
Design Patterns by Example for

SystemVerilog Verification Environments

Enabled by SystemVerilog 1800-2012

Eldon Nelson M.S. P.E.

Intel Corporation (eldon_nelson@ieee.org)

 Abstract- “Design Patterns”, published in 1994, is widely seen as popularizing the idea of software design patterns. The

book contained explanations and applications of software design patterns and gave them their definitive names. The miss-

ing component to actual implementation of many of the design patterns in SystemVerilog is language support, which has

only recently become available with the release of the SystemVerilog 1800-2012 specification. This paper will realize design

pattern examples from the book “Head First Design Patterns”—originally written in Java—and port them to SystemVeri-

log while being as true to the original implementation as possible. The goal will be to expose that many design patterns are

now possible to implement in SystemVerilog 1800-2012. Applications of those design patterns tailored to verification envi-

ronments is demonstrated to show its usefulness.

I. INTRODUCTION

 Modern verification environments created in a framework such as UVM encapsulate lessons learned from years of

software design experimentation by the computer science community. However, there are cornerstones of software

design that are not widely deployed in UVM verification environments. These missing software design lessons make

it harder to create flexible verification environments capable of meeting current verification needs.

 The book “Design Patterns” [1] published in 1994 is widely seen as popularizing the idea of software design pat-

terns. The book contained explanations and applications of software design patterns and gave them their definitive

names. UVM borrows from “Design Patterns” for some aspects of its design. For example, the UVM Factory con-

forms to many of the ideas of the Factory Pattern described in “Design Patterns”.

 The missing component to actual implementation of many of the design patterns is language support, which has

only recently become available with the release of the SystemVerilog 1800-2012 specification [2]. Without language

support, many of the design patterns are difficult to recognize or are impossible to implement properly. For example,

the SystemVerilog construct “implements” (Figure 1) is crucial for executing the Strategy Pattern and is critical for

executing the software design construct known as “composition”. A recurring theme in many of the design patterns

is a robust use of composition, which was not straightforward to implement in previous SystemVerilog releases.

Without composition, there is a tendency to create an unnecessary and gratuitous class hierarchy, which is more fragile

to maintain and less extensible.

class MuteQuack implements QuackBehavior;
 virtual function void quack();
 $display("<< Silence >>");
 endfunction
endclass

FIGURE 1. EXAMPLE OF SYSTEMVERILOG “IMPLEMENTS”

 The code in Figure 1 is SystemVerilog, but is valid only with the 1800-2012 version of the specification because

the keyword “implements” is only defined there. A user of SystemVerilog would be familiar with the keyword “ex-

tends” in the place of “implements”. However, the two keywords have very different meanings despite being in the

same keyword position. The keyword “extends” means to use inheritance to extend from a base class. Inheritance

has many useful applications in object-oriented programming, but in many SystemVerilog designs inheritance is seen

 2

as the only method that can change or add new functionality to a class. The keyword “implements” is a piece of an

alternative method of changing the functionality of a class called composition.

 This paper will realize design pattern examples from the book “Head First Design Patterns” [3]—originally written

in Java—and port them to SystemVerilog while being as true to the original as possible. The goal will be to expose

that it is now possible to implement many design patterns in SystemVerilog 1800-2012.

 Five design pattern examples: the Strategy Pattern [4] [5], the Observer Pattern [6] [7], the Decorator Pattern [8],

the Singleton Pattern [9] and the State Pattern [10] are implemented in SystemVerilog and are tested with three leading

SystemVerilog simulators; the examples have an exceedingly high fidelity with their original Java counterparts. The

developed code examples [11] are released with a GNU GPLv2 [12] license. There are some deficiencies in specific

simulation vendor tool support while the vendors work to fully implement the required new SystemVerilog 1800-2012

language constructs. These implementation hurdles are covered and categorized. New capabilities in the SystemVer-

ilog specification are beginning to open to the verification community a world to write expressive verification envi-

ronments that can now borrow more ideas codified in “Design Patterns.”

II. APPROACH

 Using examples from a well-regarded book on the topic of Design Patterns, with consent from the publishers and

authors, helps to give context and available resources for learning more. The code examples used in this paper are

taken from the book “Head First Design Patterns”, which uses the programming language Java in its examples. There

is also a video course “Foundations of Programming: Design Patterns” [13] on the self-learning website Lynda.com

[14] presented by the authors of “Head First Design Patterns” that covers the first part of that book. The author of

this paper, Eldon Nelson, has no personal or financial connections with the authors, book publisher or Lynda.com.

 This paper gives key code excerpts for certain concepts, but for full understanding, the complete working code

examples are available at the URL below, and specifically through the Reference numbers provided.

 https://github.com/tenthousandfailures/systemverilog-design-patterns

The code examples provided have been tested on the Cadence [15], Mentor [16] and Synopsys [17] simulators. To

make it easy to follow along and experiment, in each example directory there is a run script for each simulator along

with the expected simulation text output of the run. The run script also makes a note on the simulator compatibility

of the particular example.

III. COMPOSITION WITH SYSTEMVERILOG

 The Strategy Pattern is the first design pattern described in “Head First Design Patterns”. The Strategy Pattern is

one of the most basic applications of an object-oriented construct called composition. It might be helpful to quote a

paragraph from “Design Patterns” explaining the difference between composition versus the more familiar inheritance

used in SystemVerilog verification environments today. “Object composition is an alternative to class inheritance.

Here, new functionality is obtained by assembling or composing objects to get more complex functionality. Object

composition requires that the objects being composed have well-defined interfaces. This style of reuse is called black-

box reuse, because no internal details of objects are visible. Objects appear only as ‘black boxes’” [1, p. 19]. Forms

of composition would have been possible in releases of SystemVerilog before 1800-2012, but the implementation

would be missing the use of the “interface class” and “implements” keywords that would clearly and consistently

realize the idea of composition.

public interface QuackBehavior {
 public void quack();
}

FIGURE 2. JAVA VERSION OF INTERFACE CLASS FROM QUACKBEHAVIOR.JAVA [18]

interface class QuackBehavior;
 pure virtual function void quack();
endclass

FIGURE 3. SYSTEMVERILOG VERSION OF INTERFACE CLASS FROM QUACKBEHAVIOR.SV [4]

 3

 We can compare the code examples above from “Head First Design Patterns”, showing how to translate the idea of

creating an interface class from Java to SystemVerilog. The description from “Design Patterns” mentions having a

“well-defined interface[s]” [1, p. 19]. The SystemVerilog “interface class” in Figure 3 defines a class interface named

“QuackBehavior” that implements a function called “quack”. The interface class is a contract that defines the func-

tions (and more), that the interface class must provide when implemented. Attributes of the interface class function

such as its return type and its exact arguments are defined. The SystemVerilog 1800-2012 specification is explicit in

stating that “an interface class shall only contain pure virtual methods” [2, p. 157] for functions, which is why it is

compulsory to add the “pure virtual” attribute to our function declaration.

 To implement a class that actually performs the real function of our defined class interface, we use the keyword

“implements”. The code of the Java implementation in Figure 4 and of the SystemVerilog implementation in Figure

5 is similar, and can be easily translated between the two languages.

public class MuteQuack implements QuackBehavior {
 public void quack() {
 System.out.println("<< Silence >>");
 }
}

FIGURE 4. MUTEQUACK.JAVA [18]

class MuteQuack implements QuackBehavior;
 virtual function void quack();
 $display("<< Silence >>");
 endfunction
endclass

FIGURE 5. MUTEQUACK.SV [4]

 With the interface class (the contract) and the implementation of the interface class, we have the basis for doing a

formal implementation of composition. We can define functions with all of their attributes in an abstract way with an

interface class. Then, we can implement multiple variations of those implementations and be certain that we can swap

these interchangeable implementations at will. There is a wealth of opinions on the topic of composition versus

inheritance [19] and there is even an idiom “favor object composition over class inheritance” [1, p. 20] as the second

principle of object-oriented design from “Design Patterns”.

 4

IV. STRATEGY PATTERN WITH THE DUCK SIMULATOR

 “Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm

vary independently from clients that use it.”

- Definition of the Strategy Pattern from “Design Patterns” [1, p. 135]

FIGURE 6. STRATEGY PATTERN UML CLASS DIAGRAM FOR DUCK SIMULATOR

The example described in “Head First Design Patterns” for the Strategy Pattern describes a Duck Simulator. The

Duck object can perform two actions: fly and quack. There are many different types of ducks, such as the Mallard

Duck, which can fly with wings and quack as a duck does. And, there are ducks such as the Rubber Duck, which does

not fly and squeaks instead of quacks. The UML (Unified Modeling Language [20]) class diagram in Figure 6 shows

the types of ducks to be simulated and their possible quack and fly behaviors. The interface classes denoted with

“<<interface>>” in the UML class diagram in Figure 6 implements, through indirection combined with composition,

the quack and fly behaviors.

class RubberDuck extends Duck;

 function new();
 FlyNoWay f = new();
 Squeak q = new();
 setFlyBehavior(f);
 setQuackBehavior(q);
 endfunction

 virtual function void display();
 $display("I'm a rubber duckie");
 endfunction

endclass

FIGURE 7. STRATEGY PATTERN EXAMPLE FILE RUBBERDUCK.SV [4]

 The finished code example [4] and the excerpt from Figure 7 shows how composition allows for dynamically swap-

ping out and mixing the behavioral functions at runtime. In Figure 7 we see that the RubberDuck class is created by

 5

mixing in the “FlyNoWay” behavior and a “Squeak” behavior. This is done in the constructor of RubberDuck, but

there is no problem in changing this behavior during runtime. A benefit to this method is that the two behaviors

FlyBehavior and QuackBehavior can be reused in other unrelated classes or mixed in any way needed as new types

of Ducks are required. It also means that new behaviors can easily be created without unintended consequences

because there is a clear class interface that describes how these functions need to work. If this example were done

without composition or without the Strategy Pattern, a complicated, and ultimately contradictory, inheritance hierar-

chy would have to be created to resolve the inheritance of the two behaviors and future new behaviors.

 A constraint of using the Strategy Pattern and interfaces classes is that the behaviors do not have access to the Duck

class variables. The behaviors only have passed to them exactly what is needed for them to accomplish their purpose.

Like the Java version of “interface”, the SystemVerilog “class interface” (the name “class interface” was used in the

SystemVerilog implementation because “interface” was already used for a different construct in the language) does

not make available the variables of the object to which it is connected. Having the Behaviors be self-contained reduces

the dependencies they have and makes them then easier to maintain, because they have a defined interface and cannot

reach into other objects unless they are passed those handles explicitly.

STRATEGY PATTERN APPLIED TO VERIFICATION

 A common problem in verification is the changing encapsulation format; an example would be the idea of a packet

class. A packet might have different versions, such a v1, v2, v3, that evolve over time and hardware cycles that are

largely the same but vary in their packing, or perhaps even the number of bits in one of its fields. The packet class

versioning problem is typically handled by inheritance, but there are properties of using the Strategy Pattern that are

attractive for this type of problem.

FIGURE 8. PACKET PROTOCOL LAYOUT

 Using the packet protocols in Figure 8, from v1 to v3 we see that the locations of “addr” and “data” change, and

that the number of bits for “addr” increases in the v3 protocol. Also, the “check” bits are user-selectable between a

simple parity check or a CRC within the same protocol. If we wanted to apply the Strategy Pattern to this problem,

the UML class diagram in Figure 9 could be one possible implementation. It uses a separate class called Fields to

abstract the field contents from its bit level representation. The packets rely on two Behaviors, PackBehavior and

CheckBehavior, and their “pack” and “unpack” functions to convert to and from the bit-level representations.

 6

FIGURE 9. PACKET CLASS APPLICATION UML CLASS DIAGRAM OF STRATEGY PATTERN

 The UML class diagram looks very similar to the Duck Simulator UML class diagram which is one of the major

benefits of using Design Patterns. It becomes easier to describe complicated object relationships because there is a

shared lexicon to describe class interactions. Replace “fly” and “quack” with “pack” and “unpack”, and the diagram

is structurally the same as the Duck Simulator.

 This example becomes more complicated because of the use of parameterized classes and parameterized class in-

terfaces based of the Field class used. If there is only one Field class, all of the parameterization can be stripped away.

However, it is useful to show a potential next step for a Strategy Pattern implementation that is required to work with

multiple types. Each packet class is a combination of Fields, a PackBehavior and a CheckBehavior. Each of these

components is reusable and mixable with other objects or future packet types.

class v1_pack implements PackBehavior;
 virtual function Fields unpack(logic [13:0] raw);
 Fields fields = new;
 fields.reserved = raw[11];
 fields.addr = raw[10:7];
 fields.data = raw[6:3];
 fields.cmd = raw[2:0];
 return fields;
 endfunction

FIGURE 10. STRATEGY PATTERN APPLICATION TO VERIFICATION V1_PACK CLASS BEHAVIOR [21]

 7

class v1_packet extends base_packet;
 function new();
 v1_pack p = new();
 Crc c = new();

 setPackBehavior(p);
 setCheckBehavior(c);
 endfunction
endclass

FIGURE 11. STRATEGY PATTERN APPLICATION TO VERIFICATION V1_PACKET CLASS [21]

 The next request for this problem might be to implement a new behavior that creates packets with a “cmd” field

that is illegal when it is packed. This could lead to the creation of a new PackBehavior called “v1_pack_illegal_cmd”

that could easily be swapped in and used. The Strategy Pattern allows for swapping out encapsulated algorithms

because of the use of a defined interface.

V. THE DECORATOR PATTERN WITH STARBUZZ COFFEE

 “Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to subclass-

ing for extended functionality.”

- Definition of the Decorator Pattern from “Design Patterns” [1, p. 175]

 The Decorator Pattern allows for new responsibilities to be added to a specific object instance dynamically. While

the Strategy Pattern dealt with replacing a single function at runtime, the Decorator Pattern can add multiple behaviors

onto an object. The trick is to create a structure similar to a linked-list. The example described in “Head First Design

Patterns” is of a coffee shop that sells different types of coffee and the optional add-ons to add to that coffee. An order

could be a “Dark Roast with Double Mocha and Whip”, which has a string name that would need to be printed on the

receipt and also a cost that takes into account the coffee and its add-ons. The UML class diagram in Figure 12 de-

scribes the solution using the Decorator Pattern.

FIGURE 12. DECORATOR PATTERN UML CLASS DIAGRAM FOR STARBUZZ COFFEE

 8

 The use of a reference handle “Beverage” used in the decorator classes is the interesting part of the Decorator

Pattern. The decorator classes in this example are the condiments, such as Whip and Milk. These decorators have a

reference to a class Beverage, which is the abstract parent of all of these classes. Since “polymorphism allows the use

of a variable of the superclass type to hold subclass objects and to reference the methods of those subclasses directly

from the superclass variable” [2, p. 150], it allows the decorators to use a superclass handle that can reference the

coffee classes, as well as fellow condiments classes.

class Mocha extends CondimentDecorator;

 Beverage beverage;

 function new(Beverage beverage);
 this.beverage = beverage;
 endfunction

 virtual function string getDescription();
 return {beverage.getDescription(), ", Mocha"};
 endfunction

 virtual function real cost();
 return (0.20 + beverage.cost());
 endfunction

endclass

FIGURE 13. DECORATOR PATTERN CLASS EXAMPLE IN SYSTEMVERILOG MOCHA.SV [8]

 The Mocha condiment class in Figure 13 shows the method of how the Decorator Pattern achieves its chaining

behavior. When “getDescription()” is called on this class, it calls “beverage.getDescription()”, which would call its

own “beverage.getDescription()” until it reached the coffee type. The constructor (in SystemVerilog this is known as

the function “new”) offers a convenient and clever location to provide the handle to the parent Beverage object.

module top;
 import starbuzz::*;

 Beverage beverage;
 string str;

 initial begin
 beverage = Darkroast::new;
 beverage = Mocha::new(beverage);
 beverage = Mocha::new(beverage);
 beverage = Whip::new(beverage);
 str.realtoa(beverage.cost());
 $display({beverage.getDescription(), " $", str});

FIGURE 14. DECORATOR PATTERN EXAMPLE USE WITH TYPED CONSTRUCTOR [8]

 Figure 14 is an example of the ideal implementation of a Decorator Pattern in SystemVerilog using a new feature

from SystemVerilog 1800-2012 called “Typed Constructor Calls” [2, p. 140]. This allows a class to return its object

without needing an intermediary handle. An example of a “Typed Constructor Call” is “Darkroast::new”. The con-

diments, such as “Mocha”, pass to their constructor a handle to the Beverage object that it is encapsulating. In Figure

14 we implemented the order “Dark Roast with Double Mocha and Whip” and displayed the cost and the description

to the screen of the encapsulated order.

 Earlier versions of SystemVerilog did not have “Typed Constructor Calls”. Figure 15 illustrates using the Decorator

Pattern without “Typed Constructor Calls” which is painful to look at. It requires a number of temporary class handles,

and a confusing pattern of creating a new instance and then passing that instance handle to the next constructor. This

 9

language deficiency in previous versions of SystemVerilog might be the reason why the Decorator Pattern was seldom

used, even though technically possible.

module top;
 import starbuzz::*;

 Beverage beverage;
 DarkRoast darkroast;
 Mocha mocha;
 Whip whip;
 string str;

 initial begin
 darkroast = new;
 beverage = new darkroast;
 mocha = new(beverage);
 beverage = new mocha;
 mocha = new(beverage);
 beverage = new mocha;
 whip = new(beverage);
 beverage = new whip;
 str.realtoa(beverage.cost());
 $display({beverage.getDescription(), " $", str});

FIGURE 15. DECORATOR PATTERN EXAMPLE USE WITHOUT TYPED CONSTRUCTOR [8]

DECORATOR PATTERN APPLIED TO VERIFICATION

 At DVCon 2015 John Dickol published a paper titled “SystemVerilog Constraint Layering via Reusable Random-

ization Policy Classes” [22]. The paper provided a method to dynamically add SystemVerilog constraints to a ran-

domized class, an incredibly powerful technique. At its core, the method proposed by Dickol involved setting up a

queue of rand class objects that could be added to a class dynamically. An alternative to creating a queue of rand class

objects is to use the Decorator Pattern to add this capability.

FIGURE 16. LAYERED CONSTRAINTS USING THE DECORATOR PATTERN UML CLASS DIAGRAM

 10

 The Decorator Pattern could be applied to the layered constraint problem using the UML class diagram from Figure

16. The UML class diagram has the addition of the “{constraint}” box to signify where constraints lie. We want to

apply additively the constraints from “addr_prohibit” and “addr_permit” to our “addr_txn” class. The setup of this

example could be compared to some of the early steps in the Dickol paper. We can make the analogy that applying

new constraints to a class is similar to how the Decorator Pattern was used at the coffee shop example to add new

condiments to a coffee.

class addr_permit extends addr_txnDecorator;
 rand addr_txn txn;

 function new(addr_txn txn);
 this.txn = txn;
 endfunction

 constraint c_addr_permit {
 addr inside {['h00000000 : 'h0000FFFF – txn.size]} ||
 addr inside {['h10000000 : 'h1FFFFFFF – txn.size]};

 txn.addr == addr;
 txn.size == size;
 }

endclass

FIGURE 17. DECORATOR PATTERN APPLIED TO LAYERED CONSTRAINTS ADDR_PERMIT [23]

 The constructor function “new” in Figure 17 works just as the Decorator Pattern did in the coffee shop example,

saving a reference to the object it was constructed with. The SystemVerilog constraints are similar to other constraints.

The only twist to enable the Decorator Pattern with SystemVerilog constraints is to tie the local randomization of

“addr” with “txn.addr” and “size” with “txn.size”.

module top;

 layer::addr_txn txn;

 initial begin
 txn = new;
 txn = layer::addr_prohibit::new(txn);
 txn = layer::addr_permit::new(txn);
 txn.rprint();

FIGURE 18. DECORATOR PATTERN APPLIED TO LAYERED CONSTRAINTS EXAMPLE USAGE CALL [23]

 Using the Decorator Pattern is intuitive and similar to how this pattern is applied in any programming language,

taking an object and encapsulating it with a new behavior or new behaviors. The key to enabling the SystemVerilog

constraints was adding a constraint to tie the randomized variable to the constructor’s passed in handle. A benefit of

this method is that the original txn class is untouched. New functionality is applied on top of a class using a decorator,

instead of modifying the base class as was done in the Dickol method. By not altering the the original classes, we are

applying the “Open/Closed principle” [24] of object-oriented programming, where we add new functionality, but do

not alter the original implementation. The Dickol method was expanded upon in his paper, and provided features of

layered constraints that would take consideration to determine if the Decorator Pattern by itself could implement.

 11

VI. RESULTS

 A major concern with using new SystemVerilog language features is compatibility with the simulators. Some of

the SystemVerilog 1800-2012 features that enable Design Patterns are not fully supported in some of the simulators

today. Figure 19 is a table of SystemVerilog features that are used in the Design Pattern examples provided and their

compatibility with major simulators.

Simulator local constructor keyword

“implements”

keyword

“interface class”

typed

constructor calls

A Y Y Y Y

B Y Y Y N

C Y N N N
FIGURE 19. SYSTEMVERILOG LANGUAGE FEATURES RELATED TO DESIGN PATTERNS VERSUS SIMULATOR COMPATABILITY

 Five complete Design Pattern examples converted to SystemVerilog from the Java examples are available through

this paper. Figure 20 provides the compatibility of each of those Design Pattern examples for each simulator. Each

Design Pattern in the repository provided has a runfile for each simulator. A Verilog define directive of

“PREFERRED” is given to demonstrate, if needed, the preferred implementation (P) versus a satisfactory imple-

mentation (S) depending on the simulator’s compatibility.

Simulator Decorator Singleton Observer Strategy State

A P P P P P

B S P P P P

C S P N N N

P (Preferred Implementation)  S (Satisfactory Implementation)  N (Not Directly Supported)
FIGURE 20. IMPLEMENTATION EFFECTIVENESS OF SELECTED DESIGN PATTERNS VERSUS SIMULATOR

VII. SUMMARY

 This paper covered two patterns: the Strategy Pattern and the Decorator Pattern. Parallels between Java implement-

ing the code examples and SystemVerilog were shown, and their full examples are available in the supporting code

of this paper. There is a high fidelity between the Java implementation [18] and the SystemVerilog implementation

[5] for all five attempted patterns, suggesting that SystemVerilog with the 1800-2012 release has finally achieved the

language features it requires to implement something as ambitious as Design Patterns. Because Design Patterns them-

selves are some of the more complicated applications of object-oriented programming, this is a great feat, demonstrat-

ing how far SystemVerilog has come in its development.

 The other patterns that were translated to SystemVerilog—Observer, State and Singleton—are also useful examples

to show support for modern language features, arguably, necessary to properly implement Design Patterns. To show

applications more familiar to a SystemVerilog user, two hardware verification applications of Design Patterns were

explained. The Strategy Pattern was applied to the classical versioned packet protocol problem to show how different

packing and unpacking functions could be swapped in through composition. Composition, which would in some form

have been possible in prior versions of SystemVerilog, is now fully supported through the new keywords “class inter-

face” and “implements” in SystemVerilog 1800-2012. The Decorator Pattern was applied to the previous year’s

DVCon paper by John Dickol, “SystemVerilog Constraint Layering via Reusable Randomization Policy Classes”, to

show an alternative way of layering constraints.

 It is said that Design Patterns are not created, but are discovered. Object-oriented programming gives rise to these

Design Patterns because certain types of problems can naturally be solved by applying some of these techniques.

There is a verification framework in use today called UVM that has many ideas with names or functions very similar

to what is described in “Design Patterns”. The “UVM Factory” function is exactly the same idea as the “Factory

Pattern” from “Design Patterns”. The “UVM Analysis Port” has many similarities to the “Observer Pattern”. It will

be interesting to see what new UVM constructs can be created with these new language features.

 12

 A goal of this paper is to expose that SystemVerilog can now implement more modern software engineering ideas

because of the inclusion of new language features. And, SystemVerilog can do so with a high fidelity when comparing

the implementation details with a modern programming language such as Java. The comparison of the Java imple-

mentation to the SystemVerilog implementation is down to minor language choices, but the ideas and structure behind

them are very close. At this time, in the UVM framework 1.2 there are no uses of the language constructs that were

unique to SystemVerilog 1800-2012 and covered in this paper: “class interface”, “implements” or “Typed Constructor

Calls”. That is for good reason – not all simulators support these language features at this time. The hope is that with

concrete applications and example code, which this paper and its examples provide, these language features and the

Design Patterns they enable can make their way into the object-oriented SystemVerilog designs yet to come.

VIII. FUTURE WORK

 The application of the Decorator Pattern in SystemVerilog could have a number of uses. The paper demonstrated

using the Decorator Pattern to add new constraints to a class. It could be useful to apply this same technique to add

new functional coverage to an existing class as well.

ACKNOWLEDGEMENT

 A big thank you goes to O’Reilly Media [25] the publishers of “Head First Design Patterns” for allowing me to

create translations of some of their Java examples to SystemVerilog to share in this paper. Also thank you to the co-

writers of “Head First Design Patterns” Elisabeth Robson and Eric Freeman for writing such great examples for the

book and posting them on Github. Thanks to Intel Technical Writer Myron Porter for technical writing expertise.

Thanks to my employer Intel for sponsoring my attendance at DVCon to share this paper.

 13

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Indianapolis, IN:

Addison-Wesley, 1994.

[2] IEEE Computer Society and the IEEE Standards Association Comporate Advisory Group, IEEE Standard for SystemVerilog 1800-2012,
New York, NY: IEEE, 2013.

[3] E. Robson and E. Freeman, Head First Design Patterns, Sebastopol, CA: O'Reilly Media, Inc., 2004.

[4] E. Nelson, "Strategy Pattern from Head First Design Patterns in SystemVerilog," 31 12 2015. [Online]. Available:
https://github.com/tenthousandfailures/systemverilog-design-patterns/tree/master/strategypattern/example. [Accessed 1 1 2016].

[5] E. Nelson, "The Strategy Pattern in SystemVerilog," 2014. [Online].
Available: http://tenthousandfailures.com/blog/2014/7/13/the-strategy-pattern-in-systemverilog.

[6] E. Nelson, "Observer Pattern from Head First Design Patterns in SystemVerilog," 31 12 2015. [Online]. Available:

https://github.com/tenthousandfailures/systemverilog-design-patterns/tree/master/observer/example. [Accessed 1 1 2016].

[7] E. Nelson, "The Observer Pattern in SystemVerilog," 1 9 2014. [Online].

Available: http://tenthousandfailures.com/blog/2014/9/1/the-observer-pattern-in-systemverilog. [Accessed 1 1 2016].

[8] E. Nelson, "Decorator Pattern from Head First Design Patterns in SystemVerilog," 31 12 2015. [Online]. Available:

https://github.com/tenthousandfailures/systemverilog-design-patterns/tree/master/decoratorpattern/example. [Accessed 1 1 2016].

[9] E. Nelson, "Singleton Pattern from Head First Design Patterns in SystemVerilog," 31 12 2015. [Online]. Available:

https://github.com/tenthousandfailures/systemverilog-design-patterns/tree/master/singleton/example. [Accessed 1 1 2016].

[10] E. Nelson, "State Pattern from Head First Design Patterns in SystemVerilog," 31 12 2015. [Online]. Available:

https://github.com/tenthousandfailures/systemverilog-design-patterns/tree/master/state/example. [Accessed 1 1 2016].

[11] E. Nelson, "Design Pattern SystemVerilog Code Examples on Github," 30 12 2015. [Online]. Available:
https://github.com/tenthousandfailures/systemverilog-design-patterns. [Accessed 1 1 2016].

[12] Free Software Foundation, "GNU General Public Use License Version 2.0," 1991. [Online].

Available: http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html.

[13] E. Robson and E. Freeman, "Foundations of Programming: Design Patterns," Lynda.com, 13 12 2013. [Online]. Available:

http://www.lynda.com/Developer-Programming-Foundations-tutorials/Foundations-Programming-Design-Patterns/. [Accessed 27 12

2015].

[14] Lynda.com, "Lynda.com," [Online]. Available: http://www.lynda.com. [Accessed 27 12 2015].

[15] Cadence, "Incisive Version 14.10," [Online]. Available: http://www.cadence.com.

[16] Mentor Graphics Corporation, "Questa Sim Version 10.4c," [Online]. Available: https://www.mentor.com.

[17] Synopsys, "VCS Version K-2015.09," [Online]. Available: http://www.synopsys.com.

[18] E. Robson and E. Freeman, "Stategy Pattern from Head First Design Patterns," 2014. [Online]. Available:

https://github.com/bethrobson/Head-First-Design-Patterns/tree/master/src/headfirst/designpatterns/strategy. [Accessed 1 1 2016].

[19] H. Oliver, "Mixins over Inheritance," 8 11 2015. [Online].

Available: http://alisoftware.github.io/swift/protocol/2015/11/08/mixins-over-inheritance/. [Accessed 29 12 2015].

[20] M. Fowler, UML Distilled Third Edition: A Brief Guide to the Standard Object Modeling Language, 3rd Edition ed., Boston, MA:
Addison-Wesley, 2006.

[21] E. Nelson, "The Strategy Pattern Applied to Verification," 30 12 2015. [Online]. Available:

https://github.com/tenthousandfailures/systemverilog-design-patterns/tree/master/strategypattern/application. [Accessed 5 1 2016].

[22] J. Dickol, "SystemVerilog Constraint Layering via Reusable Randomization Policy Classes," in Design and Verificaiton Conference, San

Jose, California, USA, 2015.

[23] E. Nelson, "Layered Constraints via the Decorator Pattern," 31 12 2015. [Online]. Available:

https://github.com/tenthousandfailures/systemverilog-design-patterns/tree/master/decoratorpattern/application. [Accessed 1 1 2016].

[24] B. Meyer, Object-Oriented Software Construction, New York: Prentice Hall, 1988.

[25] O'Reilly Media, "O'Reilly Media," O'Reilly Media, 1 1 2016. [Online]. Available: http://www.oreilly.com. [Accessed 1 1 2016].

	I. Introduction
	II. Approach
	III. Composition with SystemVerilog
	IV. Strategy Pattern with the Duck Simulator
	Strategy Pattern Applied to Verification

	V. The Decorator Pattern with Starbuzz Coffee
	Decorator Pattern Applied to Verification

	VI. Results
	VII. Summary
	VIII. Future Work
	Acknowledgement
	References

