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Abstract— with the increasing interest in the architecture exploration and performance analysis, there is an 

increase in demand of cycle-accurate SystemC models along with simulation performance comparable to that of 
loosely timed models. With the conventional method of using toggling clock to model timing behaviour, the cycle-
accuracy can be achieved but it is not feasible to achieve the desired simulation performance. The other approach is 
to use clock period to model timing behaviour. It is based on the usage of clock period information for predicting the 
required clock edges rather than the traditional clock toggling approach as followed in RTL designs. All the 
processes in the design predict when are to be triggered again based on the clock time period information and 
schedule the triggering accordingly in the form of event notification and wait statements. The advantage of this 
methodology is that it is easier to achieve better simulation performance for the software models. However, the 
models are not always accurate to cycle level and are not synchronized with changing clock. It is difficult to 
synchronize all the processes in the design when the period of the clock changes. This introduces cycle inaccuracy in 
the design. With timing behaviour implemented in each process, it is very difficult to debug and to adapt for cycle-
accuracy. This becomes more difficult with complex designs. The simulation performance also degrades as the 
number of processes increase in a design due to increased context switching and the advantage of this approach is 
lost. There is a need to have a design methodology in place which handles the clock synchronizations and which 
caters to the timing requirements of all the processes in a module. This paper describes a design methodology which 
refines this approach to achieve the desired cycle-accuracy and the simulation performance. It has already been 
proven on multiple designs 
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I.  INTRODUCTION  

Virtual prototyping has become essential to handle the increasing design complexity and reducing time-to-
market windows. The virtual prototypes are being used for various purposes like early software development, 
software performance analysis, architectural exploration and hardware performance analysis. The level of 
abstraction of functional and communication aspect of a model largely depends on the use case.  

There is always a trade-off between accuracy and speed of a model. For software development and software 
performance analysis, a less-accurate but highly fast model is required. For architectural exploration and 
hardware performance analysis, a highly accurate, both functionally and temporally, and fairly fast model is 
required. As the industry’s interest architectural exploration and hardware performance analysis is increasing, the 
demand of cycle-accurate models with performance equivalent to that of loosely-timed model is increasing. It 
requires change in the modeling techniques to achieve cycle-accuracy with the desired performance. The paper 
describes one such methodology to model the desired virtual prototypes. 

II. TRADITIONAL APPROACH OF MODELING FOR CYCLE-ACCURACY 

The traditional approach to model for cycle-accuracy is to bring the virtual prototype or model to the 
hardware. The model is designed to work at each clock edge where the clock is a toggling signal. It involves a 
large number of processes executing at each triggering edge of the clock which causes simulation speed to fall 
drastically. 

The other approach is to use clock period to model timing behaviour as shown in Figure 1. This approach is 
based on the usage of clock time period for predictions of required edges rather than the traditional toggling clock 
approach, which results in a significant increase in simulation performance. The timing behaviour is modelled 
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through each process scheduling itself at the required point of time in simulation using timed event notifications 
and wait statements. For example, if a process is triggered at ever second rising edge of the clock, then it is 
required to be re-scheduled to run after two into the clock period. 

 

 

However, it does not assure cycle-accuracy in all the cases. In case there is a change in the clock period, the 
cycle-accuracy will be lost as each process is scheduled using the old clock-period information and thus the 
operations are not carried out in synchronization with the clock edges of the new clock. This introduces cycle 
inaccuracy in the design. With timing behaviour implemented in each process, it is very difficult to debug and to 
adapt for cycle-accuracy. This becomes more difficult with complex designs. The simulation performance 
degrades as the number of processes increase in a design due to increased context switching and the advantage of 
this approach is lost. 

III. CLOCK CONTROLLER APPROACH OF MODELLING FOR CYCLE-ACCURACY 

This article describes a design methodology to refine the clock period based approach. The idea is to have a 
central unit that handles scheduling of all the processes in the design and takes care of changes in the clock 
period. The methodology provides a generic clock control unit which acts as a single source of clock-information 
in a design. It recommends a design to be modularized where the sub-modules implement clock-dependent 
operations in call-backs registered with clock control unit. The clock control unit maintains the operations 
synchronized and handles changes in the clock-period. It assures cycle-accuracy in all cases. With this new flow, 
it would be easy to model any IP systematically thereby leading to a maintainable design which is extensible for 
future design needs. 

Finally, complete content and organizational editing before formatting. Please take note of the following items 
when proofreading spelling and grammar: 

A. Flow 
The new design method demands the design of an IP to be modularized. An IP is functionally divided into 

smaller sub-modules. The sub-modules are categorized on the basis of functionality and the associated clock 
domain. The clock control unit also becomes part of the design as a sub-module as shown in Figure 2. It is 
connected to the module’s input clock and to all other sub-modules which require clock to operate via registered 
call-backs.  

In the context of clock control unit, the registered sub-modules are referred as clock-clients. As in the 
traditional approach, a module would implement all the clock dependent operations in form of processes, 
sensitive to the module clock. Each process would be responsible for re-scheduling itself by calculating the next 
trigger time using next required clock edge. With clock control unit, in the sub-modules or clock-clients, the 
required clock-dependent operations are modelled in the clock call-back registered with the clock control unit, 
instead of processes. As the sub-modules are independent of the timing information they do not use processes or 
any other SystemC constructs which assist in scheduling. Ideally, there shall not be any process in a clock-client. 
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Figure 1: Model designed with traditional approach 
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Hence, the sub-modules become more C++ style classes rather than typical SystemC modules. It reduces the 
overhead associated with the processes in the design and context switching during the simulation. It results in 
significant increase in the simulation speed. 

 

 

This approach also makes it easier for the designer to track the flow of the design and provides better 
debugging possibility. 

IV. METHODOLOGY COMPONENTS 

After the text edit has been completed, the paper is ready for the template. Duplicate the template file by using 
the “Save As” command, and use the naming convention prescribed by your conference for the name of your 
paper. In this newly created file, highlight all of the contents and import your prepared text file. You are now 
ready to style your paper; use the scroll down window on the left of the MS Word Formatting toolbar. 

A. Clock Control 
 Clock-Control is a generic block which can be used in any module implementation. It runs on the module’s 

clock and effectively handles the clock-based scheduling of module’s processes. As discussed above, it is used as 
a sub-module in a design and all the other clock-driven sub-modules are registered with it, known as clock-
clients. Figure 3 shows the overview of clock controller & its clients.  

 

 

The clock control unit works on the request-call mechanism where the registered clock-clients request for a 
call after the desired number of clock-cycles and clock control invokes registered call-backs on the clock-clients. 
The number of cycles requested by a clock-client is also referred as clock ticks. The clock-control keeps track of 
the number of cycles, or ticks, requested by clock-clients and chooses the minimum of the requested ticks. After 
the elapse of selected ticks, it calls the corresponding call-back for all the clock-clients. Figure 4 explains the flow 
of operation of the clock controller along with its registered clock clients. 
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Figure 3: Call-request mechanisms in Clock Control 

Figure 2: Model designed with new approach 
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In the call-back, a clock-client shall check whether the clock tick count provided with the call-back matches 
the requested count or not. That is, if the clock tick count at the time of clock tick request was X, then the current 
clock tick count shall be X + requested ticks. If it is a match then the clock-client shall perform the needed 
operation. If it is not a match, the clock-client shall re-evaluate the needed ticks and register it with the clock-
control.  

The clock control library provides a base class for the clock-clients which takes care of the operation of 
comparing ticks with the clock tick count before the call-back of the derived clock-client (sub-module of the 
design) is invoked. If the check fails, the call-back on the sub-module will not be called. It is as shown in the 
following Figure 5. 

A clock-client can register for needed clock ticks for the next round during this call-back. This method of 
registering clock-ticks is referred as synchronous registration. If there is no such request from any clock-client, 
the clock-control will be idle and will not trigger any call-back. 

  

  

Start 
 
 

Get current clock tick count 

Current clock tick 
count matches 

requested ticks? 

Re-evaluate required 
ticks and register 

Perform operation 

Stop 

No Yes 

Request clock ticks 

Requested  
Ticks != 0 

 

Idle 

Schedule 
Call-backs after requested ticks X 

clock period 
 

Invoke call-backs on all clock-
clients 

 

Figure 4: Clock Control call-back and request flow 

Figure 5: Base clock-client call-back 
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 When in idle mode, the clock-control can be activated by a clock-client by registering clock ticks 
asynchronously. 

B. Clock Triggering Edge  
A design can work on positive edge or negative edge or, in some cases, on the both the clock edges. The 

clock-control block can provides call-backs on both, positive and negative, edges of the clock. A clock-client 
can register the triggering-edge it needs to work on with the clock-control and clock-control shall provide the 
corresponding call-back to the clock-client. 
 

1) POSEDGE 
a)  It indicates that the clock-client works only on the positive edges of clock. All the ticks requested by 

such a block will be considered as positive edge ticks.  
2) NEGEDGE 

a)  It indicates that the clock-client works only on the negative edges of clock. All the ticks requested by 
such a block will be considered as neg-edge ticks.  

3) ANYEDGE 
a) It indicates that the clock-client works on both, positive and negative, edges of the clock. All the ticks 

requested by such a block will be considered as sum of positive-edge and negative-edge ticks.  

 
 
 
 

The clock-control works with triggering-edge configuration as set by the clock-clients. In a design which has 
clock-clients working on different edges, the clock-control will always work in the ANYEDGE configuration. It 
shall take care of calling the correct call-back for a clock-client according to the triggering edge registered for a 
clock-client. 

C. Clock Source  
In SystemC design approach, the timing behaviour is modelled using period information of the clock. But in 

case the module is configured to run on external clock which is generally a signal or a toggling clock, 
determining period can lead to temporal in-accuracies. Clock source select block selects the desired clock input 
for the clock control to work on. 
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The clock-control provides the facility of using both, the period based clock and clock signal, as clock 
source. It also supports switching between clock sources on the run. A clock-client responsible for selecting 
clock shall configure clock-control to use the selected clock source. 

 
1) Period Based Clock 

a) The clock-control uses the period information to trigger call-backs for the clock-clients. It calculates 
the pos-edge or neg-edge of the clock using period and the simulation time to get the number of edges 
passed. It uses this information to schedule triggering of call-back after the requested ticks. 

2) Signal Based Clock 
a) The clock-control can also work with a signal type clock where it is like a real toggling clock. In this 

configuration, it keeps track of the number of edges passed and triggers call-back when it reaches the 
requested number of ticks (edges). 

D. Clock Frequency Changes 
In the traditional approach discussed above, the main challenge is to handle the clock frequency or period 

changes in the module. As all the processes have to be re-scheduled and perform duty cycle adjustments, it 
becomes un-manageable. In the clock control unit, the clock changes are handled centrally. In case there is a 
change in the clock period, the call-back is re-scheduled according to the new clock period. It also performs the 
duty cycle adjustments which become critical in case the clock is updated at time other than clock’s rising or 
falling edge.  

E. Clock Clients 
As per the definition, a clock-client is a module which is derived from the “ClockClient” class from the 

clock control library. The base class performs the checks on the clock tick count and requested ticks before 
calling the call-back on the derived clock-client. It handles re-evaluation of the requested ticks if required. It 
also performs the requested ticks’ adjustment depending upon the triggering edge configuration of the clock-
client and the clock control. 

In a design, a clock-client can be active or reactive. An active clock-client is the one which puts the requests 
to the clock control for the call-back, for example, a clock-client, input sampler, that needs to sample external 
input on every edge of the clock. A reactive clock-client is the one which does not put any request to the clock 
control but performs the operations when the clock call-back is invoked. Figure 7 explains the active and 
reactive clock clients. For example, a clock client that works on the output of input sampler. 

 

 
 
 
 
In general, a design will have one or two active clock-clients which request for the clock ticks whereas 

others will be reactive. It makes the design simpler as the clock tick count checks in the base clock-client will be 
performed for one or two clock-clients rather than all the clock-clients in the design. 
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V. BENEFITS OF CLOCK CONTROLLER METHODOLOGY 

• Centralized clock controller sub-module that takes care of clocking for the module so that all the other 
sub-modules are independent of the timing information. Clock control is a reusable sub-module which can 
directly be used in other modules.  

• This new approach minimizes the use of SystemC processes and events to reduce context switching and 
hence increases the overall simulation performance.  

• Provides the flexibility to adapt to changes by providing plug and play kind of feature for different 
functionalities inside a module there by making the design extensible. If any new feature is to incorporated 
in the module then the additional functionality can be added by introducing a new sub-module. 

• Provides the flexibility in design to be adapted for cycle accuracy related changes in all the cases.  

• Gives the designer more control over the clock synchronization and events.  

 

VI. APPLICATION EXAMPLE AND RESULTS  

 
This methodology was applied to a module called DSADC (Delta-Sigma Analog to Digital Converter). This 

module was developed with the older approach, has a single SystemC module which uses much number of 
processes (more than ten) and events to model the needed functionality. The timing behavior is modelled using 
timed event notifications and wait statements to trigger processes which made the implementation very 
complex. It also turned out to a difficult job to debug and trace the flow of the functionality of the module. 

With the new methodology, the DSADC module is divided into various sub-modules namely filters, 
integrator and modulator sub-modules and the timing behavior is modelled using the Clock Control sub-module. 
With the clock control block taking care of the timing requirements of the module, it reduced the burden on the 
other sub-modules and the timing concerns were handled centrally by the clock control. The number of 
processes in the design were reduced from thirteen to five (including clock control).  

To test the improvements on simulation performance of the new design method on the DSADC, a set of 
stress tests which already existed for the old module, were run with the newer module. The average time taken 
for a particular stress test was calculated considering several runs with both the old and new module. The 
approximate figures of the wall clock time measured with the older module was around 131878 milliseconds 
and whereas with the new module for the same test the average figure is around 29990 milliseconds. With the 
newer design approach the performance increase turned out to 77% faster compared to the older module for the 
same stress tests. 

There is a significant improvement in the performance with the new design approach. The design is also now 
easy to maintain and adapt for the cycle-accuracy changes. The module was also tested with the RTL 
verification environment which established the functional and cycle accuracy of the design. 

 

VII. CONCLUSION 

With the clock control, it is easier to create models that are cycle-accurate and have fast simulation speed. 
The clock control unit is a generic block and can be used in any design. The modularized designs are easy to 
implement as the timing information and scheduling is handled by the clock control unit. By minimizing the 
number of processes in the design, the simulation speed can be increased significantly. It is easier to debug and 
adapt for the changes. The improvements become more significant with complex designs. The approach makes 
the designs more flexible, extensible and easy to debug. 
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