
Design Guidelines for Formal 
Verification

Anamaya Sullerey – Juniper Networks



Impact of design style on 
Formal Verification

• Formal verification success and efficiency are very 
much dependent on the design style – not 
necessarily the case with simulation

• Design implementation choices can
– Make the proofs not converge
– Make the design unfriendly for application of formal 

verification techniques
– Significantly grow the test-bench, constraints, and 

assertion development effort 

3/2/2022 Anamaya Sullerey – Juniper Networks 2



Objectives of this paper

• Current literature is targeted towards FV engineers 
with emphasis on methods and techniques used in 
formal verification 

• Focus of this paper is on 
– design styles that enable formal verification
– processes that help adhere to these guidelines

3/2/2022 Anamaya Sullerey – Juniper Networks 3



Design Approaches

• Functional Design is composed of a hierarchy of 
modules where each module performs a well defined 
function with minimal side effects

• Event driven design is centered on performing 
certain actions in response to the observed events 

• Data driven design is centered on performing certain 
actions based on the observed data

• A typical design uses mix of these approaches

3/2/2022 Anamaya Sullerey – Juniper Networks 4



Guideline 1: Functional 
design paradigm

• Functional design approach is best suited for formal 
verification

• It facilitates application of the “divide and conquer” 
approach

• It reduces “proof-debug-fix” loop time resulting in 
speedy verification process

• “Assume-Guarantee” propagation can be applied for 
overall correctness 

3/2/2022 Anamaya Sullerey – Juniper Networks 5



Example : Ethernet packet 
parser

• Interface
– Start of packet (SOP), End of packet (EOP), Data 

(128 bits), Error, Valid
– No interleaving of packets

• Functionality
– Parses networking headers
– Drops runt packets (<40B)
– Fixes framing errors (SOP-EOP rules)

3/2/2022 Anamaya Sullerey – Juniper Networks 6



Event driven approach

3/2/2022 Anamaya Sullerey – Juniper Networks 7

idle

parse_64B

parse_48B

passthrough

wait for 
minsize

other 
parse 

lengths

Drop
runt 

packet

fix 
framing

parse_16B

parse_32B



Functional design approach

3/2/2022 Anamaya Sullerey – Juniper Networks 8

Framing 
checker

Packet 
Parser

Runt Filter

packet 
framing errors 

and runt 
frames 
allowed

Check for 
framing 
errors

legal 
packets

only

no framing 
errors

Check for 
runt frames

Check 
parsing



Untangled state machines - I

3/2/2022 Anamaya Sullerey – Juniper Networks 9

idle
wait for valid 
packet start in packet

idle

received_32B

received_16Bwait for 
EOP

Framing 
checker

Runt 
filter



Untangled state machines - II

3/2/2022 Anamaya Sullerey – Juniper Networks 10

idle

parse_64B

parse_48B

passthrough

other 
parse 

lengths

parse_16B

parse_32B

Packet 
parser



Guideline 2: Clear and 
succinct interface definitions

• Interface definitions affect the state space of the 
properties

• Interface definitions affect testbench, assertion set, 
and assumption set development effort

• Interface documentation is not always present for 
sub-blocks

• Characteristics of FV friendly interfaces
– clean protocol definitions
– optimal set of signals
– explicit means of handshake and information transfer

3/2/2022 Anamaya Sullerey – Juniper Networks 11



Guideline 3: State space as 
design consideration

• Large blocks run into capacity limitations 
– Subdivide blocks that are too big and complex 
– Seek early feedback from the FV team for complex 

blocks
– Expose Designers to formal verification to provide a 

feel of the tool capacity
• State space of a property is a function of

– Cone of influence (COI) - All primary inputs and logic 
affecting the property

– Connectivity within the COI

3/2/2022 Anamaya Sullerey – Juniper Networks 12



Example: Complexity and 
COI (I)

3/2/2022 Anamaya Sullerey – Juniper Networks 13

Case 1

Case 2



Complexity and COI (II)

3/2/2022 Anamaya Sullerey – Juniper Networks 14

Case 3

Case 2 has the largest design and possibly a larger COI for 
many properties, Case 3 has the highest complexity



Guideline 4: Symmetry

• Symmetry is exploited by FV tools to reduce the 
state space

• Assertions and assumptions for symmetric designs 
require less effort 

• Fewer unique sub-blocks in a symmetric design, less 
sub-blocks to verify

• Isolate asymmetry in designs that are largely 
symmetric

3/2/2022 Anamaya Sullerey – Juniper Networks 15



Example: Isolating symmetry

• Consider a logic working on packets that has
– three input source interfaces (128bits, 256bits, and 

512bits)
– two output destination interfaces (256bits, 256bits)
– A packet spray engine

• Function of this design is to
– add a 512 bit header to all incoming packets
– arbitrate among the source interfaces and spray 

packets uniformly to the destination interfaces

3/2/2022 Anamaya Sullerey – Juniper Networks 16



Asymmetric implementation

3/2/2022 Anamaya Sullerey – Juniper Networks 17

Header
Insert

Header
Insert

Header
Insert

spray FSM256 bits

512 bits

128bits

256 bits

256 bits



Symmetric implementation

3/2/2022 Anamaya Sullerey – Juniper Networks 18

1/2

Header
Insert

*2

symmetric and 
simpler spray 

FSM
256 bits

512 bits

128bits

256 bits

256 bits

Header
Insert

256 bits

256 bits

Symmetric design



Guideline 5: Parameterized 
designs

• Parameterization is utilized to scale down large 
designs without affecting their key aspects

• Designs can be parameterized using System Verilog 
parameters or Verilog pre-processors

• Formal verification of scaled down design allows 
proofs to converge

• Formal verification of scaled down design provides 
quick turnaround time

3/2/2022 Anamaya Sullerey – Juniper Networks 19



Example: Parameterized 
scheduler

3/2/2022 Anamaya Sullerey – Juniper Networks 20

Original design
• Total clients = 4K
• N = 16

Scaled down design
• Total clients = 64
• N = 4



Guideline 6: Assertions for 
the design invariants

• Design blocks have invariants (rules about state, 
events etc) around which the code is structured
– One hot bit vector
– Guarantee of a grant for any request in N cycles
– Certain timeout never happens in low power state

• Most violations of design invariants lead to a design 
bug

• Assertions based on the design invariants 
– allow quick debug
– guides the tool with other proofs

3/2/2022 Anamaya Sullerey – Juniper Networks 21



Guideline 7: Code structure

• Poor code layout increases the effort required for FV 
and makes the process error prone

• Isolate independent, complex, deep state logic (like 
LFSRs, Crypto functions) into separate modules for 
easy abstraction

• Instantiate memories outside of logic
• Create expressions composed of meaningful 

intermediate terms - helps in cut-point insertion and 
partial proofs

3/2/2022 Anamaya Sullerey – Juniper Networks 22



Guideline 8: Error isolation

• Many designs process a large set of independent 
symmetric contexts (network flows, cache lines)

• A common technique applied for such designs 
models a single context

• Proof of a property for the modeled context proves 
the correctness for all contexts

• Illegal inputs are part of the input space of the 
unconstrained contexts

• This technique works only if an error in one context 
does not affect the state of any other context

3/2/2022 Anamaya Sullerey – Juniper Networks 23



Example: MESI protocol 
verification

• Valid states for a cache line: modified(M), 
exclusive(E), shared(S), and invalid(I)

• Cache-controller design keeps state for all cache-
lines and operates on few of those at a given time

• Read operation is allowed in M, E, and S states, 
similar rules for write and other operations

• Single cache line modeled for formally verifying the 
design

• Illegal state or operation on other cache lines should 
not affect modeled cache line 

3/2/2022 Anamaya Sullerey – Juniper Networks 24



Adherence to the guidelines

• Provide good literature on Formal Verification to the 
designers – wiki-pages, papers

• Provide good examples of formal friendly designs
• Encourage designers to do formal verification
• Have formal test plans
• Involve formal verification team early in the design 

process
• Make formal verification requirements a part of 

various reviews

3/2/2022 Anamaya Sullerey – Juniper Networks 25



Reviews

3/2/2022 Anamaya Sullerey – Juniper Networks 26

Guideline Review
Functional design paradigm Micro-architecture

Clear and succinct interfaces Interface

Keeping state space as 
design consideration

Micro-architecture, Formal test plan

Symmetry Micro-architecture, Formal test plan

Parameterization Formal test plan

Capturing design invariants Assertion and coverage

Code structure Code

Error isolation Functional spec, Micro-architecture



Acknowledgements

• Grateful for the feedback of the reviewers
– Sanjeev Singh, Jonathan Sadowsky, and David 

Talaski @ Juniper
– Erik Seligman @ Intel

3/2/2022 Anamaya Sullerey – Juniper Networks 27


	Design Guidelines for Formal Verification
	Impact of design style on Formal Verification
	Objectives of this paper
	Design Approaches
	Guideline 1: Functional design paradigm
	Example : Ethernet packet parser
	Event driven approach
	Functional design approach
	Untangled state machines - I
	Untangled state machines - II
	Guideline 2: Clear and succinct interface definitions
	Guideline 3: State space as design consideration
	Example: Complexity and COI (I)
	Complexity and COI (II)
	Guideline 4: Symmetry
	Example: Isolating symmetry
	Asymmetric implementation
	Symmetric implementation
	Guideline 5: Parameterized designs
	Example: Parameterized scheduler
	Guideline 6: Assertions for the design invariants
	Guideline 7: Code structure
	Guideline 8: Error isolation
	Example: MESI protocol verification
	Adherence to the guidelines
	Reviews
	Acknowledgements

