NNNNNNNNNNNNNNNNNNNNNNN

Design Guidelines for Formal
Verification

Anamaya Sullerey — Juniper Networks

Juniper

NETWORKS

(2015

ESIGN AND VERIFICATION™

DV Impact of design style on
Formal Verification

 Formal verification success and efficiency are very
much dependent on the design style — not
necessarily the case with simulation

* Design implementation choices can

— Make the proofs not converge

— Make the design unfriendly for application of formal
verification techniques

— Significantly grow the test-bench, constraints, and
assertion development effort

3/2/2022 Anamaya Sullerey — Juniper Networks 2

\ 2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Objectives of this paper

e Current literature Is targeted towards FV engineers
with emphasis on methods and techniques used In
formal verification

* Focus of this paper is on
— design styles that enable formal verification
— processes that help adhere to these guidelines

-
3/2/2022 Anamaya Sullerey — Juniper Networks 3

NNNNNNNNNNNNNNNNNNNNNNN

Design Approaches

e Functional Design is composed of a hierarchy of
modules where each module performs a well defined
function with minimal side effects

e Event driven design is centered on performing
certain actions in response to the observed events

e Data driven design Is centered on performing certain
actions based on the observed data

* Atypical design uses mix of these approaches

3/2/2022 Anamaya Sullerey — Juniper Networks

2015

DESIGN AND V FICATION

DVCOIN ‘Guideline 1: Functional
design paradigm

* Functional design approach is best suited for formal
verification

* |t facilitates application of the “divide and conquer”
approach

* |t reduces “proof-debug-fix” loop time resulting in
speedy verification process

e “Assume-Guarantee” propagation can be applied for
overall correctness

3/2/2022 Anamaya Sullerey — Juniper Networks

\ (2015

DESIGN AND VERIFICATION™

DV Example : Ethernet packet
parser
* |Interface

— Start of packet (SOP), End of packet (EOP), Data
(128 bits), Error, Valid

— No Interleaving of packets
* Functionality
— Parses networking headers
— Drops runt packets (<40B)
— Fixes framing errors (SOP-EOP rules)

-
3/2/2022 Anamaya Sullerey — Juniper Networks 6

\ 2015

DESIGN AND VERIFICATION™

DVLCOIIN

CONFERENCE AND EXHIBITION

~~ Event driven approach

/// wait for
minsize
ﬁ

3/2/2022 Anamaya Sullerey — Juniper Networks 7

\ 2015

DESIGN AND VERIFICATION™

DVLCOIIN

CONFERENCE AND EXHIBITION

Functional design approach

packet
framing errors
and runt no framing

HEINES errors
allowed

legal
packets
only

AEillil: 2 Runt Filter 2

checker

Check. 25 Check for Check
framing

runt frames parsing
errors

3/2/2022 Anamaya Sullerey — Juniper Networks

. 2015

ESIGN AND VERIFICATION

NNNNNNNNNNNNNNNNNNNNNNN

Untangled state machines - |

Framing

checker /\f\/\
wait for valid

packet start @

\\/ \j

Runt
filter

telt for received 16B
EOP —
received 32B)

3/2/2022 Anamaya Sullerey — Juniper Networks 9

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Untangled state machines - |l

Packet
parser @ \
parse 16B

///\\

passthrough

parse 488

/

parse 64B

3/2/2022 Anamaya Sullerey — Juniper Networks 10

\ 2015

DESIGN AND V FICATION

DVCLIN "Guideline 2: Clear and
succinct interface definitions

* Interface definitions affect the state space of the
oroperties

e |[nterface definitions affect testbench, assertion set,
and assumption set development effort

* Interface documentation is not always present for
sub-blocks

e Characteristics of FV friendly interfaces
— clean protocol definitions
— optimal set of signals
— explicit means of handshake and information transfer

-
3/2/2022 Anamaya Sullerey — Juniper Networks 11

DVCon Guideline 3: State space as
design consideration

e Large blocks run into capacity limitations
— Subdivide blocks that are too big and complex

— Seek early feedback from the FV team for complex
blocks

— Expose Designers to formal verification to provide a
feel of the tool capacity

e State space of a property is a function of

— Cone of influence (COI) - All primary inputs and logic
affecting the property

— Connedctivity within the COI

-
3/2/2022 Anamaya Sullerey — Juniper Networks 12

\ 2015

3/2/2022 Anamaya Sullerey — Juniper Networks 13

\ 2015

DESIGN AND VERIFICATION™

DVLCOIIN

CONPERENCE D EHeITION COmpIeXIty and COI (”)

Case 3

Case 2 has the largest design and possibly a larger COI for
many properties, Case 3 has the highest complexity

.
3/2/2022 Anamaya Sullerey — Juniper Networks 14

NNNNNNNNNNNNNNNNNNNNNNN

Guideline 4: Symmetry

e Symmetry is exploited by FV tools to reduce the
state space

e Assertions and assumptions for symmetric designs
require less effort

* Fewer unique sub-blocks in a symmetric design, less
sub-blocks to verify

* |solate asymmetry in designs that are largely
symmetric

3/2/2022 Anamaya Sullerey — Juniper Networks

15

NNNNNNNNNNNNNNNNNNNNNNN

Example: Isolating symmetry

e Consider a logic working on packets that has

— three input source interfaces (128bits, 256bits, and
512bits)

— two output destination interfaces (256bits, 256bits)
— A packet spray engine

* Function of this design is to
— add a 512 bit header to all incoming packets

— arbitrate among the source interfaces and spray
packets uniformly to the destination interfaces

-
3/2/2022 Anamaya Sullerey — Juniper Networks 16

\ 2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Asymmetric implementation

512 bits =B —)

Insert _
=) 256 bits
256 bits mm =
Insert
=) 256 Dits

_ Header
128bits Insert T

3/2/2022 Anamaya Sullerey — Juniper Networks 17

\ 2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Symmetric implementation

256 bits
=
Insert
LSS 256 bits

256 bits

512 bits =)

symmetric and

256 DitS m———)| simpler spra

256 bits

Symmetric design

3/2/2022 Anamaya Sullerey — Juniper Networks 18

2015

DESIGN AND V FICATION

DVCLIN "Guideline 5: Parameterized
designs

* Parameterization is utilized to scale down large
designs without affecting their key aspects

* Designs can be parameterized using System Verilog
parameters or Verilog pre-processors

* Formal verification of scaled down design allows
oroofs to converge

 Formal verification of scaled down design provides
qguick turnaround time

-
3/2/2022 Anamaya Sullerey — Juniper Networks 19

2015

DESIGN AND VERIFICATION™

DvC:On Example: Parameterized

scheduler

Credit Credit
select return lﬁafmUﬂtErS]
'y

memory

credit counters

S
—

credit indicators

credit update logic

Origal design
Scaled down design

. | pardh = e

 Total clients = 64 ‘g‘% 3
- N=4 R [] @] 58 |&
» [] » L] =

t "‘u‘-—- N arbiters T T"f E‘

| .

L

&

rToige]0
JRARI M

N clients

—

.

3/2/2022 Anamaya Sullerey — Juniper Networks

2015

DESIGN AND V FICATION

DVCCIN "Guideline 6: Assertions for
the design invariants

e Design blocks have invariants (rules about state,
events etc) around which the code Is structured

— One hot bit vector
— Guarantee of a grant for any request in N cycles
— Certain timeout never happens in low power state

* Most violations of design invariants lead to a design
bug

* Assertions based on the design invariants
— allow quick debug
— guides the tool with other proofs

3/2/2022 Anamaya Sullerey — Juniper Networks

21

NNNNNNNNNNNNNNNNNNNNNNN

Guideline 7: Code structure

e Poor code layout increases the effort required for FV
and makes the process error prone

* |solate independent, complex, deep state logic (like
LFSRs, Crypto functions) into separate modules for
easy abstraction

* |[nstantiate memories outside of logic

* Create expressions composed of meaningful
Intermediate terms - helps in cut-point insertion and
partial proofs

-
3/2/2022 Anamaya Sullerey — Juniper Networks 22

NNNNNNNNNNNNNNNNNNNNNNN

Guideline 8: Error i1solation

* Many designs process a large set of independent
symmetric contexts (network flows, cache lines)

A common technique applied for such designs
models a single context

* Proof of a property for the modeled context proves
the correctness for all contexts

* |llegal inputs are part of the input space of the
unconstrained contexts

* This technigue works only if an error in one context
does not affect the state of any other context

-
3/2/2022 Anamaya Sullerey — Juniper Networks 23

2015

SIGN AND VERIFICATION

DVCON ‘Example: MESI protocol
verification

* Valid states for a cache line: modified(M),
exclusive(E), shared(S), and invalid(l)

e Cache-controller design keeps state for all cache-
lines and operates on few of those at a given time

 Read operation is allowed in M, E, and S states,
similar rules for write and other operations

e Single cache line modeled for formally verifying the
design

* |llegal state or operation on other cache lines should
not affect modeled cache line

3/2/2022 Anamaya Sullerey — Juniper Networks

24

NNNNNNNNNNNNNNNNNNNNNNN

Adherence to the guidelines

* Provide good literature on Formal Verification to the
designers — wiki-pages, papers

* Provide good examples of formal friendly designs

* Encourage designers to do formal verification

 Have formal test plans

* |[nvolve formal verification team early in the design
Drocess

 Make formal verification requirements a part of
various reviews

3/2/2022 Anamaya Sullerey — Juniper Networks 25

2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

® ¢ ¢ ¢ O o

\ 4

Reviews

Guideline Review

Functional design paradigm

Micro-architecture

Clear and succinct interfaces

Interface

Keeping state space as
design consideration

Micro-architecture, Formal test plan

Symmetry

Micro-architecture, Formal test plan

Parameterization

Formal test plan

Capturing design invariants

Assertion and coverage

Code structure

Code

Error isolation

Functional spec, Micro-architecture

3/2/2022

Anamaya Sullerey — Juniper Networks

26

NNNNNNNNNNNNNNNNNNNNNNN

Acknowledgements

e Grateful for the feedback of the reviewers

— Sanjeev Singh, Jonathan Sadowsky, and David
Talaski @ Juniper

— Erk Seligman @ Intel

-
3/2/2022 Anamaya Sullerey — Juniper Networks 27

	Design Guidelines for Formal Verification
	Impact of design style on Formal Verification
	Objectives of this paper
	Design Approaches
	Guideline 1: Functional design paradigm
	Example : Ethernet packet parser
	Event driven approach
	Functional design approach
	Untangled state machines - I
	Untangled state machines - II
	Guideline 2: Clear and succinct interface definitions
	Guideline 3: State space as design consideration
	Example: Complexity and COI (I)
	Complexity and COI (II)
	Guideline 4: Symmetry
	Example: Isolating symmetry
	Asymmetric implementation
	Symmetric implementation
	Guideline 5: Parameterized designs
	Example: Parameterized scheduler
	Guideline 6: Assertions for the design invariants
	Guideline 7: Code structure
	Guideline 8: Error isolation
	Example: MESI protocol verification
	Adherence to the guidelines
	Reviews
	Acknowledgements

