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Abstract-Improvement in capacity and usability of EDA tools has helped in pushing the formal verification 

envelope. Capacity still remains the major limiting factor in the scope of formal verification deployment. Formal 
verification experts employ a variety of techniques to overcome this challenge. Design and implementation 
choices made by the designers greatly influences the effectiveness of these techniques as well as ease with which 
they can be applied.  Most designers are not exposed to the formal verification process. This paper proposes 
design guidelines that facilitate application of formal verification on large blocks. 

 
I.   INTRODUCTION 

Formal verification adoption has accelerated in the past few years, becoming quite widespread. One 
common use case of formal verification is design bring-up, a process that guarantees basic design sanity. 
The designer is often responsible for this activity. This is then followed up by a thorough formal 
verification exercise. A formal verification engineer is typically responsible for this subsequent activity. 
Formal verification engineers have a good understanding of design complexity and tool capacity. They are 
also aware of the abstractions and optimizations that can be applied to make formal verification properties 
tractable. This knowledge is obtained through the hands-on experience of working on a variety of formal 
verification problems as well as their educational background. On the other hand, most designers are not 
sufficiently exposed to the challenges of formal verification and the methods that are employed to solve 
these challenges. This technology is new to them and quite different from the more commonly used 
simulation based verification techniques. 

The effort required for formally verifying a design depends on design complexity and design coding 
style. It is frequently noticed that designs with similar complexity can require very different formal 
verification efforts. Some of the attributes of a formal verification friendly design are similar to the 
attributes of a good design, but not all fall under this category. Two clean implementations of the same 
design can have different formal verification effort requirements. Design structure and quality of code is an 
important issue for simulation, but it is critical for formal verification since formal verification has tool 
capacity limitations. While it is very important to prove a property, the time that the tool takes for the proof 
is also important. Shorter proof time allows for quick iterations for bug fixes or for constraint fixes. 

There exists a large quantity of good literature on handling complex design problems that is targeted 
towards formal verification engineers. This paper, however, is targeted towards the designers. It elaborates 
key principles that allow designs to be more formal verification friendly. Such designs allow formal 
verification abstractions and optimizations to be applied with ease. The examples presented along with the 
design guidelines in this paper are kept simplistic so that the design guidelines can be easily explained. 
Most seasoned designers would follow the correct approach in these cases. These examples, however, are 
only used to illustrate the effect of design decisions on formal verification. Most cases in real-world designs 
will be more complex and not as black and white. 

The proposed guidelines in this paper are distilled from formal verification work done over multiple 
projects, as both design and formal verification engineer. They are also derived from literature covering the 
techniques applied by formal verification engineers to address complexity. One project in particular, an 
Ethernet switch function [1], provided the knowledge that became the key source for these guidelines. In 
this case study the designer and formal verification engineer engaged early in the project and enabling 
formal verification was a key design criteria. This approach resulted in a very successful formal verification 
exercise. 

II.   DESIGN GUIDELINES 

A. Functional design paradigm 
Functional design is a term that has been commonly used in the context of software programs. Wikipedia 

describes a functional design as where “each modular part of a device has only one responsibility and 



performs that responsibility with the minimum of side effects on other parts” [2]. Another design 
approaches is event driven design, which is centered on performing certain actions in response to observed 
events. A similar approach is data driven design that centers on performing certain actions based on 
observed data. These terms have their origins in software engineering but the concepts behind them can be 
extended to logic design. 

Designers use a mix of these three approaches to construct designs. A subset of the functionality of any 
block maps clearly to a set of well-defined functions. For this subset, a designer typically uses the 
functional design approach. Other parts of the functionality may be better implemented using the event 
driven approach. In these cases the blocks are not typically constructed as a set of functions, but rather as a 
set of actions in response to the specific input events and input data. While these two approaches may yield 
very similar designs, minor differences between the two may be critical from a formal verification point of 
view. 

The most useful technique to overcome capacity issues in formal verification is “divide and conquer”. In 
this approach the functionality of any big or complex design block is partitioned into a hierarchy of smaller 
parts and these parts are verified independently. A functional design approach naturally results in a 
hierarchy of sub-blocks. Since the leaf blocks are smaller and less complex, it is easier for these to be tested 
individually. The “Assume guarantee propagation” technique can then be utilized to prove overall design 
correctness. This is a commonly used technique in which assumptions made at the input of a sub-block are 
verified as assertions at the output of the sub-block that drives them. While the various guidelines being 
proposed in this paper are distinct, in most design scenarios there is a correlation between them. Following 
one of them helps the cause of another. In this respect, having functionality divided into smaller sub-blocks 
with clearly defined functions for each sub-block is the most crucial guideline. 

Consider ingress path functionality for Ethernet traffic in a typical networking chip. A MAC (Media 
Access Controller) receives ingress data and offloads most of the Ethernet protocol. The MAC sends these 
Ethernet packets to a packet parser. The packet parser then inspects the headers of the various networking 
layers in order to classify the type of processing required. The format of theses headers and layering of 
protocols is flexible thereby requiring support for a multitude of variations in parsing. A minimum packet 
length is also expected for all legal packets. A packet smaller than the minimum length is called a runt 
packet. All runt packets are discarded. 

A typical simplified version of the data transfer protocol at the input and output of a MAC has an SOP 
(start of packet indicator), an EOP (end of packet indicator), an error indicator that is valid at EOP, a data 
bus, and a valid signal that qualifies all other signals. A packet starts with an SOP indication and ends with 
an EOP indication. Valid data transfers from different packets are not interleaved. This is referred to as the 
packet framing rule. Often the MAC is a design block bought from an external vendor. It is assumed that 
there can be scenarios where the MAC does not follow the framing rule. A MAC can potentially send 
multiple SOPs without any EOP or vice versa. The ingress data path functionality is required to discard 
data in such cases. The design terminates the current packet by setting EOP along with the error indicator. 
Subsequent data is discarded until a new legal packet boundary is detected. 

An event driven design approach looks at the input combinations as a cross product of all legal packets, 
runt packets, and packets with framing errors. The resulting state machine discards runt packets, discards 
illegal packets, and parses packets in parallel. Fig. 1 shows the state diagram of an implementation 
following an event driven approach. In this example the data width of the bus is set to 16 bytes and 
minimum packet size is defined as 40 bytes. Packet data is parsed up to a certain length based on the 
information in the packet header and the rest of the packet is considered pass-through. States and arcs in 
blue are related to runt packet filtering. States and arcs in red are related to handling packets with framing 
error. States and arcs in the black are related to parsing network headers. 

In this implementation, a property covering a framing rule at the output of the parser is a function of all 
packet formats due to an implementation choice. A property that checks the correctness of the parser is also 
a function of illegal packet and framing rule error scenarios. There are cases where a packet is a runt packet 
and also has framing error. In such cases the packet needs to be discarded and a new packet boundary needs 
to be determined. This makes properties related to framing checks dependent on the length of the frames 
and vice versa. Actions related to each state, which are not covered in this state diagram, have similar 
dependencies. 



 
Figure 1:  State space diagram for event driven un-partitioned logic 

 

 
Figure 2:  Functional driven partitioned logic 

In a functional design approach the functionality for this logic is divided into three stages working 
sequentially. Fig. 2 shows the state machines of the block stages of the logic partitioned functionally. The 
first stage fixes any SOP-EOP framing rule issues with received packets. The second stage drops all runt 
packets. With this design architecture, the input to the third stage is then clear of any protocol errors. The 
third stage finally does the packet parsing. SOP-EOP framing rule can be easily formally verified at the 
output of the first stage. Runt packet drop checks can be easily verified at the output of the second stage 
and are further simplified based on the assumption that framing rules are followed at the input of second 



stage. Packet parsing rules are also much easier to verify at the third stage assuming clean packets at the 
input of the third stage.  

B. Clear and succinct interface definitions 
For formal verification, input constraints of a block are captured in assumptions and output constraints 

are captured in assertions. These constraints are sometimes fully expressed as SVAs (System Verilog 
Assertions) and are sometimes expressed with the help of test-bench functionality expressed as 
synthesizable RTL. The state space for a formal verification property proof includes the state space of the 
DUT and the state space of these constraints. Clean interface definitions enable the ability to express 
constraints in a simple and succinct manner. Besides reducing state space, clean interface definitions also 
makes model and constraint generation simpler. 

Design documentation is targeted for simulation and describes the design at the block level. Since formal 
verification is often done at sub-block levels there is usually no documentation available that describes sub-
block interfaces. Messy interfaces require a lot of interaction between the designer and formal verification 
engineer in order to create correct constraints. 

Clean interface definitions avoid transfer of information between blocks through implicit means. Often 
this issue is introduced during implementation phase due to new requirements or bug fixes, but can also be 
introduced due to poorly defined interfaces during the architecture phase of design. Here is an example that 
demonstrates implicit information transfer: Consider a memory subsystem block that is connected to a chip 
interconnect bus that accepts 5 different command types. Table 1 shows the allowed data lengths and read 
(R) and write (W) attributes with each command type along with the clients (C#) that use the command. 
Eight different clients use this memory subsystem. Furthermore, some clients share memory space and 
some have a dedicated region. During performance evaluation it is determined that one particular client 
(C5) that only uses the cmd2 with 1KB access, needs higher priority processing. No other clients use this 
command. 

TABLE 1:  MEMORY SUBSYSTEM COMMAND DESCRIPTION 
Command type 1B-32B 64B 128B 128B-1KB           

(64B increments) 
cmd0 RW 

(C1,C2) 
RW 

(C1,C2) 
- - 

cmd1 RW 
(C3) 

RW 
(C3) 

RW 
(C3) 

- 

cmd2 R 
(C4) 

R 
(C4) 

R 
(C4) 

R 
(C5) 

cmd4 - - RW 
(C6) 

- 

cmd5 - - - R 
(C7,C8) 

 
One way to address this requirement is to interpret priority from command type and data length. This 

approach does satisfy the immediate needs of the system, however, it adds implicit information dependent 
on command type, data length, R/W access, and client. This approach is not future proof since going down 
this path can lead to very confusing dependencies after only a few sets of changes. It also requires more 
constraints and more interactions between the designer and the formal verification engineer. The correct 
approach is to add a priority signal in the interface. This signal reflects the actual design requirement 
change and is also self-explanatory. Adding explicit priority signal future proofs the design from other 
clients having similar priority access requirements. 

C. Keeping state space as a design consideration 
The state space of a block is one of the key design considerations for formal verification. If the state 

space is too large, the block should be partitioned into smaller blocks. However, some problems are 
intrinsically complex and cannot be broken down beyond a point. In such cases, close coordination between 
the formal verification engineer and designer during the design phase is highly desirable.  

Perception of the size of the state space of a particular design and the formal verification tools capacity is 
an acquired skill. For this reason, first hand use of a formal verification tool by designers is a very 
productive exercise. Formal verification can help significantly during the bring-up phase of the design, i.e. 



initial cleanup after the design is coded. Some tools provide design exploration features that help kick start 
formal verification with minimal setup. This is a good way to be introduced to the technology. 

 

 
Figure 3:  Different pipeline configurations impact COI unequally 

The total number of gates, flops and memory elements in the design do not translate directly to the state 
space of a property. Rather, the size of the COI (Cone of Influence) more directly influences the state space 
of a property. COI includes all primary inputs, all combinatorial and sequential logic, and memory 
elements that influence that property. Even the size of the COI does not always provide a complete picture. 
It is the size of the COI and the connectivity within COI that determines complexity. Consider three 
variations of a seven-stage multithreaded instruction pipeline that is shared by large number of threads as 
shown in Figure 3. In the first scenario, the high-level architecture assures that a particular thread cannot 
have instructions in two stages of the pipeline simultaneously. In the second scenario, the implementation 
has multiple copies of the previously described pipeline in parallel. In the third scenario, there is a single 
pipeline that allows multiple instructions from the same thread. The first and third cases have a similar 
number of gates, however, the complexity in the third case is much higher than the first. The second case 
has a much higher number of gates than the third case, but it is still less complex than the third case. The 
bypasses introduced in the third case may not have a high impact on COI size, but the overall complexity of 
the pipeline has multiplied. 

D. Symmetry 
Formal verification tools exploit symmetry in designs to reduce the state space. Many designs have 

replication of functionality. These designs can benefit from symmetry-based optimizations [3]. If designs 
are almost symmetric with some exceptions, the exception cases can sometimes be isolated into a separate 
logic partition leaving the bulk of the design symmetric. Symmetry also helps reduce overall effort required 
to code constraints and prove the property as it reduces the amount of unique logic that needs to be verified 
[4]. 

Consider a block that receives packets from three sources with bus widths 512, 256, and 128 as shown in 
Fig. 4. The design adds a 512 bit header to each packet and then passes the packets to one of the two 
possible processing engines. In the first implementation the header is inserted prior to the spray FSM. Then 
the spray FSM selects the source, does the data width conversion and passes it to one of the outbound 
interfaces. In this design, all of the header insert blocks and code within spray engine with respect to ports 
is unique. An alternate implementation first converts 512 bit and 128 bit inputs to a 256 bit bus. This makes 
the internals of the spray FSM very symmetric with respect to the ports. The header insert blocks, which 
are now placed after the spray FSM, are also identical. It is easier to write properties for the second 
implementation. The spray FSM in the second case is data-independent, i.e. data passing through is not 



modified, which makes data bits in the 256 bit bus symmetric. This allows reduction of the 256 bit bus to a 
single bit signal for the purpose of formal verification. 

 

 
Figure 4:  Asymmetric versus symmetric implementation 

E. Parameterization 
Designs can often be scaled down without affecting key aspects of the design that need to be verified. 

This can be done through parameters or Verilog pre-processors common in many design environments. 
Proving correctness of a scaled down design often provides significant value and is very close to proving 
the correctness of the original design. There are cases where the properties can be proven in an unmodified 
design, but it takes hours to prove them. In such scenarios, scaled down versions can be used to formally 
verify the design and constraints much more efficiently. 

 
Figure 5:  Scheduler block diagram 

Consider a scheduler with 4K clients as shown in Fig. 5. The basic building block of this scheduler is a 
16 client round robin arbiter. This scheduler is implemented in a tree structure with three stages. First stage 
has 256 of these arbiters, the second stage 16, and the last stage has 1. Each client has an 8 bit credit count 
associated with it. A request from a client is entertained only if that client has non-zero credit. A single 
credit is consumed for a grant and credit is returned back based on external events through a shared credit 
return bus. The credit counts for individual clients are stored in memory to save area.  Arbiters in the first 
stage of this scheduler store a bit per client that indicates non-zero credit. Arbiters in the second and third 
stage store total credits for all clients under each requester port. Since this implementation operates over 
multiple cycles, there are mechanisms to block requests from various nodes while credit decrement 
operations after any grant for those nodes are being performed. Properties for this arbiter have a very large 
COI. 

This arbiter has a very regular structure. The number of clients at each stage can be parameterized. The 
size of the credit count for the clients can also be parameterized. A significantly scaled down version of the 
design can be generated with the number of clients of the basic building block arbiter set to 4 and a credit 



count width of 3. This smaller scale version preserves the overall structure of the design and all interactions 
between the stages. There is a greater chance to prove properties for this implementation than the full-scale 
design and the proofs will take much less time. Once the scaled down design is clean, parameter values can 
be dialed up until the point where the formal tool can just handle the complexity. 

Designers need to watch for logic that has large COI but is regular in its structure or function. Such logic 
has the potential to be tested using its scaled down version. Both large FIFOs and wide counters [4] are also 
good candidates for these optimizations. Besides a few boundary conditions, they are very regular in their 
function. The boundary conditions are full and empty for a FIFO and rollover for a counter. When reducing 
the design sizes, these boundary conditions are preserved but the state space is reduced. 

F. Capturing design invariants 
Designs blocks have invariants around which the code is structured. Many of these invariants are internal 

to the design blocks and have little or no direct correlation with high-level specification. The following are 
some examples of these design invariants: 

• A particular bit vector is one hot 
• A request to an internal arbiter will get a grant within N cycles 
• An operation in some command FIFO implies availability of operands in a particular data FIFO 
• A certain FIFO can never be full 
• Some internal events can not be generated in a particular power state 

It is a good practice to add assertions for these design invariants. These assertions are often simpler to 
prove than end-to-end properties. Tools automatically use the proof results of one property for the proof of 
other properties. These assertions are very good intermediate points for the proof. They help guide the tool 
during proof of more complex properties. 

G. Code structure 
Formal verification of large designs often requires replacing parts with models. This may be in form of 

replacing modules or introducing a cut point with assumptions. Ease of these modifications depends on 
code structure. While any particular code structure does not prevent one from making these changes, it does 
have the potential for making it a very laborious and error prone process. 

Consider a pipeline that is implementing cryptography protocol. The design has a pipeline control aspect 
and a cryptography aspect. These are quite orthogonal functions. The cryptography algorithm is 
implemented over multiple stages. The cryptography function in this case is verified through a software 
model in simulation. The pipeline is responsible for fetching keys, providing inputs to the cryptography 
function at the correct time, and storing cryptography state. For formal verification of the pipeline, the 
cryptography functions can be replaced with other much simpler functions. If all of the design code is 
located together, then the formal verification engineer needs to modify this code and continuously keep it in 
sync with the production code. This approach is inefficient and error prone. The correct approach is to 
isolate the cryptography portion of the design in a separate location. The formal verification engineer can 
then easily replace this module with a simplified model. 

The following are some other guidelines for coding that help formal verification: 
• Instantiating memories outside of logic. Allows easy identification and replacement of memories. 
• Have a process in which properties related to a set of signals traversing through the design 

hierarchy can be available at any level of the hierarchy. This allows for elaborating the design at 
any desired level. 

• Create expressions composed of meaningful intermediate terms. They make the code more 
readable and allow quick setup for partial proofs (proofs done for a subset of input space) by 
adding cut points at these intermediate terms. 

H. Error isolation 
Many designs handle very large sets of independent contexts. The state for these contexts is stored in 

memory or flip-flops. A few contexts are processed at a time in a pipelined fashion. An example of a 
context can be a cache line in a memory subsystem or a queue-id or packet-id in a queuing system. There 
are legal defined states for each context. For each of these states there is a set of legal defined operations. 
The design operates on a context in response to external stimuli or an internally generated event. Many 
such contexts are handled in parallel in the design. The processing of contexts is completely uncorrelated 
with each other. 



For example, a multiprocessor cache using a MESI protocol will have cache line in either the modified, 
shared, exclusive or invalid state. Read operations are allowed in all but the invalid state.  There are similar 
constraints are on other operations such as write. As such, the input constraints require knowledge of the 
state of the context and any model for formal verification also needs to keep track of the state of the 
context. Since the total number of contexts can be very high, the total amount of internal state and formal 
model state required results in tool capacity issues. Formal verification of this class of designs concentrates 
on proving correctness of one context [1]. The tool is allowed to pick any context during reset and the 
constraints are targeted to this chosen context. Behavior of other context is left unconstrained. Internal 
design memories storing context state are replaced with models that track only a single memory location. 
This technique cuts down the size of the design drastically by eliminating memories and a large number of 
constraints. 

In this approach the behavior of the other contexts is completely unconstrained. The formal verification 
tool is allowed to create erroneous cases for these contexts. This approach can only work if the design 
insures that the error conditions in one context do not affect the state of any other context. 

III.   ADHERENCE TO DESIGN GUIDELINES 

These guidelines are essentially good design and coding practices in the context of formal verification. 
While examples of good implementation can be provided, it is not possible to have strict rules that define a 
good implementation. 

Designers should be encouraged to follow the guidelines through the following approach: 
1. Providing and maintaining good literature on the design guidelines.  
2. Providing examples of formal verification friendly designs that were successfully verified. 
3. Encouraging designers to do formal verification, especially for initial design bring-up. 
4. Having a formal test plan [5]. Designers should be involved in the formal test plan review.  
5. Involving formal verification engineers early in the micro-architecture process. They can provide 

early feedback on possible formal verification challenges. 
6. Checking adherence to the design guidelines for formal verification in various reviews. Table 2 

shows the reviews that are helpful in covering each of the recommended guideline. 

Table 2: Reviews for the design guidelines for formal verification 
Guideline Review  
Functional design paradigm Micro-architecture 
Clear and succinct interface definitions Interface 
Keeping state space as design consideration Micro-architecture, Formal test plan 
Symmetry Micro-architecture, Formal test plan 
Parameterization Formal test plan 
Capturing design invariants Assertion and Coverage 
Code structure Code 
Error isolation Functional specification, Micro-architecture 
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