We used an SQL database to store the verification results
and calculated the combined verification status for the UBF
properties in the following way. We used a recursive func-
tion to calculate the full set of assumptions that each UBF
property depends on. That is, for each UBF property P we
queried for the set of assumptions (Assump) used to verify
a property P , then for each assumption Ai ∈ Assump we

 0

 5

 10

 15

 20

 25

 30

 35

DUT1 DUT2 DUT3 DUT4
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45
A

ss
um

pt
io

ns
 %

 o
ut

 o
f

th
e

or
ig

in
al

 n
um

be
r

A
lg

. r
un

-t
im

e
(h

ou
rs

)

Assump. Reduction
Assump. Minimization

Reduction
Minimization

Figure 6: Assumption reduction using UNSAT
core projection vs. UNSAT core minimization (see
Alg. 1)

.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

DUT1 DUT2 DUT3
 0

 20

 40

 60

 80

 100

A
ve

. n
um

 o
f

us
ed

 a
ss

um
pt

io
ns

 p
er

 p
ro

p

%
 o

f
fa

ili
ng

 a
ss

um
pt

io
ns

Used assumptions no reduction
Used assumptions with reduction

% of failing no reduction
% of failing with reduction

Figure 7: Impact of assumption reduction on the
number of failures to debug

queried for the set of assumptions (Assumpi) used to verify
a property Ai and so on. The final set that each UBF prop-
erty depends on is received from unifying: Assumpall =
Assump ∪ Assumpi . . . ∪ Assumpn. UBF property passes
iff all the properties within Assumpall pass and has condi-
tional verification result if any property within Assumpall
fails.
Figure 8 summarizes the averaged verification results for

the three blocks.
It can be seen that, on average, an additional 36 percent of

the properties passed when assumption reduction was used
(they were conditional, i.e. dependent on an assumption
that failed verification, when no assumption reduction was
used). This is because Assumpall sets were smaller when
using assumption reduction and so too the chances of a fail-
ing assumption being included in the Assumpall set. This
implies that an additional 36 percent of the properties were
formally proven and hence do not require further attention
from designers. Considering the large numbers of properties
used in FEC, this saves the design team a huge amount of
manual effort.

4. CONCLUSION AND
RECOMMENDATIONS

The summary of our findings is as follows.

 0

 10

 20

 30

 40

 50

 60

 70

Conditional Failed Not Run Passed Problematic

%
 o

f
al

l p
ro

pe
rt

ie
s

Original
Assumptions minimization

Figure 8: Impact of assumption reduction on the
amount of conditional properties

• Reducing the set of used assumptions has a significant,
positive efficiency impact on all FEC stages, decreas-
ing both manual debug time and computational effort.
The impact is greatest in the early FEC stages.

• Unsatisfiable core-based reduction techniques are much
more effective than straightforward iterative or struc-
tural techniques.

• There is a tradeoff between the effectiveness of assump-
tion reduction techniques and the amount of additional
computation time they require.

• Different assumption reduction techniques should be
applied at the various FEC stages as those stages vary
in terms of the complexity of the verification (the com-
plexity is much greater for RTL assumptions in the
last stages than it is for proving RTL and schematics
equivalence in the first stage) and the importance of as-
sumption reduction (smaller for the verification of RTL
assumptions than it is for proving RTL and schemat-
ics equivalence). Assumption minimization should be
applied for RTL and schematics equivalence, and as-
sumption reduction should be applied for RTL assump-
tion verification.

We implemented a novel assumption minimization algo-
rithm that calculates a minimal set of required assumptions
using a new SAT-based algorithm. It achieves the best min-
imization results compared to all other approaches, but may
take long time to complete in case of hard-to-solve verifica-
tion instances. Based on our experience with the tradeoffs
between the accuracy of assumption reduction and run-time,
we suggest employing different algorithms at different FEC
stages, thereby considerably reducing overall both the time
and the computational effort required to complete the FEC
activity in any project. Based on our learning, we believe
that any design team can run FEC with fewer resources than
is currently the practice and still achieve the same level of
confidence.

Acknowledgment
The authors would like to thank Paul Inbar, Zurab Khasi-
dashvili, Kim Joonyoung, Haim Kerem, Kaiss Daher and
Amit Palti for their valuable suggestions, reviews, and sup-
port of our work.

5. REFERENCES
[1] M. Abadi and L. Lamport. Conjoining specifications.

ACM Trans. Program. Lang. Syst., 17(3):507–535,
1995.

[2] R. J. Bayardo and R. C. Schrag. Using CSP look-back
techniques to solve real-world SAT instances. In
Proceedings of the National Conference on Artificial
Intelligence, pages 203–208, 1997.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without bdds. In TACAS
’99: Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and
Analysis of Systems, pages 193–207, London, UK,
1999. Springer-Verlag.

[4] E. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, MA, USA,
1999.

[5] E. Clarke, D. Long, and K. McMillan. Compositional
model checking. In Proceedings of the Fourth Annual
Symposium on Logic in computer science, pages
353–362, Piscataway, NJ, USA, 1989. IEEE Press.

[6] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem-proving. Commun. ACM,
5(7):394–397, 1962.

[7] N. Dershowitz, Z. Hanna, and A. Nadel. A scalable
algorithm for minimal unsatisfiable core extraction. In
A. Biere and C. P. Gomes, editors, SAT, volume 4121
of Lecture Notes in Computer Science, pages 36–41.
Springer, 2006.

[8] J. K. E. Seligman. FevŠs greatest bloopers: False
positives in formal equivalence. In DVCon, 2007.

[9] N. Eén and N. Sörensson. An extensible sat-solver. In
E. Giunchiglia and A. Tacchella, editors, SAT, volume
2919 of Lecture Notes in Computer Science, pages
502–518. Springer, 2003.

[10] R. Gershman, M. Koifman, and O. Strichman.
Deriving small unsatisfiable cores with dominators. In
CAV, pages 109–122, 2006.

[11] E. Goldberg and Y. Novikov. Verification of proofs of
unsatisfiability for cnf formulas. In DATE ’03:
Proceedings of the conference on Design, Automation
and Test in Europe, page 10886, Washington, DC,
USA, 2003. IEEE Computer Society.

[12] S.-Y. Huang and K.-T. Cheng. Formal Equivalence
Checking and Design DeBugging. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[13] D. Kaiss, S. Goldenberg, and Z. Khasidashvili. Seqver
: A sequential equivalence verifier for hardware
designs. In ICCD, 2006.

[14] Z. Khasidashvili, D. Kaiss, and D. Bustan. A
compositional theory for observational equivalence
checking of hardware. In FMCAD ’08: Proceedings of
the 2008 International Conference on Formal Methods
in Computer-Aided Design. IEEE Press, 2009.

[15] Z. Khasidashvili, M. Skaba, D. Kaiss, and Z. Hanna.
Theoretical framework for compositional sequential
hardware equivalence verification in presence of design
constraints. In ICCAD ’04: Proceedings of the 2004
IEEE/ACM International conference on
Computer-Aided Design, pages 58–65, Washington,
DC, USA, 2004. IEEE Computer Society.

[16] J. Moondanos. From error to error: Logic debugging

in the many-core era. Electron. Notes Theor. Comput.
Sci., 174(4):3–7, 2007.

[17] A. Nadel. Understanding and Improving a Modern
SAT Solver. PhD thesis, Tel Aviv University, August
2009.

[18] A. Nadel, M. Gordon, A. Palti, and Z. Hanna.
Eureka-2006 SAT solver. In Solvers description,
SAT-race, 2003.

[19] J. P. M. Silva and K. A. Sakallah. GRASP: A search
algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48:506–521, 1999.

[20] L. Zhang and S. Malik. Extracting small unsatisfiable
cores from unsatisfiable Boolean formula. In Sixth
International Conference on Theory and Applications
of Satisfiability Testing (SAT’03), 2003.

