

1

Design Methodology for Highly Cycle
Accurate SystemC Models with Better

Performance

Simranjit Singh, Infineon, Bangalore, India (Simranjit.Singh@infineon.com)

Prasanth Sasidharan, Infineon, Bangalore, India (Prasanth.Sasidharan@infineon.com)

Sameer Deshpande, Infineon, Bangalore, India (Sameer.Deshpande@infineon.com)

Sandeep Puttappa, Infineon, Bangalore, India (Sandeep.Puttappa@infineon.com)

Abstract— with the increasing interest in the architecture exploration and performance analysis, there is an

increase in demand of cycle-accurate SystemC models along with simulation performance comparable to that of
loosely timed models. With the conventional method of using toggling clock to model timing behaviour, the cycle-
accuracy can be achieved but it is not feasible to achieve the desired simulation performance. The other approach is
to use clock period to model timing behaviour. It is based on the usage of clock period information for predicting the
required clock edges rather than the traditional clock toggling approach as followed in RTL designs. All the
processes in the design predict when are to be triggered again based on the clock time period information and
schedule the triggering accordingly in the form of event notification and wait statements. The advantage of this
methodology is that it is easier to achieve better simulation performance for the software models. However, the
models are not always accurate to cycle level and are not synchronized with changing clock. It is difficult to
synchronize all the processes in the design when the period of the clock changes. This introduces cycle inaccuracy in
the design. With timing behaviour implemented in each process, it is very difficult to debug and to adapt for cycle-
accuracy. This becomes more difficult with complex designs. The simulation performance also degrades as the
number of processes increase in a design due to increased context switching and the advantage of this approach is
lost. There is a need to have a design methodology in place which handles the clock synchronizations and which
caters to the timing requirements of all the processes in a module. This paper describes a design methodology which
refines this approach to achieve the desired cycle-accuracy and the simulation performance. It has already been
proven on multiple designs

Keywords—Simulation, Performance, Cycle Accuracy, Fast models, Re-usability, RTL, Extensibility.

I. INTRODUCTION

Virtual prototyping has become essential to handle the increasing design complexity and reducing time-to-
market windows. The virtual prototypes are being used for various purposes like early software development,
software performance analysis, architectural exploration and hardware performance analysis. The level of
abstraction of functional and communication aspect of a model largely depends on the use case.

There is always a trade-off between accuracy and speed of a model. For software development and software
performance analysis, a less-accurate but highly fast model is required. For architectural exploration and
hardware performance analysis, a highly accurate, both functionally and temporally, and fairly fast model is
required. As the industry’s interest architectural exploration and hardware performance analysis is increasing, the
demand of cycle-accurate models with performance equivalent to that of loosely-timed model is increasing. It
requires change in the modeling techniques to achieve cycle-accuracy with the desired performance. The paper
describes one such methodology to model the desired virtual prototypes.

II. TRADITIONAL APPROACH OF MODELING FOR CYCLE-ACCURACY

The traditional approach to model for cycle-accuracy is to bring the virtual prototype or model to the
hardware. The model is designed to work at each clock edge where the clock is a toggling signal. It involves a
large number of processes executing at each triggering edge of the clock which causes simulation speed to fall
drastically.

The other approach is to use clock period to model timing behaviour as shown in Figure 1. This approach is
based on the usage of clock time period for predictions of required edges rather than the traditional toggling clock
approach, which results in a significant increase in simulation performance. The timing behaviour is modelled

mailto:Simranjit.Singh@infineon.com�
mailto:Prasanth.Sasidharan@infineon.com�
mailto:Sameer.Deshpande@infineon.com�
mailto:Sandeep.Puttappa@infineon.com�

2

through each process scheduling itself at the required point of time in simulation using timed event notifications
and wait statements. For example, if a process is triggered at ever second rising edge of the clock, then it is
required to be re-scheduled to run after two into the clock period.

However, it does not assure cycle-accuracy in all the cases. In case there is a change in the clock period, the
cycle-accuracy will be lost as each process is scheduled using the old clock-period information and thus the
operations are not carried out in synchronization with the clock edges of the new clock. This introduces cycle
inaccuracy in the design. With timing behaviour implemented in each process, it is very difficult to debug and to
adapt for cycle-accuracy. This becomes more difficult with complex designs. The simulation performance
degrades as the number of processes increase in a design due to increased context switching and the advantage of
this approach is lost.

III. CLOCK CONTROLLER APPROACH OF MODELLING FOR CYCLE-ACCURACY

This article describes a design methodology to refine the clock period based approach. The idea is to have a
central unit that handles scheduling of all the processes in the design and takes care of changes in the clock
period. The methodology provides a generic clock control unit which acts as a single source of clock-information
in a design. It recommends a design to be modularized where the sub-modules implement clock-dependent
operations in call-backs registered with clock control unit. The clock control unit maintains the operations
synchronized and handles changes in the clock-period. It assures cycle-accuracy in all cases. With this new flow,
it would be easy to model any IP systematically thereby leading to a maintainable design which is extensible for
future design needs.

Finally, complete content and organizational editing before formatting. Please take note of the following items
when proofreading spelling and grammar:

A. Flow
The new design method demands the design of an IP to be modularized. An IP is functionally divided into

smaller sub-modules. The sub-modules are categorized on the basis of functionality and the associated clock
domain. The clock control unit also becomes part of the design as a sub-module as shown in Figure 2. It is
connected to the module’s input clock and to all other sub-modules which require clock to operate via registered
call-backs.

In the context of clock control unit, the registered sub-modules are referred as clock-clients. As in the
traditional approach, a module would implement all the clock dependent operations in form of processes,
sensitive to the module clock. Each process would be responsible for re-scheduling itself by calculating the next
trigger time using next required clock edge. With clock control unit, in the sub-modules or clock-clients, the
required clock-dependent operations are modelled in the clock call-back registered with the clock control unit,
instead of processes. As the sub-modules are independent of the timing information they do not use processes or
any other SystemC constructs which assist in scheduling. Ideally, there shall not be any process in a clock-client.

Clock X
Number
of Cycles

Clock
(time)

Module

Process1

Process2

Process3

Figure 1: Model designed with traditional approach

3

Hence, the sub-modules become more C++ style classes rather than typical SystemC modules. It reduces the
overhead associated with the processes in the design and context switching during the simulation. It results in
significant increase in the simulation speed.

This approach also makes it easier for the designer to track the flow of the design and provides better
debugging possibility.

IV. METHODOLOGY COMPONENTS

After the text edit has been completed, the paper is ready for the template. Duplicate the template file by using
the “Save As” command, and use the naming convention prescribed by your conference for the name of your
paper. In this newly created file, highlight all of the contents and import your prepared text file. You are now
ready to style your paper; use the scroll down window on the left of the MS Word Formatting toolbar.

A. Clock Control
 Clock-Control is a generic block which can be used in any module implementation. It runs on the module’s

clock and effectively handles the clock-based scheduling of module’s processes. As discussed above, it is used as
a sub-module in a design and all the other clock-driven sub-modules are registered with it, known as clock-
clients. Figure 3 shows the overview of clock controller & its clients.

The clock control unit works on the request-call mechanism where the registered clock-clients request for a
call after the desired number of clock-cycles and clock control invokes registered call-backs on the clock-clients.
The number of cycles requested by a clock-client is also referred as clock ticks. The clock-control keeps track of
the number of cycles, or ticks, requested by clock-clients and chooses the minimum of the requested ticks. After
the elapse of selected ticks, it calls the corresponding call-back for all the clock-clients. Figure 4 explains the flow
of operation of the clock controller along with its registered clock clients.

Module

Clock
Control

Clock
(time)

Clock
Process

Callback
Process

Sub-Module1

Sub-Module2

Sub-Module3

Request

Call

Clock Control

Clock
Client
List

Scheduler

Requested
Ticks

Clock-Client 1

Clock-Client 2

Clock-Client 3

Clock
Callback

Figure 3: Call-request mechanisms in Clock Control

Figure 2: Model designed with new approach

4

In the call-back, a clock-client shall check whether the clock tick count provided with the call-back matches
the requested count or not. That is, if the clock tick count at the time of clock tick request was X, then the current
clock tick count shall be X + requested ticks. If it is a match then the clock-client shall perform the needed
operation. If it is not a match, the clock-client shall re-evaluate the needed ticks and register it with the clock-
control.

The clock control library provides a base class for the clock-clients which takes care of the operation of
comparing ticks with the clock tick count before the call-back of the derived clock-client (sub-module of the
design) is invoked. If the check fails, the call-back on the sub-module will not be called. It is as shown in the
following Figure 5.

A clock-client can register for needed clock ticks for the next round during this call-back. This method of
registering clock-ticks is referred as synchronous registration. If there is no such request from any clock-client,
the clock-control will be idle and will not trigger any call-back.

Start

Get current clock tick count

Current clock tick
count matches

requested ticks?

Re-evaluate required
ticks and register

Perform operation

Stop

No Yes

Request clock ticks

Requested
Ticks != 0

Idle

Schedule
Call-backs after requested ticks X

clock period

Invoke call-backs on all clock-
clients

Figure 4: Clock Control call-back and request flow

Figure 5: Base clock-client call-back

5

 When in idle mode, the clock-control can be activated by a clock-client by registering clock ticks
asynchronously.

B. Clock Triggering Edge
A design can work on positive edge or negative edge or, in some cases, on the both the clock edges. The

clock-control block can provides call-backs on both, positive and negative, edges of the clock. A clock-client
can register the triggering-edge it needs to work on with the clock-control and clock-control shall provide the
corresponding call-back to the clock-client.

1) POSEDGE
a) It indicates that the clock-client works only on the positive edges of clock. All the ticks requested by

such a block will be considered as positive edge ticks.
2) NEGEDGE

a) It indicates that the clock-client works only on the negative edges of clock. All the ticks requested by
such a block will be considered as neg-edge ticks.

3) ANYEDGE
a) It indicates that the clock-client works on both, positive and negative, edges of the clock. All the ticks

requested by such a block will be considered as sum of positive-edge and negative-edge ticks.

The clock-control works with triggering-edge configuration as set by the clock-clients. In a design which has
clock-clients working on different edges, the clock-control will always work in the ANYEDGE configuration. It
shall take care of calling the correct call-back for a clock-client according to the triggering edge registered for a
clock-client.

C. Clock Source
In SystemC design approach, the timing behaviour is modelled using period information of the clock. But in

case the module is configured to run on external clock which is generally a signal or a toggling clock,
determining period can lead to temporal in-accuracies. Clock source select block selects the desired clock input
for the clock control to work on.

Clock Control

Clock Client Manager

Clock
Time

Handler

Clock
Signal

Handler

Clock
Source
Select

Posedge
Active

Client List

Negedge
Active

Client List

Posedge Clock
Call-back

Negedge Clock
call-back

Clock
(time)

Clock
(signal)

Figure 6: Structure of clock control unit

6

The clock-control provides the facility of using both, the period based clock and clock signal, as clock
source. It also supports switching between clock sources on the run. A clock-client responsible for selecting
clock shall configure clock-control to use the selected clock source.

1) Period Based Clock

a) The clock-control uses the period information to trigger call-backs for the clock-clients. It calculates
the pos-edge or neg-edge of the clock using period and the simulation time to get the number of edges
passed. It uses this information to schedule triggering of call-back after the requested ticks.

2) Signal Based Clock
a) The clock-control can also work with a signal type clock where it is like a real toggling clock. In this

configuration, it keeps track of the number of edges passed and triggers call-back when it reaches the
requested number of ticks (edges).

D. Clock Frequency Changes
In the traditional approach discussed above, the main challenge is to handle the clock frequency or period

changes in the module. As all the processes have to be re-scheduled and perform duty cycle adjustments, it
becomes un-manageable. In the clock control unit, the clock changes are handled centrally. In case there is a
change in the clock period, the call-back is re-scheduled according to the new clock period. It also performs the
duty cycle adjustments which become critical in case the clock is updated at time other than clock’s rising or
falling edge.

E. Clock Clients
As per the definition, a clock-client is a module which is derived from the “ClockClient” class from the

clock control library. The base class performs the checks on the clock tick count and requested ticks before
calling the call-back on the derived clock-client. It handles re-evaluation of the requested ticks if required. It
also performs the requested ticks’ adjustment depending upon the triggering edge configuration of the clock-
client and the clock control.

In a design, a clock-client can be active or reactive. An active clock-client is the one which puts the requests
to the clock control for the call-back, for example, a clock-client, input sampler, that needs to sample external
input on every edge of the clock. A reactive clock-client is the one which does not put any request to the clock
control but performs the operations when the clock call-back is invoked. Figure 7 explains the active and
reactive clock clients. For example, a clock client that works on the output of input sampler.

In general, a design will have one or two active clock-clients which request for the clock ticks whereas

others will be reactive. It makes the design simpler as the clock tick count checks in the base clock-client will be
performed for one or two clock-clients rather than all the clock-clients in the design.

Input Sampler
(Active)

Result Generator
(Reactive)

Clock Control
Clock
(time)

Input

Unidirectional as
no request

Bi-directional as
client can request

Module

Figure 7: Active and reactive clock clients

7

V. BENEFITS OF CLOCK CONTROLLER METHODOLOGY

• Centralized clock controller sub-module that takes care of clocking for the module so that all the other
sub-modules are independent of the timing information. Clock control is a reusable sub-module which can
directly be used in other modules.

• This new approach minimizes the use of SystemC processes and events to reduce context switching and
hence increases the overall simulation performance.

• Provides the flexibility to adapt to changes by providing plug and play kind of feature for different
functionalities inside a module there by making the design extensible. If any new feature is to incorporated
in the module then the additional functionality can be added by introducing a new sub-module.

• Provides the flexibility in design to be adapted for cycle accuracy related changes in all the cases.

• Gives the designer more control over the clock synchronization and events.

VI. APPLICATION EXAMPLE AND RESULTS

This methodology was applied to a module called DSADC (Delta-Sigma Analog to Digital Converter). This

module was developed with the older approach, has a single SystemC module which uses much number of
processes (more than ten) and events to model the needed functionality. The timing behavior is modelled using
timed event notifications and wait statements to trigger processes which made the implementation very
complex. It also turned out to a difficult job to debug and trace the flow of the functionality of the module.

With the new methodology, the DSADC module is divided into various sub-modules namely filters,
integrator and modulator sub-modules and the timing behavior is modelled using the Clock Control sub-module.
With the clock control block taking care of the timing requirements of the module, it reduced the burden on the
other sub-modules and the timing concerns were handled centrally by the clock control. The number of
processes in the design were reduced from thirteen to five (including clock control).

To test the improvements on simulation performance of the new design method on the DSADC, a set of
stress tests which already existed for the old module, were run with the newer module. The average time taken
for a particular stress test was calculated considering several runs with both the old and new module. The
approximate figures of the wall clock time measured with the older module was around 131878 milliseconds
and whereas with the new module for the same test the average figure is around 29990 milliseconds. With the
newer design approach the performance increase turned out to 77% faster compared to the older module for the
same stress tests.

There is a significant improvement in the performance with the new design approach. The design is also now
easy to maintain and adapt for the cycle-accuracy changes. The module was also tested with the RTL
verification environment which established the functional and cycle accuracy of the design.

VII. CONCLUSION

With the clock control, it is easier to create models that are cycle-accurate and have fast simulation speed.
The clock control unit is a generic block and can be used in any design. The modularized designs are easy to
implement as the timing information and scheduling is handled by the clock control unit. By minimizing the
number of processes in the design, the simulation speed can be increased significantly. It is easier to debug and
adapt for the changes. The improvements become more significant with complex designs. The approach makes
the designs more flexible, extensible and easy to debug.

	I. INTRODUCTION
	II. TRADITIONAL APPROACH OF MODELING FOR CYCLE-ACCURACY
	III. CLOCK CONTROLLER APPROACH OF MODELLING FOR CYCLE-ACCURACY
	A. Flow

	IV. METHODOLOGY COMPONENTS
	A. Clock Control
	B. Clock Triggering Edge
	1) POSEDGE
	a) It indicates that the clock-client works only on the positive edges of clock. All the ticks requested by such a block will be considered as positive edge ticks.

	2) NEGEDGE
	a) It indicates that the clock-client works only on the negative edges of clock. All the ticks requested by such a block will be considered as neg-edge ticks.

	3) ANYEDGE
	a) It indicates that the clock-client works on both, positive and negative, edges of the clock. All the ticks requested by such a block will be considered as sum of positive-edge and negative-edge ticks.

	C. Clock Source
	1) Period Based Clock
	a) The clock-control uses the period information to trigger call-backs for the clock-clients. It calculates the pos-edge or neg-edge of the clock using period and the simulation time to get the number of edges passed. It uses this information to schedule triggering of call-back after the requested ticks.

	2) Signal Based Clock
	a) The clock-control can also work with a signal type clock where it is like a real toggling clock. In this configuration, it keeps track of the number of edges passed and triggers call-back when it reaches the requested number of ticks (edges).

	D. Clock Frequency Changes
	E. Clock Clients

	V. BENEFITS OF CLOCK CONTROLLER METHODOLOGY
	VI. APPLICATION EXAMPLE AND RESULTS
	VII. CONCLUSION

